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REQUEST FOR A SPECIAL PROJECT 2026–2028 
 

MEMBER STATE: United Kingdom 

Principal Investigator1: Shirin Ermis 

Affiliation: University of Oxford 
Address:  

Department of Physics 
Parks Road 
OX1 3PJ Oxford, UK 

Other researchers: 
Nicholas Leach, Sarah Sparrow, Fraser Lott, Antje Weisheimer 
 
 

Project Title: Developing State-Specific Atmospheric Adjustments for Forecast-
Based Event Attribution  
 
 

To make changes to an existing project please submit an amended version of the original form.) 

 

Computer resources required for project year: 2026 2027 2028 

High Performance Computing Facility [SBU] 64,719,000 51,408,000  

Accumulated data storage (total archive volume)2 [GB] 92,412 160,956  

 
EWC resources required for project year: 2026 2027 2028 

Number of vCPUs [#]    

Total memory [GB]    

Storage [GB]    

Number of vGPUs3 [#]    

Continue overleaf. 

 
1 The Principal Investigator will act as contact person for this Special Project and, in particular, will be asked to register 
the project, provide annual progress reports of the project’s activities, etc. 
2 These figures refer to data archived in ECFS and MARS. If e.g. you archive x GB in year one and y GB in year two and 
don’t delete anything you need to request x + y GB for the second project year etc. 
3The number of vGPU is referred to the equivalent number of virtualized vGPUs with 8GB memory. 
 

If this is a continuation of an existing project, please 
state the computer project account assigned previously. SPGBERMI 

Starting year: (A project can have a duration of up to 3 years, 
agreed at the beginning of the project.) 

2026 

Would you accept support for 1 year only, if necessary? YES  x NO  
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Principal Investigator: Shirin Ermis 

Project Title: Developing State-Specific Atmospheric Adjustments for Forecast-
Based Event Attribution  

Extended abstract 

All Special Project requests should provide an abstract/project description including a scientific plan, a justification of 
the computer resources requested and the technical characteristics of the code to be used. The completed form should 
be submitted/uploaded at https://www.ecmwf.int/en/research/special-projects/special-project-application/special-
project-request-submission.  

Following submission by the relevant Member State the Special Project requests will be published on the ECMWF website 
and evaluated by ECMWF and its Scientific Advisory Committee. The requests are evaluated based on their scientific and 
technical quality, and the justification of the resources requested. Previous Special Project reports and the use of ECMWF 
software and data infrastructure will also be considered in the evaluation process. 

Requests exceeding 5,000,000 SBU should be more detailed (3-5 pages).  

 

Abstract 
Extreme event attribution answers the question of how climate change impacts extreme weather events – 
helping us understand the risks associated with a changing climate. Over the last years, we have been 
developing a method for event attribution which utilises the reliability of operational weather forecasts to 
study extreme events. Forecast-based attribution has the advantage that it can not only assess the 
thermodynamic changes to an event but also begin to understand how dynamics and thermodynamic 
interact to change the weather. Here, we are proposing to build on previous work from special projects where 
we demonstrated the capabilities of forecast-based attribution for heatwaves and storms. We aim to 
improve the method further by perturbing the atmospheric initial conditions towards the climate change 
scenario we model. The novelty of our proposed approach is that is solely relies on the response of the 
forecast model to forcing. This addition will help make attribution statements more reliable and interpretable 
and help understand risks from extreme weather for policy making, infrastructure and other sectors. 

 

Project Description 

 

Background 

With rising global temperatures, many extreme weather events such as heatwaves and storms are becoming 
more intense and/or frequent. Extreme event attribution is aiming to answer how events are impacted by 
climate change, both in frequency and severity. Over the last two decades, a variety of extreme event 
attribution methods have been developed. As a result, our understanding of extreme events such as 
heatwaves and storms has been growing – with substantial benefits for policy, infrastructure and the financial 
sector among many others. 

The so-called storyline approach to attribution, introduced by Shepherd (2016), models the event of 
interest in a warmer or colder climate, keeping the dynamics of the observed event constant. With this, 
storyline attribution aims to isolate the thermodynamic effects of climate change on extreme weather 
events. 

The challenge in this method is to adjust the atmosphere towards a different climate in the simulation. 
Different methods have found a variety of ways to solve this dichotomy (e.g. van Garderen, Feser, and 
Shepherd 2021; Hope et al. 2016; Athanase et al. 2024; Patricola and Wehner 2018). However, most of 
these methods rely on calculating a climate change fingerprint in the temperature from coarse climate 
model simulations such as CMIP. These fingerprints are highly uncertain as climate models do not agree on 
the degree of local warming or even climate sensitivity (Zhang and Chen 2021; Williamson et al. 2021). 
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Additionally, fingerprints are not specific for the state of the atmosphere and hence might disturb features 
which are important for the event of interest such as weather fronts. 

Our group has previously developed the forecast-based attribution method (Leach et al. 2021; Ermis et al. 
2024; Leach et al. 2024). This method uses simulations of ECMWF’s Integrated Forecast System (IFS), 
changing the full-depth ocean temperatures and salinity in the initial conditions and adjusting the 
atmospheric CO2 concentrations. After the initialisation, this system is run freely, which allows us not only 
to study the thermodynamic effect of climate change on extremes but also the dynamic adjustment on 
short timescales. 

 
Figure 1: Response of surface temperatures to CO2 forcing fla7ens off on the order of days in medium-range simula>ons for a winter 
heatwave. Green features show mean land temperatures and blue features show ocean. Line styles indicate ini>aliza>on date of the 

experiments. In the boxplot of the temporal mean over 25 February 2019 to 27 February 2019, the black line shows the ensemble 
mean, dark shading indicates 90% confidence in the mean, and light shading indicates 90% confidence in the ensemble. Figure and 

cap>on adapted from Leach et al. (2021). 

Previous work 

Using the forecast-based attribution method, and with the support of previous Special Projects, we have 
published attribution studies on heatwaves (Leach et al. 2021; 2024) and midlatitude storms (Ermis et al. 
2024). We show that the forecasts are able to reproduce the severity of the observed events and that we are 
hence able to reliably estimate the effects of climate change.  

In the past year, we were able to use resources from the Special Project SPGBERMI to compare three types 
of storyline attribution methods to the methodology used by World Weather Attribution. This work 
highlighted the importance of the level of synoptic freedom (or “conditioning”) in simulations on the 
quantitative and even qualitative attribution statement. With the work we are proposing here, we aim to 
explore this further to make attribution statements reliable and actionable. 

We have completed initial testing for including climate change perturbations in the initial conditions of the 
atmosphere in IFS CY47R3 and are now confident that we can implement the process suggested below. 
Additionally, we are currently implementing sensitivity tests which will add a climate change fingerprint 
obtained from ERA5 to the initial conditions of a forecast to estimate the effect that climate drift might have 
on our attribution statements. 

 

Present Challenges 

 A key challenge for event attribution is to keep the dynamics of the observed event (event specificity) while 
adjusting large-scale dynamics to climate change. This dichotomy can never be fully resolved but methods 
such as forecast-based event attribution, which allow the simulations to run freely, can begin to answer 
questions about the dynamic impacts of climate change on extreme events. In our present setup, we are 
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using the same unperturbed initial state as in the operational (current climate) forecast, introducing a climate 
drift while the atmosphere adjusts to changed CO2 concentrations and ocean temperatures. We previously 
analysed simulations with a range of lead times which show different levels of atmospheric adjustment (see 
figure 1). These simulations likely underestimate the effect of climate change on the extremes due to the 
spin-up period. Here, we are proposing a method that adjusts the atmosphere to climate change by 
iteratively adding climate change signals to a new initialisation of the forecast system. 

Our proposed method would calculate differences between the factual and counterfactual forecasts in 
intervals of up to 24 hours, creating climate change adjustments that are specific for the synoptic conditions 
and to the IFS model, thereby avoiding model drift.  

A system of conhnually calculahng a climate change signal from medium-range simulahons has the advantage 
of being physically consistent with the atmospheric state. The process itself is explained in more detail below. 
The approach we propose hence enables to remove anthropogenic fingerprints that are highly specific for 
the state of the atmosphere at any hme while not requiring long-term climate projechons. Ulhmately, this 
project will help the ajribuhon community understand bejer the impacts of inihal condihons on weather 
events and move closer to operahonal ajribuhon. 

 

Scientific Plan 

As outlined in our previous work, we plan to iteratively adjust the counterfactual simulations towards the 
desired climate state. Our proposed approach is as follows: 

1. Begin by initialising a counterfactual (perturbed initial condition) forecast exactly as we have done 
previously. 

2. Choose an iteration window (on the order of a few hours) at which the next counterfactual forecast 
is to be initialised. 

3. Use the counterfactual and operational forecasts to determine the (ensemble mean) difference in 
the thermodynamic atmospheric fields after the iteration window. 

4. For the counterfactual forecast after the iteration window, in addition to the ocean state 
perturbation and atmospheric composition changes, also perturb the atmospheric on the factual-
counterfactual difference at that time estimated from the previous forecast. 

5. Apply this to successive forecasts in the same way. 

The first few forecasts this routine is applied to, will not be in a balanced initial state, since the atmosphere 
will still be adjusting after the first iteration window. However, after this is applied to a few forecasts, the 
measured factual-counterfactual differences between successive forecasts should stabilise. Once this 
stabilisation is achieved, the counterfactual forecasts will be initialised from an approximately balanced state. 
In this way we will use the physics of the model to determine what the difference between the factual initial 
state, and the counterfactual initial state should be at the start date of the forecast. This is conceptually 
similar to the perturbed data assimilation approach to estimate a balanced counterfactual initial state and 
draws upon approaches used in data assimilation elsewhere, primarily the method of breeding vectors. A 
graphic of this method is shown in figure 2. 
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Figure 2: Graphic representation of the proposed iterative atmospheric adjustment for forecast-based attribution. In the first step, 
only CO2 and ocean states are perturbed in the counterfactual forecasts. After the first iteration window ∆𝑡 the difference between 
the factual and counterfactual forecasts is calculated and added to the next iteration. 

To implement this method, we intend to test the effects of both the iteration window, and the lead time to 
the event. For the iteration window, we will test lengths of 12 hours and 24 hours. We assume that longer 
iteration windows would disturb the initial states too much through model error causing divergence between 
the factual and counterfactual initial state. The lead time to the event (here including the reinitialization of 
forecasts, so not just one simulation) will be set to 1, 2, 4, and 8 weeks in a second step. 

We propose to test the setup initially on one extreme event, such as Storm Eunice from 2022. Once a reliable 
setup has been identified, we aim to study three different types of extreme events with it 

In summary, we are planning to run the following simulations across two years. 
Phase Year Steps Details 

1: Test parameters 
of the a6ribu8on 

setup 

2026 Test the effect of varying the length of the 
iterahon window. 

Test 12-hour and 24-
hour windows, 24-
hour integrahons, 14-
day lead hme to the 
event  

Test the effect of varying the length of the 
lead hme to the event. 

Test 1, 2, 4, and 8 
weeks lead hme to the 
event with 12-hourly 
reinihalisahon 

2: Case studies 2027 Run case study simulahons with the 
ajribuhon setup from Phase 1 

Maximum compuhng 
resources of 112 
inihalisahons of 24 
hours for three events 

 

 

Required Resources 

Cost (SBU) for testing 

1500 SBU per day per ensemble member (estimated for CY48R1 at 18km in 2024) x 

5-day iteration per simulation x 

51 ensemble members x 

10 initialisation dates x 

3 types of runs (preindustrial, current, future climates) 

= 11,475,000 SBU 
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Cost (SBU) for Year 1  

Testing iteration time step 

1500 SBU per day per ensemble member (estimated for CY48R1 at 18km in 2024) x 

1-day iteration per simulation x 

51 ensemble members x 

(28 + 14) initialisations x 

3 types of runs (preindustrial, current, future climates) 

= 9,639,000 SBU 

 

Testing for lead time  

1500 SBU per day per ensemble member (estimated for CY48R1 at 18km in 2024) x 

1-day iterations per simulation x  

51 ensemble members x 

(14 + 28 + 56 + 112) initialisation dates x 

3 types of runs (preindustrial, current, future climates) 

= 48,195,000 SBU 

 

Cost (SBU) for Year 2 

Running all events with final setup 

1500 SBU per day per ensemble member (estimated for CY48R1 at 18km in 2024) x  

1-day iterations per simulation x  

51 ensemble members x 

112 initialisation dates x 

2 events x 

3 types of runs (preindustrial, current, future climates) 

= 51,408,000 SBU 

 

Overall cost (SBU)  

Year 1: 69,309,000 + 

Year 2: 51,408,000  

= 120,717,000 SBU 

 

Storage (in GB) 

Year 1 
2 GB per ensemble member per day x  

(126 + 630) simulahon days above x 
51 ensemble members x 

= 77,112 GB 
+ 15,300 GB for teshng  

= 92,412 GB 
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Year 2 
2 GB per ensemble member per day x  

(126 + 630 + 672) simulahon days above x 
51 ensemble members x 

= 145,656 GB 
+ 15,300 GB for teshng  

= 160,956 GB 
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