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Extended abstract 
 
Stratospheric composition—primarily ozone and water vapour—plays a key but underexplored role in forcing 
atmospheric circulation. These components can significantly influence the predictability of weather and climate from 
sub-seasonal to multi-decadal scales. However, interactions between stratospheric composition, dynamics, transport, 
and radiative processes remain poorly understood. Most state-of-the-art weather models simplify these processes, 
leaving their implications for sub-seasonal to seasonal predictions unclear. 
 
The Horizon Europe ERC-funded SOCLIM project (Stratospheric cOmposition in a changing CLIMate) addresses this 
critical gap by delivering a holistic assessment of the impact of stratospheric ozone and water vapour on predictability. 
SOCLIM will, for the first time, investigate the impact of incorporating interactive stratospheric chemistry in the 
operational IFS, the state-of-the-art numerical weather prediction model of ECMWF, explicitly resolving interactions 
between stratospheric and tropospheric composition and their impacts on weather and climate. 
 
To achieve these goals, SOCLIM will: 
 

1) Test the impact of stratospheric ozone within the operational IFS by coupling the IFS to a range of ozone 
schemes, ranging from simplified linearized ozone to full comprehensive interactive stratospheric chemistry 
modules. 
 

2) Perform targeted hindcast experiments to quantify the influence of stratospheric composition extremes—such 
as Arctic ozone depletion events—on stratospheric and surface climate predictability. 
 

3) Use independent Sub-seasonal to Seasonal (S2S) forecasting systems as part of coordinated inter-comparison 
studies to isolate and quantify the dynamic and radiative impacts of stratospheric composition on regional 
weather and climate projections. 
 

4) Integrate in-situ observations, satellite and reanalysis data to constrain and the IFS validate model results. 
 
Through these activities, SOCLIM will advance our understanding of chemistry-climate interactions, reducing 
uncertainty in weather and climate predictions. The project runs from June 2024 until May 2029, and is led by Dr. 
Gabriel Chiodo at IGEO-CSIC, and will significantly strengthen European leadership in climate science, supporting 
improved weather and seasonal forecasting for the benefit of society, fostering international collaboration between 
research institutions, including ECMWF itself, and the wider community involved in several activities coordinated by 
the World Climate Research Program (WCRP) - Atmospheric Processes And their Role in Climate (APARC - 
https://www.aparc-climate.org/), such as the Stratospheric Network for the Assessment of Predictability (SNAP). 
 
Scientific Background and Motivation 
 
Constraining the role of stratospheric ozone in sub-seasonal to seasonal (S2S) predictability remains a critical challenge 
for advancing weather and climate forecasting. In most operational forecasting systems, including all IFS cycles before 
cycle 48r1, stratospheric ozone was prescribed from climatology, due to the large computational cost of fully interactive 
chemistry. Recent studies have shown, for the first time, that Arctic ozone has a sizable impact on the atmospheric 
circulation in the aftermath of episodic Arctic ozone depletion events (Friedel et al., 2022a). More specifically, in these 
situations, ozone depletion extends the lifetime of the polar vortex, leading to an amplification of surface climate 
anomalies, including warming over Eurasia and drying over central Europe. It has also been shown that Arctic ozone 
also modulates the surface signature of Final Stratospheric Warmings (FSWs ; see Friedel et al., 2022b). These effects 
are not only limited to the Northern Hemisphere: incorporating interannual ozone variations in the Antarctic 
stratosphere leads to improved prediction of surface climate anomalies over Australia (Lim et al., 2024). However, 
these studies have mostly employed coarse resolution climate models which are not initialized with observations, or 
prediction systems forced with observed ozone anomalies. Hence, these studies do not allow robust and definitive 
conclusions concerning the role of ozone as a source of predictability and the added value for model skill.  
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Experimental Design 
 
To address these limitations, SOCLIM will adopt a novel experimental strategy within the IFS framework, leveraging 
ECMWF’s high-performance computing resources. We will use the existing chemistry-weather prediction system, and 
will employ different configurations of the IFS model. This will enable the explicit simulation of two-way interactions 
between stratospheric ozone and atmospheric dynamics, allowing us to unambiguously assess, for the first time, the 
impact of stratospheric ozone feedbacks on prediction skill.  
 
Recently, the IFS Cycle 48r1 has adopted the integration of a radiatively interactive ozone in operational forecasting, 
through the Hybrid Linear Ozone (HLO – see Williams et al., 2021). This scheme has been shown to reduce certain 
biases in the IFS, such as the cold bias in the polar stratosphere and also an improvement in temperature and wind 
variability. It was concluded that HLO reduces temperature forecast bias in the middle to upper stratosphere leading up 
to and during an SSW onset. Including a similar ozone scheme leads to improvements in the Southern Hemispheric 
polar vortex and its variability (Monge-Sanz et al., 2021). It has also been recently shown that including a linearized 
ozone scheme increases the predictable signal of the FSW date in the Southern Hemisphere (Anil et al., 2025). 
However, the impact has only been evaluated for a few sudden stratospheric warmings (SSWs) with focus on the 
Southern Hemisphere. Moreover, linearized ozone schemes still represent a simplification of ozone-dynamics 
interactions, especially in non-linear regimes such as strong vortex situations in which ozone can undergo rapid 
chemical destruction. This calls for a more comprehensive evaluation of the HLO performance both in terms of 
representing ozone itself, as well in the impacts on prediction skill, particularly in the sub-seasonal to seasonal 
forecasting range, including non-SSW periods and springs with sizable Arctic ozone depletion. 
 
A comprehensive atmospheric chemistry scheme is computationally much more expensive and has only been used in 
the production of chemical reanalysis. However, the focus has generally been on tropospheric chemistry (see e.g., 
Flemming et al., 2015). Recently, a more comprehensive stratospheric chemistry has been included (BASCOE) (Eskes  
et al. 2024; Chabrillat et al., 2025). In the short term (5-day), forecasts of stratospheric ozone with this configuration are 
improved compared to the simplified ozone parameterization from HLO (Eskes et al., 2024). However, the skill on S2S 
time-scales has not been evaluated yet. Most importantly, the effects on prediction skill are unclear, as winds are 
assimilated in these studies (e.g., Chabrillat et al., 2025). Dedicated experiments investigating the impact of two-way 
coupling between chemistry and the circulation are needed to conclusively assess the impact of ozone on model skill. 
 
Proposed Experiments 
 
Within this special project, we propose to assess the role of ozone as a source of predictability on S2S time-scales, by 
running hindcast experiments of springs with low and high Arctic ozone values. For Arctic ozone minima, we have 
identified the two strongest Arctic depletion events on records, 2011 and 2020. During these springs, the polar vortex 
was exceptionally strong and long-lived, leading to enhanced polar stratospheric cloud formation, and massive 
depletion of up to 20% in the ozone column (Figure 1 – see also Manney et al., 2011; 2020). During these springs, 
pronounced anomalies were also observed in tropospheric circulation: the Arctic Oscillation index (AO) was 
exceptionally high (Lawrence et al., 2020) and precipitation was below average for wide parts of Central Europe. 
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Figure 1: (left) Total column ozone anomaly of the February-April average total column in 2020 and (right) evolution 
over the last 30 years according to the ESA-GTO-ECV merged satellite data set. The two case studies of interest for this 
proposal are marked in red. Light blue and dark blue whiskers represent the  ±1 and ±2  standard error (SE) deviations 
from the mean constituted by the uncertainty surrounding the merging of the different sensor ozone products in the 
ESA-GTO-ECV merged dataset. 
 
For Arctic ozone maxima, two springs are of special interest: 2018 and 2023. During these springs, the vortex was 
exceptionally perturbed, with one of the strongest SSWs on record in February 2018 and two SSWs occurring one after 
the other in the winter-spring of 2023. A dynamically disturbed vortex led to mixing of ozone-rich air from the mid-
latitudes into the polar stratosphere (De la Camara et al., 2018). If the enhanced ozone abundances persist until 
springtime, Arctic ozone can radiatively warm the polar stratosphere, modulating the magnitude of SSWs and 
downward coupling (Haase and Matthes, 2019; Oehrlein et al., 2020) and surface signature of FSWs (e.g. Friedel et al., 
2022b). The key overarching question is then: did Arctic ozone drive the circulation anomalies observed during these 
years, and does the inclusion of ozone variations influence the model prediction skill? 
 
To address these questions, we propose two sets of experiments using the IFS cycle 49r1 (137 vertical levels, Tco199 
resolution, ~50 km), ocean at 0.25 deg. This is the current operational standard for extended-range and seasonal 
forecasting (SEAS6). In this cycle, the IFS has undergone several upgrades with respect to the first version in which a 
parameterized ozone was implemented (cycle48r1). Also, using dedicated experiments with the same exact IFS allows 
us to identify any skill changes that can be attributed solely to the ozone parameterisation.  
 
Set A: Simplified ozone hindcasts (Year 1) 
 
We will assess the impact of ozone anomalies during four key springs (2011, 2018, 2020, 2023) by running four 30-
member ensembles, each 120 days long: 
 

● IFS_noHLO: Control run with ozone prescribed as monthly-mean zonal mean (2D) climatology from 
SWOOSH, which is a merged satellite dataset (Davis et al., 2016).  

● IFS_O3obs: Ozone prescribed from observed anomalies for each target spring, based on SWOOSH. 
● IFS_HLO: Standard Hybrid Linear Ozone scheme 
● IFS_HLO* HLO with an added heterogeneous chemistry term, and updated linearization coefficients for 

improved interannual variability. Note that these coefficients will be derived from updated chemistry schemes 
compared to the old TOMCAT-based coefficients employed in Monge Sanz et al. (2022). 

Model and resolution: IFS cycle 49r1 at Tco199 resolution (~50 km), 137 levels, ocean at 0.25 deg. 
 
All ensembles will be initialized 15 days before the target events (1 March for 2011/2020, 1 February for 2018/2023), 
using ERA5 for the atmosphere and CAMS reanalysis for chemical tracers. Only initial conditions will be perturbed, 
ensuring robust statistical analysis of model skill. All runs will span 120 days to cover the S2S time scale.  
 
Estimated resources: 200 SBU/day × 120 days × 4 cases × 30 members = 2,880,000 SBU 
Storage needs: 0.9 Tb per 30-member ensemble (storing 3-D fields as follows: 6 variables as daily averages on 40 
pressure levels, 4 variables at 6-h resolution on 40 pressure levels, 30 2-D fields at the surface at TOA). This amounts to 
exactly 4,200 GB for all 4 ensembles x 4 cases = 16,820 GB in total. 
 
Set B: Full ozone hindcasts (Year 2 and 3) 
 
In 2027–2028, we will test the impact of a more realistic stratospheric chemistry representation using the IFS 
“COMPO” configuration, which includes comprehensive atmospheric chemistry with 123 tracers (BASCOE). This 
setup allows ozone to be subject to advection, chemistry, and radiative interactions, capturing full coupling between 
ozone and circulation. Due to computational cost, we will only focus on ozone minima (2011 and 2020): 

 
● IFS_CHEM: BASCOE chemistry, 20 members, 120 days each, same model and resolution as Set A. 

 
Estimated resources: ~2,400 SBU/day × 120 days × 2 cases × 20 members = 11,520,000 SBU 
Storage needs: 0.6 Tb per 20-member ensemble (storing 3-D fields as follows: 6 variables as daily averages on 40 
pressure levels, 4 variables at 6-h resolution on 40 pressure levels, 30 2-D fields at the surface at TOA). For these 
experiments, we also need to store chemical fields for detailed analysis, adding another 1,200 GB per 20-member 
ensemble. This amounts to exactly 3,600 GB for all ensembles x 2 cases = 6,800 GB in total. 
 
The key difference with respect to Set A is that we now use a configuration with comprehensive atmospheric chemistry, 
with 123 chemical tracers. In the stratosphere, this model employs the BASCOE chemistry and should more accurately 
represent ozone variability than in HLO. We will attempt a 20% reduction in complexity from the standard 3,000 
SBU/day configuration, by reducing the number of tracers and by simplifying the chemical mechanism. 
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Evaluation and Community Relevance 
 
We will use ERA5 as a dataset to evaluate the model skill both in the stratosphere and troposphere/surface. First, we 
will evaluate the model skill in representing ozone variability in these years, both for the IFS_HLO and IFS_CHEM. By 
differentiating both IFS_CHEM, IFS_HLO and IFS_HLO* against IFS_noHLO, we can assess the impact of the 
complexity in the ozone parameterization on the re-forecasts. Also, the use of a new ozone forcing dataset (SWOOSH) 
for IFS_noHLO and IFS_O3obs represents an update over the current standard use of CAMS ozone. Moreover, the use 
of new coefficients for the HLO linearization represents a major update over the standard configuration of Williams et 
al. (2021) and Monge Sanz et al., (2022). Last but not least, the use of the same exact IFS version across all ensembles 
allows us to unambiguously evaluate the impact of ozone feedback processes alone, something which is presently not 
possible with the existing IFS data stored in the S2S and SEAS data-sets. 
 
These experiments will directly inform and coordinate with international community activities. Within APARC’s SNAP 
phase 2, a dedicated protocol will investigate ozone’s role in model skill, and will be led by G. Chiodo. Some 
experiments (e.g., IFS_O3obs) will be very influential in the formulation of the SNAPSI-O3 protocol, which will serve 
to coordinate S2S modelling centres worldwide in 2026. The results from this project will also feed into other 
coordinated community projects and activities within APARC focused on ozone and water vapour, such as the 
QUasibiennial oscillation and Ozone Chemistry interactions in the Atmosphere (see Orbe et al., 2025) and the ISSI 
team on Stratospheric Water Vapour led by Felix Ploeger. Thus, this project will serve as a starting point for many 
international activities, advancing our understanding of the role of stratospheric composition in the climate system. 
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