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Abstract

This NWP note provides an overview of work carried out as part of an ECMWF Special
Project, SPIEFANN, in 2024. This work focused on utilising the URANIE platform for optimisa-
tion of configuration parameters in the Stochastically Perturbed Parameterizations (SPP) scheme
in the HARMONIE-AROME model. In particular, a series of tests were carried out to assess
the performance of the Efficient Global Optimization (EGO) algorithm, as implemented with
URANIE, for finding optimal SPP parameter perturbation standard deviation. The main purpose
of this testing was to investigate if URANIE can be used to generalise (and optimise) the manual
SPP tuning experimentation which is currently carried out within the HIRLAM and ACCORD
consortia.

The results presented herein suggest that:

• The implementation of the EGO algorithm in HARMONIE-AROME with URANIE works
well from a technical perspective.

• With a suitable choice of cost function, the single parameter optimisation workflow can yield
quite sensible predictions for an optimal perturbation standard deviation which balances
improvement in model performance, as measured by CRPS, against the introduction of
systematic biases in the perturbed members relative to the control.

• While initial investigations into multi-parameter optimisation highlighted some of the limi-
tations of the current approach, the overall performance of the EGO scheme was reasonable.

As such, with some minor adaptions it appears that the general workflow presented in this
note could be readily applied to wider SPP configuration tuning with HARMONIE-AROME and
potentially provide some benefit over current tuning strategies.
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1 Introduction

URANIE is a sensitivity and uncertainty analysis platform developed at CEA (the French Alternative
Energies and Atomic Energy Commission) and based on the ROOT framework (developed at CERN,
see https://root.cern/). URANIE contains a wide variety of tools for uncertainly propaga-
tion, sensitivity analysis, optimisation problems, and more. The code is open-source and available at
https://sourceforge.net/projects/uranie/ (see associated documentation therein).

Initial work on integrating URANIE within the HARMONIE-AROME workflow was carried out
by Michiel Van Ginderachter (RMI) as part of the ESCAPE-2 project (Van Ginderachter, 2022).
Several proof of concept experiments were carried out to illustrate how URANIE’s sensitivity and
optimisation tools could be used to tackle different problems within HarmonEPS (i.e. the ensemble
realisation of the HARMONIE-AROME model). In particular, these experiments focused on:

1. a Morris Screening sensitivity analysis of the surface perturbation scheme to investigate the dry
bias of ensemble members in HARMONIE-AROME cycle 40h.1.1, and

2. tuning of the SPP scheme correlation length scale using the EGO algorithm (see Section 2.3.2).

Further details regarding thesee experiments can be found in Van Ginderachter (2021).

URANIE was first explored in Met Éireann in 2023. Based on the work discussed above, URANIE was
implemented within HARMONIE-AROME cycle 46 on ECMWF’s ATOS HPC platform and various
HarmonEPS sensitivity analyses were carried out (both of the surface perturbation and SPP schemes).
Initial investigations into SPP optimisation using the EGO algorithm took place as part of an AC-
CORD scientific visit in late 2023 (Van Ginderachter and Fannon, 2024). This visit highlighted the
crucial role played by the cost function used during optimisation and emphasised the need for a more
rigorous assessment of overall performance.

This NWP note describes significant testing of the URANIE platform for optimisation of SPP config-
uration parameters in HARMONIE-AROME, with a particular focus on the choice of cost function
used for optimisation and the performance of the EGO algorithm. The computational resources used
for this testing was provided by an ECMWF Special Project in 2024 (SPIEFANN). One can note that
the original project description also included sensitivity analyses and optimisation of other pertur-
bation schemes in HarmonEPS (e.g. the surface perturbation scheme, Fannon and Clancy (2024)).
However due to time constraints the project was ultimately restricted to SPP optimisation only.

The remainder of this note is structured as follows. Section 2 provides a description of the HARMONIE-
AROME configuration settings and the overall strategy for the SPP optimisation experiments. A brief
overview of URANIE is given, focusing solely on installation, incorporation into the HARMONIE-
AROME workflow, and the EGO algorithm, along with a brief sidenote on SPP pattern reproducibility
in HARMONIE-AROME cycle 46. In Section 3 optimisation of a single SPP configuration parameter
is considered for several SPP parameters, while Section 4 is a brief investigation into extending the
optimisation problem to two SPP configuration parameters. The note concludes in Section 5 with an
overview of results and outlook for future work.
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2 Technical details

2.1 HARMONIE-AROME configuration settings

The dev-CY46h1_eps branch of HARMONIE-AROME was used for all experiments discussed in this
NWP note. A frozen version of this branch1, which was the latest available at the start of the project,
was used throughout. It can be noted that this frozen version of the branch lags significantly behind the
latest version of the branch at the time of writing, and this should be borne in mind when interpreting
results presented herein. Note also that the tagged version of cycle 46 (i.e. harmonie-46h1.1) was not
available at the start of this project.

General configuration settings are given in Table 1, where all other namelist and configuration settings
can be assumed to be the default used in the dev-CY46h1_eps branch at that time (unless otherwise
stated). A parent-child approach is taken for the ensemble experiments, as summarised below:

1. A "parent" experiment is first run for the control member only over the period of interest. This
is a standard 3-hour data assimilation cycling experiment with long runs (36-hour) at 00 UTC.
This parent experiment therefore produces analysis files for each forecast start date.

2. A "child" experiment is then run for the perturbed ensemble members. Six members are used
here following standard practice in ACCORD. For a given forecast start date, each perturbed
member starts from the control member analysis files (i.e. the upper-air MXMIN1999+0000
and surface ICMSHANAL+0000.sfx files) produced by the parent experiment.

Component Parent experiment Child experiment

Precision dual -
Domain IRELAND25S, L65, QUADRATIC grid -
Data Assimilation 3DVAR, CANARI_OI_MAIN (MARS conv. only) No DA
LSMIXBC yes no
Boundaries IFSHRES (UWC-W archive) -
ENSMSEL 0 1-6
ENSCTL_IS_PRESENT yes no
Perturbations None SPP only
Cycles +36h at 00 UTC, 3h cycling otherwise +36h at 00 UTC
Compiler gnu -

Table 1: Configuration settings common to all parent and child experiments, unless otherwise
stated. Missing entries in the child column are assumed the same as the parent. Note that
"No DA" refers to ANAATMO=ANASURF=none and "SPP only" refers to SPP=yes, PER-
TATMO=PERTSURF=ENSINIPERT=none, and SLAF commented out.

This approach has a number of benefits:

1. The control member only has to be run once, instead of repeating it for each ensemble experi-
ment.

1At commit 6730819, see https://github.com/Hirlam/Harmonie/commits/

6730819886a4de9d6a6c2a2f822a940727b81e0d/.
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2. The data assimilation cycles for the perturbed members are skipped, which speeds up experi-
ment runtime considerably.

3. Starting all perturbed members from the same point allows for a direct assessment of the impact
of individual perturbations as they are isolated from all other external factors.

As discussed in Section 1, only SPP perturbations will be considered in the ensemble experiments.

Note that the domain IRELAND25S differs slightly from the IRELAND25 domain generally used in
technical testing (see Figure 1). A square domain was used here in order to ensure reproducibility
of the SPP perturbation patterns (see Section 2.5). All IRELAND25S experiments with data assimi-
lation switched on utilised structure functions from the IRELAND25_090 domain2, which therefore
avoided generating new structure functions. Some additional details regarding the input data for the
experiments can be found in Appendix 6.1.

Figure 1: The square IRELAND25S domain (magenta, 540x540 points) used in this NWP note, along
with the standard IRELAND25 (orange) and IRELAND25_090 (red) domains.

2.2 SPP and tuning

The SPP scheme in HARMONIE-AROME introduces stochastic perturbations to selected closure
parameters in the physical parameterizations of the model, such as the microphysics and turbulence
schemes (Frogner et al., 2022), and to the model dynamics3. There are currently sixteen SPP pa-
rameters available in HARMONIE-AROME; the fifteen described in Tsiringakis et al. (2024) and the
recently introduced "SLWIND" dynamics perturbation. SPP has been used operationally at ECMWF
(Lang et al., 2021) and MetCoOp for several years, and is also used operationally in the UWC-West
consortium since March 2024.

In HARMONIE-AROME SPP perturbations for a given parameter are generated using the Stochastic
Pattern Generator (SPG) routine, with perturbation patterns evolving in space and time according to

2Which is possible as IRELAND25S lies within IRELAND25_090 (see Figure 1) and the two domains used the same
horizontal and vertical resolution.

3In the semi-lagrangian advection scheme.
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specified spatial and temporal correlation scales (see Tsyrulnikov and Gayfulin (2017) for details).
The perturbation patterns are typically updated every hour and linearly interpolated at intermediate
timesteps, however the pattern update frequency can be modified. Some SPG settings, which are
common to all experiments discussed, are indicated in Table 2.

The perturbed parameter values are drawn from either lognormal or pseudo-uniform distributions
which are typically (but not always) centered around the default value used for the parameter in the
model (i.e. that used by the control member). For a lognormal distribution, the SPP perturbation
pattern, P , for a given SPP parameter, p, is described by

P = dp × exp (µp + σp × Ip ×Rp) , µp =

{

− (σp × s)2 /2 if mp is TRUE,

0 if mp is FALSE,
(1)

while for a uniform distribution

P = dp + zp × σp ×
(

1

2

[

1 + erf

(

Ip ×Rp√
2× s

)]

− op

)

, zp =

{

1 if dp = 0,

dp otherwise,
(2)

where Rp represents the random field generated by SPG and erf is the error function. All other vari-
ables are described in Table 2 along with their corresponding namelist entry in harmonie_namelists.pm
and other relevant SPP settings. Note that clipping of the perturbed field P at lower and upper bounds
can also be specified.

Variable Description Namelist entry Value

TAU_SPP SPG temporal correlation scale TAU 43,200 s
XLCOR_SPP SPG spatial correlation scale XLCOR 200 km
NPATFR_SPP SPG pattern update frequency NPATFR -1 (every hour)
dp Default value for p - Variable
σp Perturbation standard deviation for p CMPERT_p Variable
Ip Correlation for p - 1
s Pattern standard deviation SDEV 1
mp Mean/median lognormal distribution LLNN_MEAN1_p TRUE
op Offset for p (uniform only) UNIFORM_OFFSET_p Variable
LPERT_p Activate SPP for p LPERT_p TRUE/FALSE
LUNIFORM_p Uniform distribution for p LUNIFORM_p TRUE/FALSE
CLIP_p Clipping of P CLIP_p Variable

Table 2: SPP-relevant variables and values used in this note (if applicable). The column "Namelist
entry" refers to how the variable appears in harmonie_namelists.pm and p refers to the SPP parameter.
Note that Ip is set in arpifs/setup/get_spp_conf.F90.

Sample SPP perturbation patterns for the the SPP parameter "RFAC_TWOC" are illustrated in Fig-
ure 2. As mp is TRUE in this case the mean value of the lognormal distribution is approximately equal
to the default value of 2 for the model parameter (i.e. RFAC_TWOC_COEF). This is also the case
for the uniform distribution as the offset op = 0.5 ensures that the perturbations are centered around
the default. One can note that for a fixed value of σp, i.e. the perturbation standard deviation, the
lognormal distribution gives perturbations which deviate more significantly from the default value.
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(a) Fields

(b) Histograms

Figure 2: Sample SPP perturbation patterns for RFAC_TWOC. A lognormal distribution with dp = 2
and σp = 0.6 is illustrated on the left, while the corresponding uniform distribution with op = 0.5 is
given on the right. A clipping of 0− 10 is applied and the SPG field, Rp, is common to both.

Tuning of the SPP scheme for a given cycle of HARMONIE-AROME is typically first done on an in-
dividual parameter-by-parameter bias, where the impact of different perturbation distribution settings
(e.g. lognormal or uniform, standard deviation, and offset) on ensemble performance is assessed.
Assessment is generally done via point verification metrics such as CPRS, spread-skill, and ensem-
ble member bias relative to the control. Groups of SPP parameters are then tested in combination
to assess overall performance, and this process ultimately leads to recommended SPP configuration
settings for operational use. For example, both MetCoOp and UWC-W use a five parameter SPP
configuration. See Frogner et al. (2022) and Tsiringakis et al. (2024) for further details.

SPP tuning can be a somewhat laborious and time-intensive process. It is also clear that the large
number of degrees of freedom makes arriving at settings for an optimal multi-parameter SPP config-
uration very challenging. As such, it would be highly desirable if the optimisation routines available
in URANIE could be used to help to:

• automate the process of SPP tuning,

• guide the selection of SPP settings for both individual SPP parameters and multi-parameter SPP
configurations.
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The framework for doing this with the EGO algorithm will be outlined in Section 2.3.2.

2.3 URANIE

URANIE is a powerful and complex platform with a significant learning curve. The main focus of this
project was to utilize aspects of URANIE to guide ensemble development in HARMONIE-AROME,
and as such an in-depth overview of the platform is beyond the scope of this NWP note. The scripting
of the EGO algorithm with URANIE, as described in Section 2.3.2, was written by Michiel Van
Ginderachter (RMI) and will largely by used as a black-box for our purposes. Installation instructions
on ATOS are also thanks to Michiel.

2.3.1 Installation on ATOS

A pre-compiled version of URANIE version 4.8.0, made available by Michiel, was used throughout
this project to ensure consistency. This can be used by adding

source /hpcperm/cu0k/URANIE/uranie.env

in your shell script before calling URANIE. For reference, installation instructions for URANIE on
the ATOS HPC are given below:

1. Download the URANIE source code and additional libraries which are not available on ATOS
as modules:

(a) URANIE: https://sourceforge.net/projects/uranie/

(b) ROOT (v6.28.04): https://github.com/root-project/root/tree/v6-28-04

(c) cppunit (v1.15.1): https://github.com/MITK/CppUnit/tree/cppunit-1.15.1

(d) NLopt (v2.6.1): https://github.com/stevengj/nlopt/tree/v2.6.1

2. Set your environment by loading the required modules:

module load prgenv/gnu

module load gcc/8.5.0

module load cmake/3.19.5

module load fftw/3.3.8

module load openmpi/4.1.1.1

module load doxygen

module load python3/3.10.10-01

3. Install ROOT, cppunit, and NLopt by following the instructions in the URANIE README.

4. Once these are installed, set the following environment variables and install URANIE following
the README.

ROOTSYS=<root_installation_dir>

CPPUNITSYS=<cppunit_installation_dir>

NLOPTSYS=<nlopt_installation_dir>

export PATH=${NLOPTSYS}/bin:${CPPUNITSYS}/bin:${ROOTSYS}/bin:$PATH

export LD_LIBRARY_PATH=${NLOPTSYS}/lib:${CPPUNITSYS}/lib:${ROOTSYS}/lib:$LD_LIBRARY_PATH
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2.3.2 EGO algorithm

An overview of the EGO algorithm in the context of NWP tuning and optimisation is given below. A
more general description can be found in Jones et al. (1998).

Suppose one wishes to study the impact of certain NWP model parameters on a particular aspect of
model performance. For example, one may may be interested in assessing how different closure pa-
rameters in a physical parametrization scheme influences the RMSE of 2 m temperature at a leadtime
of 24 hours, for a given model cycle, domain, period etc.. Let X = x1, ..., xn denote the input param-
eters of interest and F denote the cost function (i.e. 2 m temperature RMSE). The EGO algorithm
will attempt to find the optimal values of the array X such that the cost function F is minimised. The
algorithm proceeds as follows:

1. Take NT initial samples of the input parameter space X .

2. Evaluate the cost function F for each parameter space sample. For NWP, this entails running
the model for each sample, i.e. with parameter values Xj = xj

1
, ..., xj

n, and performing the
verification to produce the cost function response F j .

3. Train a Kriging model using all of the Xj and F j available. This surrogate model attempts to
find a function G such that F = G(X).

4. Find the maximum Expected Improvement (EI) based on kriging variance to generate a new
parameter sample Y . Check if this new sample meets some user-specified stopping criteria.

5. If the stopping criteria are not met, then re-evaluate the cost function F for the new Y and repeat
steps 3-5. Continue this process until a maximum number of iterations (Nmax) is reached.

Implementation of the EGO algorithm with URANIE and its use for SPP tuning in HARMONIE-
AROME was originally developed in Van Ginderachter (2021). The initial proof-of-concept exper-
iment considered a single input parameter, the SPP spatial correlation length scale XLCOR_SPP, to
optimise, while the target cost function was 2 m temperature CRPS. We follow an analogous approach
in this work, where the input parameters to optimise will be associated with SPP perturbation distri-
bution settings, and in particular the perturbation standard deviation σp (also typically referred to as
CMPERT, see Table 2). While there are of course significant limitations associated with point ver-
ification metrics, the target cost functions used herein will be derived from such verification scores.
This is a pragmatic choice which mirrors what is typically used in the manual SPP tuning described
in Section 2.2.

Some technical information regarding URANIE-specific settings for the EGO algorithm are provided
in Appendix 6.2. Further details regarding EGO in URANIE can be found in the URANIE user
manual (see https://sourceforge.net/projects/uranie/).

2.3.3 Incorporating in HARMONIE-AROME

The basic strategy for incorporating URANIE into HARMONIE-AROME is to add additional ecflow
jobs in the HARMONIE-AROME scripting system to carry out individual URANIE tasks, a typical
example of which is illustrated in Figure 3. The workflow proceeds as follows, with specific reference
to steps in the EGO algorithm.

9



Figure 3: A typical HARMONIE-AROME experiment with URANIE activated.

UranieInit

This task initializes URANIE and generates the NT initial samples of the input parameter space
to be used in the experiment. A so-called "design-of-experiments" file is generated and placed in
$HM_DATA/URANIE/init_doe.dat which contains the NT samples. Also included in this directory
are UranieLauncher_i directories, where i ∈ [1, NT ], which includes data specific to each individual
parameter sample i.

In the context of EGO for SPP tuning, the "UranieInit" task represents step 1 of the algorithm. As our
main interest here will be optimizing the SPP perturbation standard deviation σp (see Section 2.3.2),
the samples generated will typically represent different values for σp limited between some user-
specified minimum and maximum values. A sample init_doe.dat file for SLWIND σp and NT = 10
may look like:

#COLUMN_NAMES: SLWIND_CMPERT| tds__n__iter__

#COLUMN_TYPES: D|D

2.856639807e-01 1

1.940128760e-01 2

1.553383534e-01 3

2.577281340e-01 4

7.340553306e-02 5

2.175854434e-01 6

3.794922704e-02 7

3.893414641e-01 8

3.306176611e-01 9

1.190635072e-01 10
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For each sample i the "UranieInit" task will then generate a harmonie_namelists.pm file where the
value of SLWIND σp is replaced by the sample value. This harmonie_namelists.pm file is placed in
the $HM_DATA/URANIE/UranieLauncher_i directory. For example:

$ grep CMPERT_SLWIND UranieLauncher_1/harmonie_namelists.pm

'CMPERT_SLWIND' => 2.856639806903e-01 ,

MakeCycleInput

The standard HARMONIE-AROME task for generating LBCs. In the context of EGO for SPP tuning,
all boundaries are generated before the "Uranie" job as the boundaries are shared across the entire
URANIE experiment.

Uranie

This wraps the standard "Date" family in HARMONIE-AROME and includes an additional "pre"
step for any URANIE specific data processing before the forecast is run. The "URA" counter indi-
cates the current sample i or "iteration" under consideration, ranging from [1, Nmax] where Nmax is
specified by the user. Henceforth we use the term "iteration" to refer to this counter. In the context
of EGO for SPP tuning, for iteration i the "resetLS" task copies over the harmonie_namelists.pm file
from $HM_DATA/URANIE/UranieLauncher_i to the experiment $HM_LIB. As such, the forecast
corresponding to iteration i will use the sampled values for σp etc. contained therein.

The "Date" family then runs as in a standard HARMONIE-AROME experiment, running over all
forecast start dates. An extra task, "UranieArchive", is included after the "Forecasting" task to archive
forecast data specific to iteration i (e.g. ICM files) in $HM_DATA/URANIE/UranieLauncher_i if
desired. This is required as each iteration overwrites data from the previous iteration. In the context
of EGO for SPP tuning, the "Uranie" task represents part of step 2 of the algorithm.

Postprocessing

The standard HARMONIE-AROME task for post-processing which triggers once "Uranie" is com-
plete.

UranieMetric

This task archives the verification data for iteration i into $HM_DATA/URANIE/UranieLauncher_i
and computes the cost function for this iteration if required. In the context of EGO for SPP tuning,
this tasks represents part of step 2 of the algorithm. The following is then carried out based on the
current iteration i:

• If i < NT , move on to the next iteration by requeueing the "Uranie" and "Postprocessing"
families.

• If NT ≤ i < Nmax, run the EGO algorithm using all available input and cost function samples
to generate a new sample Y and check if it meets the stopping criteria (i.e. step 3 and 4 of the
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algorithm). If Y does not meet the criteria then move on to the next iteration, which will use
sample Y , by requeueing the "Uranie" and "Postprocessing" families. This represents step 5 of
the algorithm.

• If i = Nmax the maximum number of iterations has been reached and the experiment is set
complete.

Once the experiment with URANIE has completed, the parameter samples used and associated cost
function values will be available in $HM_DATA/URANIE/temp.dat, e.g.

#COLUMN_NAMES: SLWIND_CMPERT| cf_crpsmb| tds__n__iter__

#COLUMN_TYPES: D|D|D

2.856639807e-01 4.307089000e+00 1

1.940128760e-01 4.727790000e-01 2

1.553383534e-01 4.883700000e-02 3

2.577281340e-01 2.743437000e+00 4

7.340553306e-02 2.910070000e-01 5

2.175854434e-01 1.674062000e+00 6

3.794922704e-02 6.075070000e-01 7

3.893414641e-01 1.280035900e+01 8

3.306176611e-01 8.200705000e+00 9

1.190635072e-01 6.187600000e-02 10

1.377236073e-01 1.143720000e-01 11

1.685138327e-01 1.851800000e-01 12

1.029639329e-01 8.769850000e-01 13

1.000000000e-02 1.523795000e+00 14

1.460431296e-01 3.009830000e-01 15

1.291546573e-01 5.612100000e-02 16

1.282993470e-01 2.060320000e-01 17

5.891114732e-02 2.082420000e-01 18

1.762451172e-01 1.519270000e-01 19

1.603729636e-01 2.355780000e-01 20

1.238940371e-01 3.347620000e-01 21

1.348671620e-01 5.268400000e-02 22

1.346767323e-01 3.082010000e-01 23

1.787970358e-01 6.636520000e-01 24

1.518701172e-01 4.863620000e-01 25

6.067138090e-02 1.134620000e-01 26

5.727349730e-02 1.302150000e-01 27

6.401554172e-02 1.928530000e-01 28

5.475561039e-02 2.054470000e-01 29

where the rightmost column represents the URANIE iteration, the second from right column repre-
sents the cost function value, and the other columns are the samples for each parameter.

All of the technical changes required to incorporate URANIE into HARMONIE-AROME are in-
cluded in the following repository:

https://github.com/mpvginde/UranEPS/tree/feature/spiefann24_setup

Note that this repository is intended to be built upon the dev-CY46h1_eps branch of HARMONIE-
AROME used in this project, and thus only contains files which are changed relative to this.

2.4 SBU estimates

As suggested by the workflow in Section 2.3.3, utilizing URANIE in HARMONIE-AROME can
quickly become computationally demanding. Take for example a typical child experiment with the
HARMONIE-AROME configuration indicated in Section 2.1 and EGO activated, i.e. six ensemble
members, a 36-hour forecast, and one forecast cycle per day. A single 36-hour forecast in single
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precision over the IRELAND25S domain costs approximately 3,000 SBUs. As such, an estimate for
the cost of the forecasts associated with a single EGO HARMONIE-AROME experiment is:

C = D(days)× 1(cycles/day)× 6(members)×N(iterations)× 3, 000(single forecast SBU)

=⇒ C = 18, 000×D ×N
(3)

where N refers to the number of URANIE iterations. Assuming a rough estimate of Nmax = 50, then
a single cycle/two week experiment can cost up to 900 K/12.6 M SBU, respectively. As such running
two week periods for verification, which is standard practice in ACCORD, can be quite expensive.
Therefore much of the technical testing in this project used only a single cycle, while the longer
optimisation tests used a one week period.

2.5 Sidenote on SPP pattern reproducibility

As part of initial technical testing with the IRELAND25 domain it was noted that the SPP patterns
generated using the HARMONIE-AROME version used were not reproducible i.e. the same exper-
iment run twice gave slightly different SPP perturbation patterns, see Figure 4. While the pattern
differences are clearly small, they can result in not insignificant forecast differences between two
identical experiments at longer leadtimes, which of course will result in different verification output.
While such non bit-reproducible results would not generally be of concern for ensemble experiments,
in this work we will frequently compare the cost function for a given URANIE iteration to the cost
function from a reference experiment (e.g. see Section 3.1.3). Therefore having a non-reproducible
cost function for the reference experiment will significantly undermine this comparison.

(a) S002SPP_PATTERN

(b) CLSTEMPERATURE

Figure 4: Sample (a) SPP perturbation and (b) 2 m temperature fields from two identical experiments
(left and middle columns) using the IRELAND25 domain (see Table 1 for other settings). The right
column is the difference of the left and middle columns.
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After further technical tests it was found that the SPP patterns were reproducible when using a
square domain. This is illustrated in Figure 5 using several 15 km domains over Ireland; IRE-
LAND150_6050 is an extension of the square IRELAND150 domain by 10 points in east-west,
while IRELAND150_6060 (magenta) is an extension of IRELAND150 by 10 points in east-west
and north-south. For the square domains, the SPP perturbation patterns are reproducible from run-
to-run, whereas this is not the case for the non-square IRELAND150_6050 domain. The need for
reproducible patterns therefore motivated the choice of the IRELAND25S domain (see Figure 1) in
this project.4

(a) Test domains

(b) SPP pattern differences

Figure 5: (a) Sample 15 km test domains IRELAND150 (red), IRELAND150_6050 (orange), and
IRELAND150_6060 (magenta). See text for details. (b) Sample SPP pattern differences to test
for pattern reproducibility over domains IRELAND150 (left), IRELAND150_6050 (middle), and
IRELAND150_6060 (right).

4One can note that upon further analysis it was found that switching from the gnu to intel compiler resolved this issue
for all domains.
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3 Single parameter optimisation

Based on experience from a 2023 ACCORD scientific visit on URANIE, the approach taken in this
project was to use relatively simple optimisation problems (i.e. with one or two parameters) and
assess the performance of the EGO scheme for parameter tuning with different cost functions. As
such, in this section we present results for EGO of a single parameter in HARMONIE-AROME;
namely the SPP perturbation standard deviation σp for a single SPP parameter. In Section 3.1 the
SPP parameter of interest will be "RFAC_TWOC" (i.e. perturbations of the top entrainment term
"RFAC_TWO_COEF" in the model) and will deal moreso with technical testing. The "SLWIND" SPP
parameter (i.e. perturbations of V(M) in the semi-lagrangian advection scheme) will be considered in
Section 3.2 along with more realistic optimisation tests.

3.1 RFAC_TWOC

Previous SPP tuning results illustrated that σp for RFAC_TWOC, henceforth denoted as σR, was
found to have a significant impact on cloud cover and cloud base verification scores, particularly
during the summer (not shown). As such, based on advice from EPS experts, RFAC_TWOC was
chosen as a suitable SPP parameter to focus on for initial optimisation testing.

3.1.1 Experiment details and verification

All experiments followed the configuration described in Section 2.1. A two week summer period
(2023/06/06/00 - 2023/06/20/00) was considered with a five day spin-up for the control member. In
order to reduce the costs associated with EGO experiments (see Section 2.4), only a single forecast
start date (2023/06/06/00) was considered for much of the technical testing.

The only perturbations active in the ensemble are SPP. As such, given that a single SPP parameter is
considered here, the only perturbation active is the RFAC_TWOC perturbation. Therefore in the case
of σR = 0 all perturbed members collapse to the control member (see Appendix 6.3). SPP settings
are as described in Table 2 with the following:

• dp = 2 (default value for RFAC_TWOC_COEF),

• σp = σR is the single variable to be optimised using EGO,

• A uniform distribution with op = 0.5 (unless otherwise stated, see Section. 3.1.2)

• perturbation clipping set to 0-10.

All cost functions for the EGO algorithm considered below will be based on point verification met-
rics. While such metrics have their drawbacks, this approach largely mirrors what is currently
done within HIRLAM and ACCORD for SPP tuning. Verification scores were generated using the
harp package (https://github.com/harphub/), and in particular the oper-harp-verif scripts
(https://github.com/harphub/oper-harp-verif). Verification is carried out over all
available synoptic stations in the IRELAND25S domain with local Met Éireann vobs files utilised for
all variables considered.5

5Note that the "error_sd" and "fctmax_val" observation screening tools in the oper-harp-verif scripts were not used for
all parameters. This was to ensure that the same set of observations was used in each experiment.
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3.1.2 Reference runs and cost function analysis

In order to first gauge the impact of σR on model performance a number of reference experiments
were carried out over the two week period. These reference experiments differ only in the value
of σR used, which was manually chosen for each experiment. To help assess a sensible range of
values for the perturbation standard deviation, one can consider the SPP perturbation distributions for
RFAC_TWOC given by (1) and (2), as illustrated in Figure 6.

Figure 6: SPP perturbation distributions for RFAC_TWOC according to (1) (top) and (2) (bottom).
Parameter values are indicated in Table 2 with dp = 2, op = 0.5, and clipping between 0-10. The
colors correspond to different values for σR, while the Rp used is a sample taken from a HARMONIE-
AROME experiment.

At large values of σR the perturbation distributions become quite unrealistic due to the high frequency
of values at the clipping extremes and the prevalence of values outside the recommended range6 for
RFAC_TWOC (i.e. ≈ 0.5− 3). This is particularly evident for the lognormal distribution, where σR

should be limited to approximately 1.2 to avoid producing a somewhat binary distribution with values
of 0 and 10 in this case. Figure 7 demonstrates that the model spread actually decreases at extreme
σR due to this effect, with a strong systematic bias in the perturbed members relative to the control
also evident. Lognormal distributions for the SPP perturbations tend to introduce such biases in the
pertubed members, with Tsiringakis et al. (2024) recommending the use of uniform distributions to
alleviate this problem. As such uniform distributions will be used henceforth, which also typically
allows for a larger σp range to be considered. Based on Figure 6, a range of σR ∈ [0.1, 2.4] was
deemed suitable for exploration.

The impact of σR on total cloud cover and cloud base is illustrated in Figure 8 for some of the
standard EPS verification metrics (i.e. spread-skill, CPRS, and member bias).7 It is important to
emphasise again that only the RFAC_TWOC SPP perturbation is switched on, a uniform distribution
with op = 0.5 is used, and σR is limited to values between 0.1-2.4. One can observe a relatively

6See recommended ranges at https://hirlam.github.io/HarmonieSystemDocumentation/dev/
EPS/SPP/

7These cloud parameters were considered based on advice from EPS experts.
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(a) Spread-skill (b) Member bias

Figure 7: Cloud base point verification over the two-week summer period with a lognormal distribu-
tion of RFAC_TWOC and varying σR. (a) Spread-skill for σR = 0.6 (red), 0.1 (green), 2.4 (yellow),
and 6 (blue) and (b) corresponding member bias (reading row wise from top-left to bottom-right).

linear response in the model spread and CRPS to σR, while the impact on ensemble mean RMSE is
quite weak. At larger values of σR (1.8 and 2.4) the pertubed members become slightly biased with
respect to the control member (positively for total cloud cover, negatively for cloud base) at longer
lead times. Note that as the perturbed members all start from the control analysis for each forecast
start date, a perturbed member bias (if any) relative to the control will typically become most evident
towards the end of the forecast. If each ensemble member was cycling independently, it’s possible
that such member biases would also be evident at the start of the forecast.

In the context of choosing a suitable cost function (denoted as F henceforth) for optimisation of σR

using EGO, the standard verification scores in Figure 8 represent some obvious candidates. There are
clearly a number of choices which must be made when designing F based on such metrics, e.g.

• What verification score (e.g. CRPS, CRPS potential/reliability, spread-skill ratio (SSR)) or
combination of scores should be used?

• What model parameter (e.g. 2 m temperature, 10 m wind speed) or combination of parameters
should be used?

• How should the selected score(s) for the chosen parameter(s) be condensed down to a single
value for the cost function e.g. take CRPS at 24-hours, average CRPS over all lead times, etc.?

As a starting point it is reasonable to first focus on using a single model parameter (i.e. total cloud
cover or cloud base) when formulating F . After some initial evaluation, it was found that using
verification scores at a given lead time can mask more systematic trends in the scores and thus be
quite noisy, while averaging a score over the entire forecast lead time is impacted by the fact that
the perturbed members start from the control (thus reducing the difference between experiments). As
such averaging scores over the last 24-hours of the forecast (i.e. hours 12-36 in this case) was deemed
a more appropriate choice when computing F as it focuses on a period where the model perturbations
have had time to develop. This lead time averaging will be assumed henceforth.

In Figure 9 we plot the variation in possible choices for F as a function of σR for the reference
experiments in Figure 8. Here we first consider metrics which are direct output from harp (i.e. CRPS,
RMSE, and SSR) and the Mean Member Bias Relative to the Control (MMBRC), defined as
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Figure 8: Results from the RFAC_TWOC reference runs for total cloud cover (left) and cloud base
(right) over the two-week summer period. CRPS, spread-skill, and member bias are given on the top,
middle, and bottom rows. Experiments R4 (ref), R5 (green), R6 (yellow), R7 (blue), and R8 (organge)
correspond to σR = 0.1, 0.6, 1.2, 1.8, and 2.4, respectively. See text for further experiment details.

MMBRC (l, v) =
1

Nm

Nm
∑

j=1

[b (j, l, v)− b (0, l, v)] (4)

where b (j, l, v) represents the bias of ensemble member j at lead time l for verification parameter v
(this notation is used henceforth), and Nm is the number of perturbed members i.e. 6 in this case. Note
that the relative difference is considered, such that biases for different ensemble members can offset
one another. A positive/negative value for MMBRC therefore means that on average the perturbed
members are positively/negatively biased relative to the control. The cost functions are based solely
on total cloud cover and averaged over the last 24-hours of the forecast, i.e.
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F = ⟨S(l,CCtot)⟩ = 1

25

36
∑

l=12

S(l,CCtot) (5)

where ⟨.⟩ denotes the lead time averaging over hours 12-36 and S(l, v) represents a verification metric
(at lead time l for parameter v).

Figure 9: F (defined by (5)) as a function of σR for the RFAC_TWOC reference experiments (i.e.
R4-R8 in Figure 8). Different choices for the verification score S are indicated by the facet label.
Results from the full two-week period are used and scores are averaged over the last 24-hours of the
forecast. Note that the units for each cost function are different and hence not indicated on the y-axis.

Figure 9 of course merely reflects what was concluded from Figure 8 but in a more condensed fashion;
the "best" values for CRPS, RMSE, and SSR appear to be achieved by taking the maximum value for
σR over the range considered. The decomposition of CRPS into it’s "potential" and "reliability"
parts, i.e. CRPS = CRPSpot + CRPSrel (Hersbach, 2000), is also given and demonstrates that the
improvement in reliability more than compensates for the slight degradation in potential. Finally,
the MMBRC demonstrates again that the members become slightly positively biased relative to the
control at large σR (by ≈ 0.03 oktas on average).

Based on Figure 9, if we were to use one of the traditional "headline" scores for ensemble model per-
formance, say F = ⟨CRPS(l,CCtot)⟩ or ⟨SSR(l,CCtot)⟩, as the cost function in the EGO for σR, we
would anticipate an optimal value of σR = 2.4. This mirrors previous results on this topic, where the
"optimal" perturbation standard deviation σp based on model SSR or CRPS tends to be the maximum
permissible value for σp. This is reasonable given that the SPP perturbations can produce reasonable
spread without substantially degrading mean RMSE. However optimising based on these cost func-
tions alone would ignore the potentially significant impact SPP can have on perturbed member biases
(Tsiringakis et al., 2024). Indeed, much of the manual SPP tuning within HIRLAM and ACCORD
has generally sought to find a balance between improving model spread or CRPS without introducing
systematic member biases.
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There are many ways to construct a cost function which aims to strike this balance. In keeping with the
simplistic approach taken to the optimisation, a simple metric is proposed here based on the existing
verification metrics generated by harp. First, to assess the added benefit of the SPP perturbation on
overall ensemble performance, we define the CRPS RELative to the control Mean Absolute Error
(CRPS_REL_MAE) as:

CRPS_REL_MAE (l, v) =
100× (CRPS (l, v)− MAE (0, l, v))

MAE (0, l, v)
(6)

where MAE (0, l, v) represents the control member MAE. The CRPS_REL_MAE is therefore nega-
tively oriented (i.e. the more negative the better). To assess the relative importance of any member
bias relative to the control, we can define a scaled version of the MMBRC as

MMBRCS (l, v) =
100

Nm × MAE (0, l, v)

Nm
∑

j=1

[b (j, l, v)− b (0, l, v)] . (7)

This scaling of the member bias relative to the control MAE is useful as it allows one to express if
any member bias is of much physical significance e.g. if the control MAE for 2 m temperature was
around 1.5 K, and the SPP perturbation introduced a mean member bias of around 0.015 K relative
to the control, typically this would not be a major concern. Furthermore, using the control MAE is
beneficial compared to the control bias as it naturally avoids any bias ≈ 0 issues. Larger absolute
values for MMBRCS are worse.

Finally, we can combine these two metrics together to define

CF_CRPSMB (v) = ⟨CRPS_REL_MAE (l, v)⟩+max (|⟨MMBRCS (l, v)⟩|q , |⟨MMBRCS (l, v)⟩|) .
(8)

Note that:

1. CF_CRPSMB is negatively oriented.

2. The cost function is based on the lead time averages of the separate components, not the lead
time average of the sum (although this could equally be done). The former was used here
merely to help distinguish the contributions from CRPS and MMBRC.

3. The lead time average of the MMBRCS is used. As such, positive/negative biases at different
lead times may compensate one another to give a small value for ⟨MMBRCS (l, v)⟩. However
this was deemed reasonable as our primary interest for SPP tuning is systematic member biases
relative to the control i.e. where members are consistently positively or negatively biased. An
example of this is given in Section 3.2.1.

4. The max is introduced for cases where |⟨MMBRCS (l, v)⟩| < 1 and q > 1 (although this is not
particularly important given that such small values for the member bias will likely be irrelevant).

The power q is a user-specified tuning parameter; q = 1 will balance any percentage benefit in CRPS
against any member bias, while q > 1 places more weight on avoiding the introduction of a member
bias. The behavior of CF_CRPSMB for several values of q is indicated in Figure 10. A value of
q = 3/2 in (8) was used throughout in this note.
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Figure 10: Behaviour of CF_CRPSMB, as in (8), for several values of q (as indicated by the facet
label). White indicates values above 50%.

The behaviour of CF_CRPSMB for the RFAC_TWOC reference tests is illustrated in Figure 11 for
both total cloud cover and cloud base. Verification statistics for two periods are considered; using
the first forecast start date only (i.e. 2023/06/06/00) and using the full two-week period. Using only
a single forecast start date in the cost function evaluation is of course not recommended in general,
but is used here as part of technical testing. Also indicated is the product of CRPS potential and
reliability, i.e.

CRPS_PXR = CRPSpot × CRPSrel, (9)

which is another possible choice for the cost function. It may be beneficial to use this CRPS product
over CRPS itself as it avoids any direct cancellation of terms in the CRPS and more harshly penalises
a degradation in forecast skill (Tuppi et al. (2020) and Pirkka Ollinaho, personal correspondence).

Focusing first on the single cycle results, the CF_CRPSMB cost function has a non-trivial minimum
(i.e. not at the extrema) over the range of σR considered for both parameters. This is due to the
development of a small but not insignificant member bias at large σR. However this behaviour is
not evident when considering the full two-week period where CF_CPRSMB would again suggest an
optimum σR of 2.4. In this case there is little to no significant systematic member bias (i.e. MMBRCS
is limited to ≈ 1%) while the CPRS is improved substantially (i.e. by ≈ 5% relative to the control
MAE).

Of course one could carry out much more analysis of possible cost functions using different combi-
nations of verification parameters and statistics, however for our purposes it is sufficient to utilise the
simple cost functions in Figures 9 and 11 and assess the performance of the EGO scheme.

3.1.3 Convergence testing

A useful sanity check to assess if the EGO implementation with URANIE in HARMONIE-AROME is
working reasonably is to perform convergence tests where the optimum values for the input parameter
space (e.g. X = σp) are known a priori. The convergence cost function, Fc, for such tests can take
the form

Fc = |F − Fref| , (10)

21



(a) CCtot, 2023/06/06/00 only (b) CCtot, two-week period

(c) Cbase, 2023/06/06/00 only (d) Cbase, two-week period

Figure 11: As in Figure 9 but with different cost functions (see facet label). Cost functions based
on total cloud cover and cloud base alone are on the top and bottom rows, respectively. The left
column is based on verification statistics from a single forecast start date (2023/06/06/00), while the
right column uses the full two-week period. CF_CRPSMB, CRPS_REL_MAE, and MMBRCS are
percentages, while the other cost functions are in oktas and feet for CCtot and Cbase, respectively.

where Fref represents some cost function for a reference experiment where the input parameter space
(i.e. Xref) is specified. As such, if a global minimum for Fc exists (e.g. if F is a monotonic function
of X) the EGO scheme should return Xref in order to minimise Fc.

We now test this for the single parameter EGO of σR. A single forecast start date (2023/06/06/00)
is used to reduce computational costs, the reference data is taken from the experiments outlined in
Section 3.1.2, and the possible range for σR is [0.1− 2.4]. Initial convergence testing (see examples
in Appendix 6.4) demonstrated

1. the importance of using a sensible stopping criteria in the EGO scheme, and

2. a significant benefit to using "setHasMeasurementError(True)" when finding the optimal hyper-
parameters for the Kriging.

These will be assumed going forward, where we define the EGO stopping criteria as

max(x)−min(x) < (0.05)×Mx, x = {xk, xk−1, xk−2, xk−3, xk−4} , ∀x ∈ X, (11)

i.e. for each input parameter x the range of its last five iterations (x) must be less than than 5% of its
maximum possible value (Mx). Again this is a very simple choice, with the threshold of 5% chosen
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somewhat arbitrarily, but it was found to be effective in terminating the EGO algorithm once it had
settled close to "optimised" values for X .

Sample convergence testing results for σR are given in Figure 12(a). Here the cost function F used
in Fc (10) is the total cloud cover CRPS, i.e. F = ⟨CRPS (l,CCtot)⟩, the reference experiment used
a value of σR = 0.6, and three initial sample sizes (NT = 5, 10, 20) are considered. In each case
the EGO scheme predicts a σR value close to the reference quite quickly after completing the initial
sample, while the stopping criteria (11) terminates each experiment within 5− 10 iterations after NT .
Note that the last predicted value for σR has an error of less than 3% (see Table 3). The impact of
using a larger initial sample is relatively small in this case, however this is likely due to the simplicity
of the optimisaiton problem i.e. one input parameter.

(a) F = ⟨CRPS (l,CCtot)⟩ (b) F = ⟨CF_CRPS (l,CCtot)⟩

Figure 12: Variation in the convergence cost function Fc (top row) and predicted value for σR (bottom
row) as a function of the number of URANIE iterations. Coloured lines indicate different experiments
with NT = 5 (green), 10 (orange), and 20 (purple). The cost function used is indicated in the caption.
The minimum and maximum possible values for σR are indicated by the dot-dash lines, while the
reference value for σR is given by the horizontal dotted line. The vertical coloured dashed lines
indicate NT for each experiment. See text for further information.

Figure 12(b) illustrates the same set of convergence testing experiments but now using CF_CRPSMB
as the cost function i.e. F = ⟨CF_CRPS (l,CCtot)⟩. Quite reasonable behaviour is again observed,
with the error in the predicted σR limited to 5% (see Table 3) and convergence (as assessed by the
stopping condition) within 10 iterations of NT . Finally, in Table 3 we indicate the results obtained
from analogous experiments using a different reference value i.e. σR = 1.8. The error is again limited
to ≈ 5%.

3.1.4 Optimisation testing

We can now repeat the testing outlined above but in optimisation mode i.e. the convergence cost
function (10) is replaced simply by the cost function F . The reference data in Figure 11 can of course
be used to provide reasonable estimates for the optimal σR for different F , thus providing another
sanity check for the EGO performance. For simplicity we again restrict ourselves to total cloud cover
and the 2023/06/06/00 cycle only; hence when using CRPS and CF_CRPSMB in F = ⟨S (l,CCtot)⟩
the optimal σR should be approximately 2.4 and 1.8, respectively, based on Figure 11(a).

The results of several optimisation tests are given in Figure 13. They are generally in good agreement
with our expectations from the reference runs; σR is maximised immediately when using CRPS,
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F NT Reference σp Predicted σp

CRPS 5 0.6 0.618
CRPS 5 0.6 0.616
CRPS 10 0.6 0.609
CRPS 20 0.6 0.595
CF_CRPSMB 5 0.6 0.621
CF_CRPSMB 10 0.6 0.630
CF_CRPSMB 20 0.6 0.624
CRPS 5 1.8 1.735
CRPS 10 1.8 1.759
CF_CRPSMB 10 1.8 1.713

Table 3: Summary of convergence testing results for σR. Each cost function is based on total cloud
cover only. The column "Predicted σp" represents the last value predicted before the experiment is
terminated by the stopping condition. Rows with the same F , NT , and "Reference σp" are repeated
experiments.

.

while for CF_CRPSMB it converges to a value of ≈ 1.77 for both NT = 5 and 10. Of course the
same optimisation tests could also be run using a longer verification period (e.g. the two week period
in Figure 11)(b)), but this was deemed an unnecessary use of resources for such technical testing (see
Section 3.2.2 for optimisation over a longer period).

Figure 13: Variation in the cost function F (top and middle rows) and predicted value for σR (bottom
row) as a function of the number of URANIE iterations. Coloured lines indicate different experiments
with CRPS and NT = 5 (green), CF_CRPSMB and NT = 5 (orange), and CF_CRPSMB and NT =
10 (purple). See the text and the caption of Figure 12 for more information.

Overall the the technical convergence and optimisation results for σR provide a reasonable level of
confidence that the EGO scheme and it’s implementation in HARMONIE-AROME is working rea-
sonably (at least for this simple one parameter optimisation). Further tests were also carried out using
different cost functions (e.g. using cloud base instead of total cloud cover), but these all corroborated
the behaviour described herein. As such, we now move on from technical testing to a more realistic
application of the EGO scheme.
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3.2 SLWIND

We perform an analogous set of experiments to those described in Section 3.1 but for the SLWIND
σp, henceforth denoted as σS . Investigations within HIRLAM have shown that this SPP parameter
can have a very significant impact on ensemble spread, particularly for 10 m wind-speed. As this
parameter has only been recently introduced into HARMONIE-AROME, it’s optimal configuration
is still to be determined. Hence it constitutes an obvious candidate for EGO testing.

The experiment configuration follows that described in Section 3.1.1 but with SLWIND instead of
RFAC_TWOC active, i.e. the SPP settings are as described in Table 2 with

• dp = 0 (default value for V (M)),

• σp = σS is the single variable to be optimised using EGO,

• a uniform distribution with op = 0.5, and

• perturbation clipping set to [−0.4, 0.4].

Possible SLWIND perturbation distributions for various σS are illustrated in Figure 14. Here we con-
sider quite a large range for σS (i.e. 0.01 - 0.8) in order to fully explore the impact of this perturbation
at more extreme values, and this range will be used henceforth unless otherwise stated. Note that the
clipping limits of [−0.4, 0.4] effectively means that no clipping is applied for σS ≤ 0.8. This was
chosen in order to maintain a uniform distribution for all σS considered.

Figure 14: SPP perturbation distributions for SLWIND using values indicated in Table 2 with dp = 0,
op = 0.5, and clipping of [−0.4, 0.4]. The colors correspond to different values for σS , while the Rp

used is a sample taken from a HARMONIE-AROME experiment.

Finally, in addition to the two-week summer period discussed previously, a 10-day winter period
(2022/02/10/00 - 2022/02/20/00, with 5-day spin-up) was also considered for the reference tests. This
period included a number of named storms over Ireland, and hence was used to assess the performance
of SLWIND for high winds.
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3.2.1 Reference runs

Sample point verification results demonstrating the impact of σS over the summer and winter periods
are given in Figures 15, 16, and 18 for PMSL, 10 m wind speed, and 2 m temperature, respectively.
For each parameter once can observe that SLWIND has a very significant impact on ensemble spread
without significantly degrading ensemble mean RMSE for the two verification periods. Commensu-
rately there is a clear and consistent improvement in CRPS as σS increases in all cases.

Figure 15: PMSL results from the SLWIND reference runs for summer (top row) and winter (bottom
row) periods. CRPS, spread-skill, and member bias are given on the left, middle, and right columns.
Experiments R0 (red), R3 (green), R5 (yellow), and R7 (blue) correspond to σS = 0.05, 0.2, 0.4, and
0.6 respectively. See text for further experiment details. Note the use of different scales on the y-axes.

Focusing on the member biases relative to the control, there is a signal for a negative PMSL bias at
larger values of σS , which is consistent across both seasons (right column of Figure 15). For 2 m
temperature, there is a consistent cooling of the members relative to the control during winter, adding
to the existing model cold bias. A signal for cooling at large σS during the summer period is also
evident, however this is offset by a slight warm bias during hours 20-30 (top-right of Figure 18).

For 10 m wind speed however, the member bias behaviour differs between the two seasons. For
the summer period, the larger σS introduces a consistent positive wind speed bias in the pertubed
members relative to the control, while for winter the control is much more centered. It’s possible that
this is related to the performance of the model for the contrasting meteorological conditions during
the two periods. The summer period consisted of quite light winds (< 5 m/s on average) with a clear
diurnal cycle which the model consistently underestimates (see Figure 17), while for winter the model
generally overestimated the higher winds associated with storms on February 16th, 18th, and 20th.

These verification results are condensed into selected cost functions as a function of σS in Figure 19,
where lead time averaging over the last 24-hours of the forecast is again used. Cost functions for five
model parameters are illustrated along with the mean of the cost function over all parameters, i.e.

F5p =
1

5

∑

v∈V

⟨S (l, v)⟩ , V = {Pmsl, S10m,T2m,Td2m,CCtot} . (12)

For each model parameter and period we find that CRPS_REL_MAE and the SSR are monotonic
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Figure 16: As in Figure 15 but for 10 m wind speed.

(a) Summer (b) Winter

Figure 17: Ensemble mean 10 m wind speed over the summer and winter verification periods. Ob-
servations are given in black. See the caption of Figure 15 for a description of the experiment names.
Note the use of different scales on the y-axes.

increasing/decreasing functions of σS over the range considered. These scores also illustrate that
SLWIND has the largest positive impact on total cloud cover, particularly so at relatively modest
values of σS (e.g. 0.2). The MMBRCS reflects the member bias behavior previously discussed; a
significant positive wind speed bias is observed for the summer period but not in winter, while a
negative PMSL bias at large σS is consistent over the two periods. Note that for the summer period
the 2 m temperature MMBRCS is close to zero for all σS considered, and this reflects the impact of
lead time averaging over offsetting perturbed member biases (top-right of Figure 18).

As such for most parameters the CF_CPRSMB has a non-trivial minimum over the σS range consid-
ered, and this is also reflected in the mean over all five parameters as defined in (12). While using
such a parameter mean is a very coarse way to combine the parameter cost functions, it demonstrates
very similar behavior over the two periods tested with an optimum value of σS ≈ 0.4.
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Figure 18: As in Figure 15 but for 2 m temperature.

(a) Summer (b) Winter

Figure 19: Various cost functions as a function of σS for the SLWIND reference experiments over
the two verification periods (using all forecast start dates). Each line represents ⟨S (l, v)⟩ for that
parameter except for "Mean of all params" which is given by (12).

3.2.2 Convergence and optimisation results

The reference experiments are now used as a guide for several convergence and optimisation exper-
iments with the EGO scheme for σS . A number of single cycle convergence tests (again using the
2023/06/06/00 cycle and F = ⟨CF_CRPSMB (l, Pmsl)⟩ as the cost function) were carried out to as-
sess functionality. Results are summarised in Table 4, which generally corroborate the convergence
results presented in Section 3.1.3 and give further confidence in the scheme’s performance.

The convergence tests using a reference value of σS = 0.2, however, clearly struggle to recover the
correct value. This is due to the fact that the convergence cost function has two global minimum
points due to the shape of the cost function (see Appendix 6.5), and the scheme can end up oscillating
between these minima (see Figure 20). This reflects one of the shortcomings of these simple conver-

28



gence tests. Several single cycle optimisation tests for this experiment configuration were found to
quickly converge to an optimum value of σS ≈ 0.1 (not shown), which is again in good agreement
with what one would expect based on the reference experiments (see Appendix 6.5).

NT Reference σp Predicted σp

10 0.05 0.055
5 0.1 0.08
10 0.1 0.098
10 0.2 0.045
10 0.2 0.035
10 0.3 0.301
10 0.3 0.293

Table 4: Summary of single cycle convergence tests for σS for the 2023/06/06/00 cycle with F =
⟨CF_CRPSMB (l, Pmsl)⟩. Note that σS was restricted to the range [0.01, 0.4] in these tests. See the
caption of Table 3 for more information.

.

Figure 20: Convergence cost function (top row) and predicted σS (bottom) iteration series. Coloured
lines indicate two experiments with identical configurations apart from the initial sample values. The
cost function used is F = ⟨CF_CRPS (l, Pmsl)⟩ for the 2023/06/06/00 cycle only. σS was restricted
to the range [0.01, 0.4] with a reference value of 0.2. See the caption of 12 for more information.

As a more realistic assessment of the EGO scheme for σS tuning, optimisation runs over week-long
verification periods in summer and winter were carried out. A single week (i.e. the first seven of each
period) was used as opposed to the full 14- and 10-day periods, respectively, to limit computational
costs (as discussed in Section 2.4). This restriction to a single week was found to have relatively little
impact on the qualitative behaviour of the cost function dependence on σS as presented in Figure 19
(see Appendix 6.5). With this limitation, the long optimisation runs presented here typically cost on
the order of 3M SBU.

In an effort to arrive at a value of σS which gives the "best" ensemble performance for a range of
parameters, the five parameter mean cost function F5p, defined by (12), with S = CF_CRPSMB
was used in these long optimisation tests. An initial sample size of NT = 5 was used based on the
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(a) Summer (b) Winter

Figure 21: Variation in F5p with S = CF_CRPSMB (top row, see (12)) and the predicted value for σS

(bottom row) for the week-long optimisation runs. Coloured lines indicate different experiments with
identical configurations apart from the initial sample values. The dashed horizontal lines correspond
to 0.37 and 0.34 for summer and winter, respectively. See the text and the caption of Figure 12 for
more information.

reasonable performance of the EGO single cycle tests for one parameter optimisation. The outcome
of these tests are given in Figure 21, where for each period the same experiment is run twice in order
to assess the reproducibility of the predicted optimum σS .

Overall the long optimisation runs perform quite reasonably. Convergence to a reproducible optimum
value is obtained within 25 iterations for both periods considered. In this particular case the predicted
optimum σS is very similar in summer an winter, namely 0.37 and 0.34 respectively, however one
would not necessarily expect the same optimum across different verification periods in general. These
predicted optimal values are in good agreement with the cost function analysis of the reference runs
in Section 3.2.1 (see also Appendix 6.5).

Finally, in Figure 22 we compare the verification results obtained using these predicted optimal σS

versus the reference runs discussed previously. Note that the optimal σS data for each period comes
directly from the last URANIE iteration of the corresponding optimisation run (i.e. the last iteration
of each red line in Figure 21). When compared to the default value for σS , i.e. 0.05, most verification
statistics for each parameter look quite favourable for the predicted optimal σS . One area of possible
concern however is the member bias; while the 10 m wind biases look reasonable, the pertubed
members are slightly negatively biased relative to the control for Pmsl and 2 m temperature during
the winter period. Of course this could be addressed by modifying the cost function used in the
optimisation, e.g. using a larger value for q in (8).

Overall the results presented in this section appear relatively promising. The functionality of the
EGO workflow in HARMONIE-AROME has been confirmed through analysis of the reference and
convergence runs, a possible cost function which balances CRPS improvement against member biases
has been introduced, and the "realistic" long optimisation runs perform quite reasonably. While the
experiments presented here are of course very simple, the results suggest that this approach could be
suitable for automatic single parameter SPP tuning in the future.
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(a) Pmsl

(b) 10 m wind

(c) 2 m temperature

Figure 22: Comparison of verification results using the "optimal" σS , as determined in Figure 21, and
the reference runs. The top and bottom row in each sub-figure correspond to a week-long summer
and winter period, respectively. CRPS, spread-skill, and member bias are given on the left, middle,
and right columns. The red line uses the optimal σS (≈ 0.37 and ≈ 0.34 for summer and winter,
respectively) while green, yellow, and blue use σp = 0.05, 0.2, and 0.6, respectively.
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4 Two parameter optimisation

Based on the relatively promising results for the EGO scheme in HARMONIE-AROME for optimi-
sation of a single SPP configuration parameter, we now briefly assess it’s performance for a slightly
more complicated two parameter optimisation problem. Optimisation of multiple SPP parameters
at the same time would significantly benefit the task of SPP tuning within HIRLAM/ACCORD and
represent a significant step forward. The focus here will remain on optimising σp but now for two
SPP parameters simultaneously; namely RFAC_TWOC and SLWIND. These parameters are a natural
choice in order to leverage on previous experience.

The experiment configuration and parameter settings are as previously outlined in Sections 3.1.1 and
3.2 unless otherwise stated, except that both the RFAC_TWOC and SLWIND SPP perturbations are
active at the same time.

4.1 Reference runs

We again perform a series of reference runs to act as benchmarks for further convergence and op-
timisation testing. Effectively sampling the two-dimensional space [σS, σR] is of course costly and
time consuming. As such we restrict interest to a single forecast start date (i.e. 2023/06/06/00) and
take σS ∈ [0.01, 0.05, 0.1, 0.2, 0.3, 0.4] and σR ∈ [0.1, 0.6, 1.2, 1.8, 2.4], thus yielding 30 reference
experiments to run. Note the reduced upper-bound used for σS compared to Section 3.2. In terms of
the cost function analysis, our main focus will again be CF_CRPSMB.

We first consider the behaviour of ⟨CF_CRPSMB (l, Pmsl)⟩ based on these two-dimensional refer-
ence runs in Figure 23. Here each dot represents an individual experiment with [σS, σR] as indicated.
Results for the individual RFAC_TWOC and SLWIND reference experiments presented in Section 3
(i.e where only one SPP parameter is active) are also included on the x/y axes. For this partic-
ular experiment configuration, the scatterplot would suggest that the cost function is optimised at
[σS, σR] ≈ [0.2, 2.4] for the range of [σS, σR] considered.

Figure 23: Variation of F = ⟨CF_CRPSMB (l, Pmsl)⟩ in [σS, σR] parameter space based on the
reference experiments. Dot colour indicates the value of F (i.e. blue is better) and dot size is
|F −max(F )| (i.e. larger the better). Results for σS = 0 and σR = 0 are taken the from single
parameter reference runs in Section 3. Data based on a single forecast start date of 2023/06/06/00.
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It is interesting to note the clear interaction between the two SPP parameters in this particular case,
For example, the introduction of the RFAC_TWOC perturbation alters the optimal value for σS when
compared to running SLWIND on its own, i.e. the optimal σS increases from 0.1 for σR = 0 to 0.2
for σR = 2.4. In order to investigate this in more detail, we plot the cost function as a function of σR

and σS separately in Figure 24. The impact of RFAC_TWOC on the Pmsl CPRS and SSR is found
to be quite small overall in this case, with a marginal improvement in these scores as σR increases
(as expected). However this parameter does introduce a positive perturbed member bias for Pmsl as
it increases, and this positive bias acts to somewhat offset the significant negative bias introduced by
the SLWIND perturbation (i.e. a case of compensating errors). As such the lower values for the cost
function at larger σR reflect a reduction in systematic member bias as opposed to a direct improvement
in CRPS.

(a) Versus σS (b) Versus σR

Figure 24: As in Figure 23 but as a function of σS and σR individually. Other cost functions are also
included, as indicated by the facet label. The coloured lines indicates different fixed values for σS or
σR.

The same analysis for total cloud cover is given in Appendix 6.6. In this case, SLWIND has a con-
siderable impact on CRPS without introducing a member bias, while RFAC_TWOC introduces a
positive member bias at large σR. The combination of these effects thus leads to optimal values of
[σS, σR] ≈ [0.4, 0.1] for the range considered. If one considers the five parameter mean F5p defined
by (12), the optimal values are found to be [σS, σR] ≈ [0.3, 2.4] (not shown).

4.2 Convergence and optimisation results

Indicative results from several two-parameter convergence experiments are given in Figure 25, using
the cost function ⟨CF_CRPSMB (l, Pmsl)⟩ for the 2023/06/06/00 cycle. Two sets of reference [σS, σR]
are considered and the initial sample size used was 10. In one case we find that the scheme eventually
recovers the reference values after approximately 70 iterations, while in the other case the scheme
drifts without convergence for both input parameters over 80 iterations (Nmax in this case). This is
not particularly surprising given the increased likelihood for multiple global minima points as the
number of input parameters increases. As such, these simple convergence tests are of less practical
use when considering multi-parameter optimisation problems.
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(a) [0.1, 1.8] reference (b) [0.2, 1.2] reference

Figure 25: Convergence cost function (top row) and predicted σR (middle) and σS (below) iteration
series. The cost function used is F = ⟨CF_CRPS (l, Pmsl)⟩ for the 2023/06/06/00 cycle only. σS and
σR restricted to the range [0.01, 0.4] and [0.1, 2.4] with reference values indicated in the caption.

In Figure 26 we assess the performance of the EGO scheme for several single-cycle two-parameter
optimisation experiments with NT = 10. Focusing first on ⟨CF_CRPS (l, Pmsl)⟩, the scheme appears
to perform reasonably well with convergence within 30 iterations. The predicted optimal values for
[σS, σR] are also found to be relatively reproducible, with [0.174, 2.4] and [0.187, 2.4] predicted by
two experiments which are identical apart from the initial sample values used. These results are in
good agreement with the qualitative analysis from the reference experiments in Figure 23. This was
also found to be the case when using ⟨CF_CRPS (l,CCtot)⟩, with a predicted optimum of [0.4, 0.1]
(not shown).

Similar performance can be observed when using F5p as the cost function (Figure 26(b)). In this
case the two experiments considered are identical apart from the upper bound for σS , with values of
0.4 and 0.8 considered. The predicted optimal values are again very similar in both cases; namely
[0.331, 2.4] and [0.313.2.4]. One can note a significant difference in the number of iterations until the
experiment terminates i.e. 39 vs 23 for an upper bound of 0.4 and 0.8 respectively, despite σS being
relatively constant in both experiments. This likely reflects the fact that the stopping condition (11)
scales with the maximum possible value for the input parameter.

(a) ⟨CF_CRPS (l, Pmsl)⟩ (b) F5p with S = CF_CRPSMB

Figure 26: Cost function (top row) and predicted σR (middle) and σS (below) iteration-series for
single-cycle optimisation runs. In (a), coloured lines indicate different experiments with identical
configurations apart from the initial sample values. In (b), the experiments are identical apart from
the upper bound for σS , where green and orange uses 0.4 and 0.8, respectively.
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Moving on to a more realistic test, in Figure 27 we consider the results from a week-long optimisation
experiment for [σS, σR] over the summer period. Here an upper bound of 0.8 is used for σS (for con-
sistency with the single parameter optimisation in Figure 20) and NT = 10. The observed behaviour
is somewhat disappointing but not particularly surprising; while the scheme quickly converges to a
value of σS ≈ 0.4, and generally stays close to this value over the entire simulation, the value of σR

does not converge and continues to drift between its minimum and maximum possible values. This
signals a very weak dependency in the cost function to σR, and as such the simulation continues to
iterate with little variation in the cost function (i.e. F5p with S = CF_CRPSMB in this case). A no-
table exception to this is the spike in the cost function at iterations 26-28 where the scheme samples
the extrema for [σS, σR], a feature which is frequently observed when the cost function has a weak
dependency on one of the input parameters.

Figure 27: Variation in F5p with S = CF_CRPSMB for the summer week-long optimisation test of
[σS, σR], with 5× F5p, σR, and σS on the top, middle, and bottom rows, respectively. See the text for
further details.

In Figure 28 each iteration of the experiment is plotted in [σS, σR] space, which highlights the clus-
tering of values at σS ≈ 0.4 and the weak variation in the five parameter mean F5p over the range
of σR considered. The CF_CRPSMB contribution from each parameter is also given, which helps to
explain why the experiment fails to converge to an optimal σR. For Pmsl and S10m the introduction
of systematic biases at large σS (negative and positive respectively, as observed previously) tends to
limit σS , with σR having little to no impact on either parameter. T2m and Td2m tend to offset one
another somewhat, with smaller σR tending to improve/degrade the cost function for T2m and Td2m,
respectively, while the variation of CCtot in [σS, σR] space appears to be non-linear but relatively
weak, particularly at σS ≈ 0.4. As such, when averaged over the five parameters there is no clear
signal for improved performance for any σR.

It is also interesting to contrast the model performance for this two parameter experiment, where both
SLWIND and RFAC_TWOC perturbations are active, against an experiment where only SLWIND is
active. Given that the two parameter optimisation run does not predict a clear optimal value for σR, for
comparison purposes it is reasonable to use the last set of predicted values, i.e. [σS, σR] ≈ [0.38, 0.96],
as a notional optimum8. Sample point verification results are given in Figure 29 which compare this

8Valid since the last value of σS is close to the value predicted in the majority of the experiment.
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(a) F5p mean (b) Pmsl (c) S10m

(d) CCtot (e) T2m (f) Td2m

Figure 28: Variation in (a) F5p with S = CF_CRPSMB and (b-f) ⟨CF_CRPSMB (l, v)⟩, with param-
eter v indicated in the caption, for the summer week-long optimisation test of [σS, σR]. See alsi the
caption of Figure 27. The colourbar limits are variable in each sub-figure to improve readability.

"optimal" two parameter experiment versus the optimal single parameter SLWIND experiment (as
determined in Figure 21). Clearly there is very little impact of adding the RFAC_TWOC perturbation
on top of SLWIND, despite the fact that when used on it’s own RFAC_TWOC can have an apprecia-
ble impact (see Figure 8). This is a commonly observed feature when testing SPP perturbations in
combination. One can also note that the predicted value of σS from the two parameter optimisation
(≈ 0.38), is in good agreement with that observed from the single parameter optimisation (≈ 0.37),
which again provides more evidence that the EGO scheme is working reasonably.

This experiment of course reflects some of the limitations of the approach taken in this note. If one was
to optimise a single parameter instead of F5p, e.g. T2m, it’s likely that the scheme would converge,
and similarly so if a different cost function was used, e.g. the SSR. The experiment also highlights an
important missing component from the stopping criteria (11); namely the variation in the cost function
itself. In retrospect this is an obvious omission, and in future work the stopping criteria should
be modified to check if the cost function is approximately constant over the previous X iterations.
Introducing such a check will automatically terminate an experiment such as this where the cost
function has a weak dependency on one or more of the input parameters, thus saving computational
resources. For example, in Figure 27 the max and min of F5p over iterations 17-25 is -14.04% and
-14.37%, respectively. In this case, the experiment was manually terminated at iteration 49 with a
cost of ≈ 7 M SBUs.
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(a) Total cloud cover

(b) Pmsl

(c) 10 m wind

(d) 2 m temperature

(e) 2 m dew point temperature

Figure 29: Comparison of verification results for the two SPP parameter experiment using the last
predicted values for [σS, σR] ≈ [0.38, 0.96] in Figure 27 (red line), versus the single SPP parameter
experiment using the "optimal" σS ≈ 0.37 as determined in Figure 21 (green line). CRPS, spread-
skill, and member bias are given on the left, middle, and right columns.
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5 Conclusions and next steps

This NWP note has taken a very simple approach to the optimisation of one or two HARMONIE-
AROME SPP configuration parameters, namely the perturbation standard deviation σp, using the
URANIE platform and the EGO scheme. Reference tests have been carried out to investigate the
impact of σp on model performance for different SPP parameters. This impact was quantified using
verification statistics, and these statistics were used to propose a simple cost function which balances
an improvement in model CPRS against the introduction of a systematic perturbed member bias
relative to the control (denoted here as CF_CRPSMB). The main results from the suite of experiments
presented herein are summarised below.

1. The technical implementation of the EGO scheme in HARMONIE-AROME with URANIE ap-
pears to work correctly (for both one and two parameter optimisation).

2. Raw verification statistics such as spread-skill or CRPS are not particularly well-suited to opti-
misation of σp.

3. Single parameter optimisation of σp using CF_CRPSMB can yield quite sensible results. For
SLWIND, using the predicted optimal σS gives a clear improvement in overall model perfor-
mance when compared to the default value for σS , albeit with some systematic member bias
remaining. The optimal σp appears to be reproducible and the typical cost of an optimisation
run is reasonable (approximately 3 M SBU).

4. While the two parameter optimisation tests also provided reasonable results, the long run high-
lighted some of the limitations associated with the approach taken when the cost function used
has a very weak dependency on some input parameter(s).

As such, with some adaptions the general approach outlined in this note could be applied to wider
SPP configuration tuning within HIRLAM/ACCORD relatively soon, at least for single parameter
optimisation. Some immediate next steps for future work include:

1. Further experimentation with the cost function used in the EGO algorithm e.g. should some-
thing other than CF_CRPSMB be used, should the exponent q be increased, etc.?

2. Correct the stopping criteria to also include a check on cost function variation (see Section 4.2).

3. In retrospect, it would have been more appropriate to use the Fair CRPS, using a reference
ensemnble size of infinity, instead of CRPS in the definition of CF_CRPSMB in (8). This is
because the Fair CRPS in harp is reproduced exactly with the same input data, whereas this is
not the case for CRPS (e.g. running the same verification twice can give CRPS values which
differ on the order of 10−6). This is just a small technical correction and should have little to no
impact on overall performance.

4. Further long optimisation tests with multiple σp for different SPP parameters.

5. Assess simultaneous tuning of σp with the offset op for uniform distributions, which may help
avoid the introduction of member biases.
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6 Appendix

6.1 Experiment input data

Table 5 indicates the location on the ATOS HPC of the input data and binaries used for all experiments
in this NWP note. IFSHRES lateral boundary conditions were retrieved from the UWC-W archive on
ECFS.

Description Path

Binaries (gnu) /ec/res4/hpcperm/dujf/spiefann2024/bin_archive/d46h1eps
Climate files /ec/res4/hpcperm/dujf/spiefann2024/clm/IRELAND25S
LBCs /ec/res4/scratch/dujf/uwc_lbc/DINI_HRES
Observations /ec/res4/scratch/dujf/spiefann2024/obs_IRELAND25S

Table 5: Location of HARMONIE-AROME input data and binaries used.

6.2 EGO settings

Table 6 indicates various settings relevant to the implementation of the EGO algorithm with URANIE.

Description Value Relevant URANIE function

Distribution type for initial samples Uniform TUniformDistribution
Algorithm for generating initial samples lhs TSampling
Correlation function used for Kriging matern3/2 TGPBuilder
Optimisation criterion for Kriging LOO findOptimalParameters
Size of screening DOE for Kriging 500 findOptimalParameters
Optimisation algorithm for Kriging Subplexe findOptimalParameters
Max. number of optimisation runs for Kriging 10,000,000 findOptimalParameters
Optimisation algorithm for EI TNloptCobyla TNlopt

Table 6: EGO-related settings used throughout unless otherwise stated. DOE stands for "design-of-
experiments".

6.3 No perturbation tests

Two technical tests were carried out to ensure that the HARMONIE-AROME configuration detailed
in Table 1 worked as expected when no model perturbation was applied. In particular:

• SPP perturbations were switched off entirely by setting "SPP=no" in ecf/config_exp.h (this will
be referred to as test "T0").

• SPP perturbations were retained (i.e. "SPP=yes") for a single SPP parameter but the standard
deviation was set to zero (i.e. σp = 0). According to (1) and (2), this should have the same
effect of switching off SPP (this will be referred to as test "T2").
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In both cases the perturbed members should collapse to the control member and the ensemble spread
should be zero. Sample point verification results for the spread-skill ratio are illustrated in Figure 30.
When the SPP parameter considered is RFAC_TWOC, the spread reduces to zero as expected for
tests T0 and T2. One can note, however, that non-zero spread is observed with σp = 0 for SLWIND.
While negligible, this may point to a small bug in this dynamics perturbation.

(a) RFAC_TWOC (b) SLWIND

Figure 30: Sample 2 m temperature spread-skill ratio results for a single forecast start date and tests T0
(ref) and T2 (green). A reference experiment (yellow), using a uniform distribution with (a) σp = 0.1
and (b) σp = 0.01, is also included for comparison.

6.4 Initial EGO convergence testing

The results of two initial RFAC_TWOC EGO convergence tests, one using CPRS and the other
CF_CRPS as the cost function F , are given in Figure 31. Here F is calculated solely from the
total cloud cover verification statistics (i.e. F = ⟨S (l,CCtot)⟩) for the 2023/06/06/00 cycle (see
Figure 11). The reference experiment, to which comparison is made in the convergence cost function
(10), used a value of σp = 0.6. A large initial sample size of NT = 40 is used and the maximum
number of iterations Nmax = 80.

As illustrated in Figure 31, for the immediate iterations after the initial sampling the EGO algorithm
predicts values of σp quite close to the reference value of 0.6, as expected. This is the case both for
CRPS and CF_CPRS as cost functions. However as the scheme iterates further, the predicted optimum
value can deviate significantly, particularly when using CF_CRPSMB as the cost function. This can
be reconciled by considering the top left panel of Figure 11(a), where the value of CF_CPRSMB at
σp ≈ 2.4 is also quite close to CF_CRPSMB at the reference value. Ultimately there is no clear
convergence to the reference value in this case even after 80 iterations.

In Figure 32 we repeat the CPRS EGO convergence test described above but now using the "setHas-
MeasurementError(True)" option when finding the optimal hyper-parameters in the Kriging. Here
the same initial training data is used in both experiments to isolate the impact. Turning on this option
clearly benefits the convergence behaviour, and indeed the algorithm continues to return a value of
≈ 0.62 upon further iterations. In this case the error in the predicted optimum value is ≈ 3% relative
to the reference, which is quite reasonable. Figure 32 also emphasises the importance of including a
convergence check to terminate the experiment; otherwise significant computational resources could
be wasted iterating up to Nmax with very little variation in the predicted value for σp.
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Figure 31: Variation in the convergence cost function Fc (top and middle rows) and predicted value
for σp (bottom row) as a function of the number of URANIE iterations. Coloured lines indicate
different experiments, one using CRPS (green) and the other CF_CRPS (orange) as the cost function
F in Fc. The minimum and maximum possible values for σp are indicated by the dot-dash lines, while
the reference value for σp is given by the horizontal dotted line. The vertical coloured dashed lines
indicate NT for each experiment.

Figure 32: As in Figure 32 but using CRPS only as the cost function. The two experiments are
identical apart from the activation of "setHasMeasurementError(True)" (orange line).

Utilising the "setHasMeasurementError(True)" option is appropriate here given that components of
the cost functions considered (e.g. mean member bias relative to the control) are estimated using a
relatively small number of ensemble members.
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6.5 Additional results for Section 3.2

Figure 33: As in Figure 11 but for SLWIND σp reference tests and Pmsl.

(a) Summer (b) Winter

Figure 34: As in Figure 19 but only using data from the first seven days of each period.
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6.6 Additional results for Section 4

(a)
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Figure 35: As in Figures 23 and 24 but for total cloud cover.
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