REQUEST FOR A SPECIAL PROJECT 2023–2025

MEMBER STATE: Italy

Principal Investigator¹: Massimo Milelli (mcy)

Affiliation: CIMA Research Foundation

Address: Via Magliotto 2, 17100, Savona

Other researchers:
- Valeria Garbero (mcy0, valeria.garbero@arpa.piemonte.it), Arpa Piemonte
- Martina Lagasio (it90, martina.lagasio@cimafoundation.org), CIMA Research Foundation
- Vincenzo Mazzarella (it86, vincenzo.mazzarella@cimafoundation.org), CIMA Research Foundation

Project Title: Intensive test of ICON-LAM Model with urban parameterization scheme TERRA_URB

If this is a continuation of an existing project, please state the computer project account assigned previously.

<table>
<thead>
<tr>
<th>Project Account</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPITMIL2</td>
</tr>
</tbody>
</table>

Starting year:
(A project can have a duration of up to 3 years, agreed at the beginning of the project.)

<table>
<thead>
<tr>
<th>Year</th>
<th>2023</th>
</tr>
</thead>
</table>

Would you accept support for 1 year only, if necessary?

<table>
<thead>
<tr>
<th>Option</th>
<th>YES X NO</th>
</tr>
</thead>
</table>

Computer resources required for 2023-2025:
(To make changes to an existing project please submit an amended version of the original form.)

<table>
<thead>
<tr>
<th>Resource</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Performance Computing Facility (SBU)</td>
<td>3000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accumulated data storage (total archive volume)² (GB)</td>
<td>2000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ The Principal Investigator will act as contact person for this Special Project and, in particular, will be asked to register the project, provide annual progress reports of the project’s activities, etc.
² These figures refer to data archived in ECFS and MARS. If e.g. you archive x GB in year one and y GB in year two and don’t delete anything you need to request x + y GB for the second project year etc.

Continue overleaf
Principal Investigator: Massimo Milelli (mcy)

Project Title: Intensive test of ICON Model with urban parameterization scheme TERRA_URB

Extended abstract

All Special Project requests should provide an abstract/project description including a scientific plan, a justification of the computer resources requested and the technical characteristics of the code to be used. The completed form should be submitted/uploaded at https://www.ecmwf.int/en/research/special-projects/special-project-application/special-project-request-submission.

Following submission by the relevant Member State the Special Project requests will be published on the ECMWF website and evaluated by ECMWF and its Scientific Advisory Committee. The requests are evaluated based on their scientific and technical quality, and the justification of the resources requested. Previous Special Project reports and the use of ECMWF software and data infrastructure will also be considered in the evaluation process.

Requests exceeding 5,000,000 SBU should be more detailed (3-5 pages).

Motivation and work plan

During 2022, the ICON-LAM+TERRA_URB package will be finalized in order to be ready in 2023. So, while in the second half of 2022 the simulations performed will have a debug purpose (mainly), next year the model should be tested intensively in its final set-up.

The details of this testing procedure will be discussed in September, during the COSMO General Meeting among the partners of the Priority Project CITTA (https://www.cosmo-model.org/content/tasks/priorityProjects/citta/default.htm). Nevertheless, the plan would be to run a summer month over Italy (see Fig. 1) with horizontal resolution of about 1.2 km, testing the CTRL runs (TERRA_URB scheme off) vs URB runs (TERRA_URB scheme on) in hindcast mode. Moreover, different ICs/BCs could be tested (IFS/DWD). To be decided whether tests in forecast mode are needed or not, according also to manpower availability.

Fig.1: domain of the simulations (inner shaded area).
With this workplan we will use about 2500000 SBU (roughly), but we might need some buffer, so 3000000 SBU seem to be more appropriate.

The verification will focus on screen level parameters and vertical profiles where available.

Technical characteristics of the numerical codes

In the framework of this special project, the following F90 code will be used:

- ICON Model, which combines the non-hydrostatic dynamical core, with the parametrisation package originating from the ECHAM6 atmosphere model. The physics is adapted for the vertical coordinate system and time stepping scheme of the ICON dynamical core. ICON has an icosahedral grid which provides a nearly homogeneous coverage of the globe. This avoids the so-called pole problem related to the convergence of meridians in lat-lon grids, which poses severe challenges to a computationally efficient implementation. In the current operational version, the global ICON grid has 2,949,120 triangles, corresponding to an average area of 173 km² and thus to an effective mesh size of about 13 km. All scalar prognostic model variables (e.g. temperature, density, moisture quantities) are located in the circumcentre of the triangles, whereas the edge-normal wind components are located in the edge midpoints.

Computer resources

This work will consider deterministic runs only (no use of the EPS is foreseen). The simulations will be performed at very high horizontal resolution (about 1 km), over a limited domain (North-West of Italy, Fig. 1). Therefore an overall cost of about 3000000 SBU is envisaged. Depending on the results, the set-up of the system could be partly modified and it might be possible to have other simulations. The memory resources (hourly output) should be around 2000 GB maximum, although with some optimization it could be reduced slightly.

References

Demuzere, M., B. Bechtel, A. Middel and G. Mills, 2019: Mapping Europe into local climate zones, Plos One, 14, e0214474. DOI: 10.1371/journal.pone.0214474

Milelli, M., 2016: Urban heat island effects over Torino. COSMO Newsletter, 16 (http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter16/default.htm)

Milelli, M., Bassani, F., Garbero, V., Poggi, D., von Hardenberg, J., Ridolfi, L., 2022: Characterization of the Urban Heat and Dry Island effects in the Turin metropolitan area, Urban Climate, under review