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Extended abstract
Objectives

The main goal of this special project is to enhance the transfer of observed information to the model
during the initialisation of multi-annual forecasts. This phase of the climate prediction process is of
utmost importance, because it has been shown that a correct initialisation can improve the forecasts
up to a few years ahead. However, the systematic errors of the models make this task challenging,
because of the discrepancy between the observed and model mean climate. The main consequences
are incorrect propagation of systems and a quick loss of the observed information. This project will
therefore test innovative initialisation techniques explicitly designed to tackle specific limitations
detected in the methods currently in use.

Introduction and motivation

One of the most relevant scientific challenges of multi-year prediction is dealing with the intrinsic 
systematic error of the models. This is due to the fact that models describe complex real-world 
processes simplifying through a set of equations and algorithms. The main consequence of the 
model error is the difference between the model and observed mean state. Such a difference 
complicates the initialisation task, which consists in transferring the observed information to the 
model at the initial time of a forecast. In multi-year predictions, after initialisation the model drifts 
away from the real-world attractor towards its own biased attractor. To account for such a bias, a-
posteriori bias correction (Fuĉkar et al. 2014) needs to be applied, which although introduces 
additional errors in the forecast, is unavoidable for the forecasts to be usable. On top of the 
correction of the bias, multi-annual predictions also have the additional challenge of disentangling 
the smaller magnitude of climate signal to be predicted, from the initial drift to be removed (Smith 
et al. 2013). The ultimate way of reducing model biases a priori is through model improvements, 
such as the increase of spatial resolution, or improvements of the parameterisations of the model. 
However, with the current models, knowing their systematic errors, ad hoc initialisations and 
corrections could be implemented to improve the prediction skill. 
The first initialisation method ever tested involves replacing the model state at the initialisation time
with the best estimate of the observed climate system (Pohlmann et al.  2009). The model error
causes predictions to drift towards the model climate biases, which develop on different timescales
(Doblas-Reyes  et  al.  2010)  and,  hence,  depend on the  forecast  time.  Various  techniques  for  a-
posteriori  bias  correction that  take into account  the forecast  time,  start-date  or  initial  condition
dependence of the bias have been designed and implemented (Kharin et al.  2012;  Fuĉkar et al.
2014).  This  strategy is  less  appealing for  multi-year  predictions,  because  the  magnitude  of  the
predictable  signal  is  smaller,  and  therefore  could  likely  be  removed  during  the  inaccurate
calculation of the bias.
An alternative to limit the drift is the flux correction (Magnusson et al. 2013a; Collins et al. 2006),
that  continuously  corrects  the  model  towards  the  observed  attractor.  In  practice,  it  consists  of
additive adjustments that push the model solution towards the observed state. The third alternative
is the anomaly initialisation method, which assimilates the observed anomaly variables onto an
estimate of the model mean climate (Smith et al. 2013). Therefore, the philosophy of this strategy
consists in allowing the model bias which is present in the model mean state, and only constraining
the phase of the simulated variability towards the observed one. Previous studies (Hazeleger et al.
2013; Bellucci et al. 2015, Balmaseda et al. 2012) have applied these initialisation techniques to
different models to highlight the relative strengths and limitations. The results show that in their
standard implementation, at interannual time scales, the differences in skill of these techniques are
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small and limited to specific regions (Meehl et al. 2014). Magnusson et al. 2013b suggested that the
best strategy could even be model dependent, because models have different biases. 
In this project we will test specific improvements to the standard anomaly initialisation techniques
to assess whether tackling the detected limitations of the technique has a positive impact on the
forecast skill. The first limitation related to the use of the standard anomaly initialisation technique,
is the risk of introducing anomalies recorded in the observed data whose amplitude does not fit in
the  range  of  the  internal  variability  generated  by  the  model.  This  could  result  in  the  model
erroneously predicting extreme events, such as an intense El Niño or a pause in the thermohaline
circulation. Volpi et al. 2017 addressed this issue by weighting the observed anomalies with the
ratio between the model and observed standard deviation, to make their amplitude more consistent
with the simulated variability. Such a refinement, together with the anomaly initialisation of the
ocean density, showed improved skill in predicting the SST in some regions, the sea ice variability
and the Atlantic Multidecadal Oscillation (AMO). The scaling technique that will be implemented
in this project takes into account the non-normal distribution of the climate variables, which was not
addressed in Volpi et al. 2017. The first year experiment will be devoted to the implementation and
the assessment of the new scaling technique.  
The second limitation which will be addressed in this project, is the geographical mismatch between
the model and observed variability. There are two types of model biases that can affect the forecast
skill:  one is the bias affecting the amplitude of the signal.  The second is the shift  between the
geographical  position where the model develops the variability  modes,  and the actual observed
position  of  the  modes.  To  avoid  the  drift,  the  anomaly  initialisation  technique  includes  the
amplitude bias in the initial  state,  by adding the model climatology to the observed anomalies.
However, due to the displacement bias, the model might receive the information of the observed
variability in a shifted position with respect to the location where the model would reproduce it. In
those cases, the model might not interpret the strengthening of an observed variability mode as the
strengthening of the corresponding variability mode in the model. As such, the information coming
from the observed state will  not be correctly propagated by the model,  but either lost  or, even
worse, creating spurious perturbations. The second year experiment will implement and assess an
innovative method to overcome such limitation. 
This  special  project  would run in  parallel  to  the H2020 MSC project  LISTEN, in which other
initialisation techniques will be tested at both seasonal and multi-year scales, offering a rich pool of
techniques for the comparison, on top of the existing standard initialised experiments. 

Experimental set-up
The experiments will  be carried out  with the EC-Earth version 3.2 global  coupled model.  The
atmosphere component will be initialised with the reanalyses ERA5 (Hersbach and Dee 2016) or
ERAInterim (Dee et al. 2011) (depending on availability), the ocean component with NEMOVAR-
ORAS4 reanalysis (Balmaseda et al. 2012), and the sea ice component with an updated version of
the sea ice reconstruction from Guemas et al.  2013. However, initialising the ocean and sea ice
components with ORA-20C (De Boisséson et al. 2018) will be taken into account, provided that the
most recent starting dates does not exceed 2010 for a matter of availability. The experiments will
run for 5 years with 16 ensemble members and 25 starting dates.

The weight anomaly method: Quantile matching
The first experiment will test a method to weight the observed anomaly and tackle the issue of
introducing values that do not fit in the range of the internal variability generated by the model. This
advanced method also takes into account the non-gaussianity of the climate variables. Figure 1
illustrates the implementation of the quantile matching method for the SST. In red, the cumulative
distribution function (defined as the probability of a variable to take a value smaller than a specific
given value) of SST is represented for a specific grid point, calculated with all NEMOVAR-ORAS4
members,  over  a  reference  period  (in  this  example  1971-2000).  Similarly, the  SST cumulative
distribution function for the historical simulation of the model is shown in black, for the same grid
point. Assuming November 1960 as the target initial time, the red star indicates the value taken by
NEMOVAR-ORAS4 at the initial date. The model is initialised with the model value (marked by a
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black  star  in  the  figure)  whose  cumulative  distribution  function  matches  with  the  one  of  the
observed value at the initialisation time.

Fig. 1 Example of the implementation of
the  quantile  matching:  cumulative
distribution  function  for  the  SST at  the
point  31°N-28.5°W  in  red  for
NEMOVAR-ORAS4  and  in  black  for  a
historical simulation of EC-Earth. The red
star  indicates  the  SST  value  of
NEMOVAR-ORAS4 at such grid point on
the 1st of November 1960. The prediction
will be initialised with the value indicated
by  the  black  star:  it  corresponds  to  the
value taken by the EC-Earth SST which
has  the  same  cumulative  distribution  as
NEMOVAR-ORAS4  at  the  initialisation
time.

Addressing the spatial bias: the analog method
The use of the anomaly initialisation technique in presence of the displacement bias implies the risk
of introducing the information about the observed variability in a shifted position with respect to the
location  where  the  model  would  reproduce  such  variability.  The  analog  method  represents  a
possible alternative to overcome the issue. It consists in choosing an initial state that belongs to the
model attractor and whose amplitude of the main variability modes is as close as possible to the
amplitude of the corresponding observed variability modes, at the given initialisation time.  
The implementation consists first of all in selecting a set of variability modes which are assumed to
hold the most relevant climate variability, to represent the observed state. This implies the analysis
of indices such as ENSO, the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation
(PDO),  AMO, the  monthly  mean intensity  of  the  thermohaline  circulation,  the  intensity  of  the
subpolar and subtropical gyres, the strength of the Antarctic Circumpolar Current, etc. The chosen
observed modes are computed using all the monthly mean data from the initialisation date and all
the observed members over a reference period. Similarly, for the model the modes are estimated
using  all  the  members  and  the  data  of  the  initialisation  month  available  from  the  historical
simulations,  in order to have the largest set  of possible  initial  conditions.  The initial  state  of a
prediction is then chosen among the pool of the model states, as the one which has the set of model
indices the closest to the observed indices at the initialisation time.

Technical Characteristics
The total number of coupled integrations at T255L91-ORCA1 will be thus 25 (starting dates) x5 
(year-long) x16 (ensemble members) x2(experiments) = 4000 years. These can be split into 2000 
years per each project year.
Scaling tests performed at ECMWF (in the framework of the SPNLTUNE special project, run by J. 
von Hardenberg) have determined that in the current configuration EC-Earth are optimal: T255L91-
ORCA1: 144 cores for NEMO + 432 for IFS. One year of simulation is completed in about 18,000 
SBUs/year. The total requirement will be 72 million SBUs over two years.
The data storage volume required per year is 50000 gigabytes.

Year Experiment Model Configuration Experiment set-up SBUs

Year 1 Quantile mapping 255L91-ORCA1 5 year-long, 16members, 25 starting dates 36 million

Year 2 Analog method 255L91-ORCA1 5 year-long, 16members, 25 starting dates 36 million
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