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Reforecasting two heavy-precipitation events with three convection-permitting ensembles

Valerio Capecchi∗

LaMMA, Laboratorio di Meteorologia e Modellistica Ambientale per lo sviluppo sostenibile, Firenze, Italia

ABSTRACT

We investigate the potential added value of running three limited-area ensemble systems (with the WRF, Meso-NH and MOLOCH
models and a grid spacing of approximately 2.5 km) for two heavy-precipitation events in Italy. Such high-resolution ensembles include an
explicit treatment of convective processes and dynamically downscale the ECMWF global data, which have a grid spacing of approximately
18 km. The predictions are verified against rain-gauge data and their accuracy is evaluated over that of the driving coarser-resolution
ensemble system. Furthermore, we compare the simulation speed (defined as the ratio of simulation length to wall-clock time) of the three
limited-area models to estimate the computational effort for operational convection-permitting ensemble forecasting. We also study how the
simulation wall-clock time scales with increasing numbers of computing elements (from 36 to 1152 cores). Objective verification methods
generally show that convection-permitting forecasts outperform global forecasts for both events, although precipitation peaks remain largely
underestimated for one of the two events. Comparing simulation speeds, the MOLOCH model is the fastest and the Meso-NH is the slowest
one. The WRF model attains efficient scalability, whereas it is limited for the Meso-NH and MOLOCH models when using more than 288
cores. We finally demonstrate how the model simulation speed has the largest impact on a joint evaluation with the model performance
because the accuracy of the three limited-area ensembles, amplifying the forecasting capability of the global predictions, does not differ
substantially.

1. Introduction

[. . .]
This paper presents the results produced in the frame-

work of two ECMWF Special Projects, the computational
resources of which were granted during the years 2016-
2018 and 2019-2021. The common goal of the two projects
is to assess the added value of running a limited-area CP
ensemble in terms of quantitative precipitation forecast
(QPF). The accuracy of the cascade of state-of-the-art en-
sembles, from global to local, is evaluated by reforecast-
ing past high-impact precipitation events and using three
different mesoscale models. The dynamical downscaling
method is chosen to start the regional ensembles, and the
forecast lengths considered are longer than 24 hours.

[. . .]
The comparison of the results obtained with these three

models contributes to the debate regarding their strengths
and weaknesses with respect to (i) the accuracy of the
results for the two events considered and (ii) the compu-
tational costs in view of the potential use for operational
ensemble forecasting.

∗Corresponding author: Valerio Capecchi, capec-
chi@lamma.toscana.it

Fig. 1. Panel (a): topography and geographical extent of the three
domains of integration for the limited-area models. Panel (b): area of
interest of the CT case with observed rainfall data registered by rain-
gauges on the 25th of October 2011. Panel (c): area of interest of the
GE case with observed rainfall data registered by rain-gauges on the 4th
of November 2011. The maximum observed value is reported for each
event (units of mm/day). In panels (b) and (c), the gray dashed contours
indicate elevations of 500 and 1000 meters above sea level.

2. The CT and GE cases

Although detailed descriptions of the CT and GE cases
can be found in the literature, we include a short summary
of both to make this paper self-contained.

[. . .]
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Table 1. Setup of the key characteristics of the limited-area and convection-permitting ensemble forecasts.

Model Grid Spacing (km) Rows×Columns Vertical Levels Grid Points Time Step
(sec)

Δ𝑥 𝑅×𝐶 𝐿 𝑅×𝐶 × 𝐿 Δ𝑡

WRF 3 400×440 55 ' 9.7 million 18
Meso-NH 2.5 225×270 52 ' 3.1 million 6
MOLOCH 2.5 514×614 50 ' 15.4 million 30

3. Models and numerical setup
In the following, we provide a short overview of the

models used in this study. We stress again the fact that
they all are set with the explicit treatment of convective
processes.

[. . .]
In Table 1, we summarize a few basic settings of the

integration domain for the three models, namely, the grid
spacing (expressed in km), the number of rows, columns
and vertical levels, the resulting total number of grid points
and the time step (expressed in seconds). The grid spac-
ing is set to 3 km for the WRF model and 2.5 km for
the Meso-NH and MOLOCH models. The extent of the
horizontal grid is not the same among the three models;
the extents are shown in Figure 1. The number of vertical
levels spans from 50 (for the MOLOCH model) to 55 (for
the WRF model). With these settings we obtain a num-
ber of grid points, for the three dimensional grid, ranging
from approximately 3.1 million for the Meso-NH model to
approximately 9.7 million for the WRF model and up to
approximately 15.4 million for the MOLOCH model. To
satisfy the Courant-Friedrichs-Lewy (CFL) stability con-
dition, we set the time step to 18, 6 and 30 seconds for the
WRF, Meso-NH and MOLOCH models, respectively.

We use different compilers and compilation options
to build the executables on the ECMWF supercomputer.
Some details are given in the Appendix.

4. Data and methods
[. . .]
Starting dates that have been considered for the CT (GE)

case are from 00 UTC 23 October (2 November) 2011 to 12
UTC 24 October (3 November) 2011, every 12 hours. The
ending dates are 00 UTC 26 October 2011 for CT and 00
UTC 5 November 2011 for GE so that the forecast length
ranges from 72 hours to 36 hours for both cases; forecast
lengths shorter than 36 hours were not considered. See
Table 2 for a summary of the simulations and the codes
adopted to name each forecast. In the following text, we
use the acronyms WRF-ENS, MNH-ENS and MOL-ENS
to refer to the CP ensembles produced using the WRF,
Meso-NH and MOLOCH models, respectively, and using
the ENS data as the initial and boundary conditions. The
number of members of each CP ensemble system is the
same as that in the ENS data (i.e., 50 members).

Table 2. Summary of the numerical simulations performed. The third
column indicates the codes adopted to name the forecasts.

CT case Starting date Forecast length to Forecast
of the simulations 00 UTC 26 Oct 2011 code

00 UTC 23 Oct 2011 72 hours CT+72h
12 UTC 23 Oct 2011 60 hours CT+60h
00 UTC 24 Oct 2011 48 hours CT+48h
12 UTC 24 Oct 2011 36 hours CT+36h

GE case Starting date Forecast length to Forecast
of the simulations 00 UTC 5 Nov 2011 code

00 UTC 2 Nov 2011 72 hours GE+72h
12 UTC 2 Nov 2011 60 hours GE+60h
00 UTC 3 Nov 2011 48 hours GE+48h
12 UTC 3 Nov 2011 36 hours GE+36h

Table 3. Percentiles and maximum values of the daily rainfall data
observed during the CT and GE cases.

25th percentile Median 75th percentile Max
CT 59 110 168 538
GE 80 130 172 465

The QPF data are compared with observed precipitation
amounts collected at the rain-gauges belonging to the inset
boxes shown in Figure 1 (panels on the right). Such boxes
are chosen subjectively by drawing a 1◦×1◦ square around
the areas for which the rain-gauges registered the highest
precipitation amounts. The total numbers of rain-gauges
are 149 and 55 for the CT and GE cases, respectively.
The basic statistics of the daily accumulated precipitation
observed during the two events are reported in Table 3.
When presenting or discussing the results regarding the
verification of the model predictions against observed data,
we refer to the precipitation that occurred in the 24-hour
period ending at 00 UTC 26 October (5 November) 2011
for the CT (GE) case.

To reduce the effects of the double-penalty error (Ebert
2009), when extracting the QPF values at rain-gauge loca-
tions, we picked the four nearest-neighbor grid values and
averaged them to provide the forecast value at that location.
The performance of the ensemble mean, chosen as the rep-
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resentative member of each ensemble system, is assessed
by looking at the performance diagrams (Roebber 2009).
Such diagrams plot four measures of the dichotomous fore-
cast: probability of detection (POD), success ratio (SR),
bias and critical success index (CSI). Using the 2×2 con-
tingency table for the dichotomous (yes/no) forecast shown
in Table 4, the four skill measures are defined as follows:

𝑃𝑂𝐷 =
𝐴

𝐴+𝐶 ,

𝑆𝑅 =1− 𝐵

𝐴+𝐵 ,

𝑏𝑖𝑎𝑠 =
𝐴+𝐵
𝐴+𝐶 ,

𝐶𝑆𝐼 =
𝐴

𝐴+𝐵+𝐶 .

To estimate potential heavy rainfall, we evaluate the maps
of the probability of precipitation (PoP) exceeding prede-
fined thresholds. The PoP is a common ensemble-based
product, which expresses the occurrence probability of an
extreme event measured by the fraction of ensemble mem-
bers that predict a value higher than a predefined threshold.
The probabilistic skills of the CP ensembles are compared
to those of ENS by constructing the receiver operating
characteristic (ROC) curve and calculating the area under
it (Mason 1982). The ROC curve contrasts the hit rate
versus false alarm rate, using a set of increasing proba-
bility thresholds to make the yes/no decision. The area
under the ROC curve is frequently used as an index of
accuracy of an ensemble system in order to be able to dis-
criminate between the occurrence and nonoccurrence of
weather events; the higher the value is, the better it is, with
1 as the upper limit and values below 0.5 indicate no skill
compared to a random forecast.

Following the notations of Coiffier (2011), the simula-
tion speed of the generic model 𝑀 is defined as the ratio
between the forecast length 𝐻 over the time 𝑇𝑀 required
to end the simulation. It can be expressed by the following
relationship:

𝐻

𝑇𝑀
=

Δ𝑡𝑀 · 𝑆
𝑁𝑣 ,𝑀 ·𝑁𝑐,𝑀

(1)

where Δ𝑡𝑀 is the time step, which depends on the grid
spacingΔ𝑥𝑀 and has to satisfy the CFL condition. The nu-
merator 𝑆 is a measure of the computational speed (e.g., the
number of processing elements or the floating operations
per second). The term 𝑁𝑣 ,𝑀 is the number of variables
to be processed at each time step Δ𝑡𝑀 and depends on the
number of grid points (i.e., the number of rows, columns
and vertical levels) of the integration domain. The term
𝑁𝑐,𝑀 represents the number of calculations to be made at
each time step Δ𝑡𝑀 and is a function of the computational
cost required by the numerical method used to solve the
equations. In view of a possible use for operational en-
semble forecasting, we compare how the simulation speed,

Table 4. The 2×2 contingency table.

Event Observed
yes no

Event Forecast yes A B
no C D

defined by the left-hand side of equation 1, of model 𝑀
scales as the computer speed 𝑆 increases. The factor 𝐻

𝑇𝑖
is taken as a measure of actual time-to-solution. In this
study, the index 𝑀 can assume the value of WRF, Meso-
NH, or MOLOCH. We stress the fact that this evaluation is
not biased towards either the number of grid points of the
integration domain or the time step adopted. In fact, with
the settings summarized in Table 1, the ratio 𝑁𝑣 ,𝑀/Δ𝑡𝑀 is
almost constant for all the CP models.

To jointly evaluate a numerical weather model 𝑀
in terms of its simulation speed 𝑆𝑀 and performance
𝑃𝑀 , we heuristically define the linear integrated speed-
performance (𝐿𝐼𝑆𝑃) index as a linear combination of 𝑆𝑀
and 𝑃𝑀 , namely:

𝐿𝐼𝑆𝑃𝑀 (𝛼) = (1−𝛼)𝑆𝑀 +𝛼𝑃𝑀 , (2)

where the scalar 𝛼 ∈ [0,1] ⊆ R is a weight such that if
𝛼 = 1, then the 𝐿𝐼𝑆𝑃𝑀 index is conditioned on having
the more accurate forecast data, regardless of the time
needed to accomplish the simulation, whereas if 𝛼 = 0
then the 𝐿𝐼𝑆𝑃𝑀 index weights the faster forecast (provided
that the accuracy satisfies some minimum requirement, i.e.
ROC area > 0.5). We note that, if we choose the ROC
area as a measure of the performance 𝑃𝑀 , we have that
𝐿𝐼𝑆𝑃𝑀 ≥ 0,∀𝛼 ∈ [0,1] and the higher the value is, the
better it is. If we have to evaluate models 𝑀 and 𝑁 on the
basis of both the performance and speed, we can evaluate
if:

𝐿𝐼𝑆𝑃𝑀 ≥ 𝐿𝐼𝑆𝑃𝑁 ,

that is if:
𝑃𝑀 ≥ 𝑃𝑁 + 𝜅(𝑆𝑁 − 𝑆𝑀 ).

where, for sake of simplicity, we set 𝜅 =
�

1−𝛼
𝛼

�
.

5. Results
a. Model performance: precipitation verification

In Figures 2 and 3, we show the QPF ensemble mean
maps for CT+36h and GE+36h; longer-range forecasts do
not provide substantial differences. The visual comparison
of such maps with observed precipitation patterns shown in
panels (b) and (c) of Figure 1 suggests that the predicted en-
semble means strongly underestimate the rainfall for both
cases. To quantitatively analyze such underestimation, in
Table 5,



4 AMS JOURNAL NAME

Table 5. Root mean square error (RMSE) and mean error (ME)
between the observed and predicted 24-hour accumulated precipitation
values for the CT and GE cases.

WRF-ENS MNH-ENS MOL-ENS ENS
CT RMSE (mm) 103 89 93 102

ME (mm) -64 -44 -56 -63
GE RMSE (mm) 138 129 126 123

ME (mm) -94 -71 -59 -61

Fig. 2. CT case: 24-hour accumulated precipitations for the WRF-
ENS (top-left panel), MNH-ENS (top-right panel), MOL-ENS (bottom-
left panel) and ENS (bottom-right panel) ensemble mean forecast. The
forecast length is 36 hours.

we show the root mean square errors (RMSEs) and mean
errors (MEs) between the predicted and observed precipi-
tation values (Wilks 2011); the values are averaged among
all the forecast lengths. For the CT case, the RMSEs range
from 89 mm (for the MNH-ENS ensemble mean) to 103
mm (for the WRF-ENS ensemble mean). The MNH-ENS
ensemble mean also provides the best ME (i.e., closest to
0). For the GE case, we obtain an average RMSE of approx-
imately 129 mm, with the ENS ensemble mean providing
the lower value (123 mm) and WRF-ENS providing the
higher value (138 mm). The analysis of the ME produces
similar conclusions.

To further assess the accuracy of the ensemble means, in
Figures 4 and 5, we show the performance diagrams for the
CT and GE cases, respectively. To make the yes/no deci-
sion, we chose two precipitation thresholds corresponding
to the 25th percentile and the median of the observed pre-
cipitation data (see Table 3); the scores are averaged among
all the forecast ranges. For the precipitation threshold equal
to the 25th percentile (see panel (a) in the Figures), MNH-
ENS provides more skillful predictions regarding CT; in

Fig. 3. As in Figure 2 but for the GE case.
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Fig. 4. CT case: performance diagram of the ensemble mean forecast
of WRF-ENS (blue), MNH-ENS (red), MOL-ENS (orange) and ENS
(black). The X-axis shows the success ratio (SR), the Y-axis shows the
probability of detection (POD), the curved lines represent the critical
success index (CSI) values, and the dashed diagonal lines represent the
bias. Panel (a) shows the scores for the precipitation threshold corre-
sponding to the 25th percentile of the observed accumulated rainfall.
Panel (b) as in (a) but for the 50th percentile.
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Fig. 5. As in Figure 4 but for the GE case.

fact, the score lies close to the top-right corner. For the
GE case, ENS outperforms the other systems, having a



5

bias of approximately 0.7 and relatively higher POD and
CSI scores (approximately 0.6 for both). Considering the
precipitation threshold equal to the median of the observed
data (see panel (b) in the Figures), all the ensemble sys-
tems provide poor results (i.e. all the scores lie close to the
bottom-right corner).

Since the QPF ensemble means for both cases are skill-
ful only for the precipitation threshold equal to the 25th
percentile of the observed values, we also evaluated some
ensemble-based verification metrics. In Figures 6 and 7,
we show the PoP maps for the four ensemble systems ex-
ceeding the medians of the observed values, which corre-
spond to approximately 110 and 130 mm for the CT and
GE cases, respectively. The forecast length is 36 hours,
and longer-range forecasts do not provide results that dif-
fer substantially. Crosses represent the locations of rain-
gauges where rainfall amounts greater than the threshold
were actually registered. As regards the CT case (see Fig-
ure 6), the visual agreement between observations (Figure
1 panel (b)) and PoP patterns appears good for all the en-
sembles. On average, the PoP values extracted at the rain-
gauge locations are approximately 24%, 51%, 35% and
10% for WRF-ENS, MNH-ENS, MOL-ENS and ENS, re-
spectively. Only ENS fails to produce valuable information
(i.e., PoP values <5%) for 27 out of 75 rain-gauges located
in the northern part of the CT box (see the bottom-right
panel in Figure 6). As regards the GE case, the PoP val-
ues are concentrated in a small portion of the domain and
follow the pattern of the observations (see Figure 1 panel
(c)). MNH-ENS and MOL-ENS produce darker shaded
areas than WRF-ENS, causing higher false alarm ratios.
In fact, we found that 1, 5 and 4 out of 26 locations that
did not record 130 mm of rainfall were located within the
PoP>50% contour for WRF-ENS, MNH-ENS and MOL-
ENS, respectively. The ENS PoP map (bottom-right panel
in Figure 7) has only one grid-point with a PoP value
greater than 20%, but the misplaced position of this point
causes both the yes and the no events to be incorrectly
predicted.

To quantitatively evaluate the probabilistic skills of the
ensembles, we show the area underneath the ROC curve
for the CT and GE cases in Figures 8 and 9, respectively,
by varying the precipitation thresholds on the X-axis and
considering different forecast ranges. The upper limit on
the X-axis is set to the 75th percentile of the observed rain-
fall amount (which corresponds to approximately 170 mm
for both cases). In general, the CP forecasts outperform
the ENS forecasts (i.e., the CP curves lie above the ENS
ones) for all thresholds and for all lead times with a few
exceptions (e.g., CT+48h and GE+48h). As regards the
CT case (Figure 8), the ENS skill drops below the critical
value of 0.5 approximately at the 130-mm precipitation
threshold, whereas the CP ensembles provide valuable in-
formation (i.e., ROC area > 0.5) up to 170 mm and beyond
(plots not shown). Concerning the GE case (Figure 9),

Fig. 6. CT case: probability of precipitation (PoP) in excess of
110 mm (corresponding to approximately the median of the observed
rainfall) for the 24-hour period ending on the 26th of October 2011 at
00 UTC. The forecast length is 36 hours.

Fig. 7. As in Figure 6 but for the GE case. The precipitation
thresholds corresponding to the median of the observed rainfall is ap-
proximately 130 mm.

the profiles of the CP ensemble systems are very similar
to each other; however, WRF-ENS data provide better re-
sults for GE+72h and GE+48h (i.e., a higher ROC area
of approximately 0.78 on average for both forecasts). The
CP ensemble (ENS) curves approach the 0.5 horizontal
line when evaluating precipitation thresholds in the inter-
val 130-140 mm (90-100 mm). A summary of the ROC
area analysis is reported in Table 6 in which the values are
averaged among all the forecast ranges.

To assess the capability of the ensembles to predict rain-
fall peaks close to the actually observed peaks, we extracted
the maximum QPF value predicted by each member of each
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Table 6. Areas under the ROC curve for the three convection-
permitting forecasts and the ENS global predictions. For each event,
the values are averages among all the forecast lengths (from +72 to +36
hours) and among all the precipitation thresholds shown in Figures 8
and 9. For each event, the maximum value is highlighted in bold.

WRF-ENS MNH-ENS MOL-ENS ENS
CT 0.742 0.815 0.744 0.580
GE 0.739 0.683 0.653 0.558

ensemble. In Figures 10 and 11, we show the distributions
(in the form of boxplots) of the QPF maxima for CT and
GE, respectively. The boxplots demonstrated that ENS
maxima are considerably lower than the CP maxima (ap-
proximately one-half for CT and one-third for GE). We also
note that for GE, members of the CP ensembles provide
QPF maxima close to or higher than the maximum ob-
served values (indicated with the dashed horizontal line).
For the CT case, none of the members provide QPF values
close to the observed peak (' 538 mm).

To investigate the physical mechanisms underlying the
CT and GE cases, in Figure 12, we show the 3-hour accu-
mulated rainfall and the 10-meter wind speed and direction
(averaged over the same time period) of a single member
of MNH-ENS for CT+36h (panels on the left) and GE+36h
(panels on the right). The black point indicates the loca-
tion of the rain-gauge that registered the maximum rainfall
rate. In both cases, a convergence line is visible over the
Ligurian Sea and marks the initiation of convective rain-
fall (Buzzi et al. 2014). In the CT case, the precipitation
band oscillates from the east (panel (a)) to the west (panels
(b) and (c)), and the resulting rainfall pattern is widespread
over the whole area of interest. In the GE case, the position
of the convergence line is steady, and thus, the precipitation
pattern is limited to a small portion of the Genoa area.

b. Model scaling

In light of the potential use for operational forecasting,
in Figure 13 we show the scalability of the simulation
speed, defined as the ratio of simulated time to elapsed
wall-clock time, by varying (namely by doubling at each
step) the number of cores used to realize a 36-hour long
simulation (the CT+36h forecast). The values shown on
the Y-axis are obtained by averaging the simulation speeds
of five selected members, taken as representative of the
speed of the whole ensemble system. The wall-clock time
taken into account, considers only the period spent to com-
pute the evolution of the state variables and not that spent
for reading the initial conditions and postprocessing the
model outputs. The MOLOCH model turns out to be the
fastest, being on average approximately 2.3 times faster
than the WRF model and approximately 5.3 times faster
than the Meso-NH model. To visualize the improvement
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Fig. 8. CT case: area under the receiver operating characteristic
(ROC) curve as a function of the precipitation threshold for WRF-ENS
(blue), MNH-ENS (red), MOL-ENS (orange) and ENS (black) data.
The forecast lengths are 72 hours (top-left panel), 60 hours (top-right
panel), 48 hours (bottom-left panel) and 36 hours (bottom-right panel).

0
.4

0
.6

0
.8

1
.0

GE+72h

Precipitation threshold [mm/24-hour]

R
O

C
 A

re
a

50 70 90 110 130 150 170

WRF-ENS

MNH-ENS

MOL-ENS

ENS

0
.4

0
.6

0
.8

1
.0

GE+60h

Precipitation threshold [mm/24-hour]

R
O

C
A

re
a

50 70 90 110 130 150 170

0
.4

0
.6

0
.8

1
.0

GE+48h

Precipitation threshold [mm/24-hour]

R
O

C
 A

re
a

50 70 90 110 130 150 170

0
.4

0
.6

0
.8

1
.0

GE+36h

Precipitation threshold [mm/24-hour]

R
O

C
A

re
a

50 70 90 110 130 150 170

Fig. 9. As in Figure 8 but for the GE case.

in speed performance, in Figure 14 we show the reduction,
in percentage, of the wall-clock time when doubling the
number of cores. The three models exhibit a fairly satis-
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factory reduction (i.e., ' 50%) up to 288 cores, and then
the gain degrades rapidly as the number of cores increases,
dropping below 25% when using 1152 cores. Figure 14
also shows the number of horizontal grid points assigned
to each core (say 𝑁𝑥,𝑦) with the colored labels. In fact,
domains are decomposed into horizontal patches, and each
computing element (namely, core) is responsible for a sin-
gle patch. The Meso-NH model is poorly sensitive to the
patch size through ' 200 𝑁𝑥,𝑦 , whereas the MOLOCH
model is strongly limited by the patch size when 𝑁𝑥,𝑦 is
less than '1000. The WRF model has a good scaling up to
' 600 𝑁𝑥,𝑦 , and then the elapsed wall-clock time is further
reduced by approximately 35% when 𝑁𝑥,𝑦 is ' 300.

c. Model performance vs scaling

In Figure 15, we show an analysis based on the 𝐿𝐼𝑆𝑃
index defined in equation 2. Panel (a) refers to the CT
case and panel (b) to GE. As proxy data for the perfor-
mance of the forecasts (𝑃𝑀 in equation 2), we selected
the ROC area values shown in Figures 8 and 9. Panel
(a) takes into account the average ROC values of the four
panels in Figure 8; panel (b) as in panel (a) but averaging
the data across the four panels in Figure 9. As a measure
of the simulation speed (𝑆𝑀 in equation 2), we selected
the simulation speed of the CP systems when running the
CT+36h forecast with 288 cores (see Figure 13). Both 𝑆𝑀
and 𝑃𝑀 values were normalized to constrain them in the
interval [0,1] ⊆ R. In panel (a) of Figure 15, we evalu-
ate, varying the precipitation thresholds on the X-axis, the
more accurate forecasts (as regards the CT case) against the
fastest ones, namely we show 𝑃𝑀𝑁𝐻−𝐸𝑁𝑆 (red line) and
𝑃𝑀𝑂𝐿−𝐸𝑁𝑆 +𝜅(𝑆𝑀𝑂𝐿−𝐸𝑁𝑆−𝑆𝑀𝑁𝐻−𝐸𝑁𝑆) (orange line).
Panel (b) as in panel (a) but looking at the GE case. We set
𝜅 = 1/9, that is we give more importance to the performance
of the ensemble than to its speed (90% vs. 10%). Panel (a)
shows that, for precipitation threshold higher (lower) than
120 mm, looking at the MOL-ENS (MNH-ENS) forecasts
is more reliable considering both the performance and the
speed of the ensemble. From panel (b) we can appreciate
how looking at the slower WRF-ENS predictions repre-
sents a better trade-off between performance and speed
than looking at the faster MOL-ENS predictions, for all
the precipitation thresholds greater or equal to 120 mm.

6. Discussions and conclusions
Reforecasting past extreme weather events is an essen-

tial tool to understand the information content of current
forecasting systems and monitor the progress achieved in
weather modeling, both at the global and regional scale.
By using recent versions of the ECMWF IFS model and
three regional convection-permitting models, we showed
the results obtained for the ensemble reforecasts of the CT
and GE heavy-precipitation events that occurred in Italy
in autumn 2011. Daily precipitation amounts registered at
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Fig. 10. CT case: boxplot of the QPF maxima provided by each
EPS in the area of interest depicted in Figure 1. The lower and upper
bounds of each box indicate the 25th and 75 percentiles, respectively,
and the thick black line indicates the median. The upper (lower) whisker
adds (subtracts) 1.5 times the interquartile difference to the 75th (25th)
percentile. Points indicate outliers. The dashed horizontal line indicates
the observed rainfall peak.
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Fig. 11. As in Figure 10 but for the GE case.

rain-gauges located in the two areas of interest provided
the ground truth to assess the quality of such predictions.
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Collective results suggest the potential benefits of run-
ning the high-resolution CP ensembles. In fact, using
objective verification methods, we demonstrated that CP
forecasts outperform ENS predictions for the CT case. This
is true in both deterministic (see Figure 4 and Table 5), and
probabilistic terms (see Figure 8 and Table 6). As regards
the GE case, the results are more controversial. The ENS
ensemble mean is more skillful than CP forecasts for the
80-mm threshold (see panel (a) in Figure 5). We speculate
that this happens because the precipitation maxima were
observed in a very small portion of the area of interest
(namely the Bisagno catchment having an area approxi-
mately 100 km2; see Hally et al. 2015). It is known (Gal-
lus Jr 2002) that in these contexts coarse-resolution mod-
els may provide more skillful QPFs than higher-resolution
models. For the precipitation threshold equal to 130 mm
(see panel (b) in Figure 5), any ensemble mean forecast
fails to provide useful information. However, looking at
the ROC-area profiles for GE (shown in Figure 9), CP en-
sembles have a better probabilistic precipitation forecast
skill than ENS. In fact, the ENS ROC-area profile drops
below the critical threshold of 0.5 for precipitation amounts
greater than 90-100 mm, whereas CP ensemble ROC-area
profiles are greater than 0.5 for precipitation amounts up
to 130-140 mm (which approximately is the median of
observed rainfall).

As regards the comparison of CP ensemble predictions,
the precipitation pattern of the CT case is, in general, best
simulated by the MNH-ENS (see Figure 8 and Table 6).
This could be because the time step used for the simula-
tion is lower than that used for the other two CP models.
Indeed, the shorter the time step, the more accurate the
prediction (Coiffier 2011). As regards the GE case, the
results produced by the CP ensembles are very similar to
each other (see Figure 9), and for some forecast lengths
(namely, GE+72h and GE+48h), the WRF-ENS outper-
forms the other two systems due to small-scale position
errors that lead to a reduced number of false alarms. In
fact, as Figure 12 demonstrates, incorrect positioning of
the QPF maxima by a few kilometers induces a double-
penalty error and impacts the forecast quality assessed by
traditional verification statistics. This suggests a few con-
siderations regarding the predictability of the CT and GE
cases. Although they share similar synoptic and mesoscale
features (see Section 2??), as stressed by Davolio et al.
(2015) the CT case is characterized by a greater instability
with a level of free convection close to the surface, whereas
the GE case exhibits higher levels of convective inhibition,
which is overcome by orographic uplift. As a consequence,
the rainfall pattern of CT is widespread, whereas that of
GE is relatively concentrated along the Ligurian coast and
Apenine Mountains. As Figure 7 shows, ENS data provide
only one grid-point with a PoP value higher than 20%; this
leads to an overconfident prediction for the GE case that
none of the CP ensembles are able to mitigate. One may

Fig. 12. Output of a single member of the MNH-ENS system: pre-
cipitation accumulated every 3 hours (unit of mm) and wind speed and
direction averaged over the same period for the CT (panels on the left)
and GE (panels on the right) case. The time period (in UTC hours) over
which the data are accumulated and averaged is indicated in the top-right
corner of each panel. The forecast length is 36 hours. The black point
in each panel indicates the location of the rain-gauge that registered the
maximum rainfall rate.

argue that the use of the simple dynamical downscaling
method is not suitable to initialize CP ensembles. In fact,
the uncertainties in the small-scale features, that are not
captured by the large-scale models can lead to the rapid
growth of the errors such that the predictability is strongly
limited (Hohenegger and Schär 2007). However, the con-
tamination of the small-scale uncertainty on the whole
integration domain depends on the synoptic situation and
it is overwhelmed by the influence of lateral boundary
conditions when strong synoptic forcings are met (as in
the GE case, Rebora et al. 2013). Looking ahead in the
near future, when higher-resolution global data assimila-
tion tecniques will produce more accurate analyses, the
uncertainty, even at the meso-𝛼 and meso-𝛽 scales, can be
better addressed by sampling the members of the global
ensemble. Our approach is also justified by recently pub-
lished papers. For instance, Schwartz (2019) investigated
the value of a CP ensemble directly nested into the NCEP’s
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operational global ensemble data and found that the 3-km
ensemble outperforms coarser-resolution ensembles. The
author tested his system in the “extended short-range”, that
is, for lead times longer than 24 hours and shorter than
120 hours. Consequently, we deduce that our approach
(dynamical downscaling of high-resolution global ensem-
bles) is reasonable in this time range. On the other hand,
for forecast lengths shorter than 36 or 24 hours, the design
of any CP ensemble should adopt a strategy to perturb the
initial conditions to account for small-scale uncertainties.

Figure 10 shows that all the members of the four EPS
predict QPF maxima that largely underestimate the maxi-
mum rainfall amount observed during the CT case. This
confirms the findings of similar studies (Buzzi et al. 2014;
Davolio et al. 2015; Capecchi et al. 2015). However, we
note that some members provide QPF maxima close to
400 mm (see, for instance, WRF-ENS and MOL-ENS in
panel (b)), comparable to the outputs of deterministic fore-
casts run at a much higher horizontal resolution (' 1 km
grid spacing, see Cassola et al. 2015). This confirms
(Schwartz 2019) that for forecast lengths in the extended
short-range (e.g., from +36 hours to +72 hours), it is worth
running probabilistic predictions with a grid spacing of ap-
proximately 2.5-3 km to achieve results similar to higher-
resolution forecasts in the short-range (forecast lengths less
than 24 hours). Figure 11 demonstrates that some mem-
bers of the CP ensembles (see for instance MNH-ENS
and MOL-ENS in panel (d)) provide QPF maxima that
approach or exceed the maximum observed rainfall value
during the GE case. This is consistent with what is shown
in Figure 12 (panels (d), (e) and (f)), which confirms (Buzzi
et al. 2014) that correctly predicting the position of the con-
vergence line over the Ligurian Sea is crucial for generating
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a rainfall band carrying a large amount of precipitation over
the same area.

Figure 13 shows that the MOLOCH model is the fastest
while Meso-NH is the slowest, but Figure 14 demonstrates
that the number of grid points per core 𝑁𝑥,𝑦 influences the
scalability of the three CP models. This is not a new assess-
ment; our result agrees well with previously published pa-
pers regarding the WRF model. Kruse et al. (2013) found
that the WRF model scales approximately linearly through
' 650 grid points assigned to each core. Furthermore, the
authors concluded that when 𝑁𝑥,𝑦 is further reduced, the
time required to perform the calculations on the perimeter
of each patch overwhelms the computational time. For the
Meso-NH and MOLOCH models, we found that the gain
in elapsed wall-clock time is limited when using 576 cores
or more; this occurs when the number of horizontal grid
points per core 𝑁𝑥,𝑦 is less than 105 (547) for the Meso-
NH (MOLOCH) model. To the author’s knowledge, this
an unprecedented assessment regarding these two models.
However, we acknowledge that there is no abrupt shift from
the strong scaling regime to the weaker regime. The above
thresholds can be better defined by smoothly increasing the
number of computing elements (instead of doubling it).

When investigating different model simulations for the
same weather event, it is not straightforward to assess
which model provides more reliable information on the
basis of both the performance (shown in Figures 8 and 9)
and the computational speed (shown in Figures 13 and 14).
In general, the optimal trade-off between these two terms
depends on the end-user requirements. If a large number of
cores is available, then the model outputs that, on average,
provide the more accurate data should be further analyzed.
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On the other hand, if the rapid availability of forecasts is
crucial for taking the most appropriate action to save lives,
properties or for feeding models downstream, then the out-
puts of the faster model should be examined (provided that
its performance is sufficiently fair based on some mini-
mum requirements, i.e., ROC area > 0.5). In Figure 15 we
showed the results on the 𝐿𝐼𝑆𝑃 index obtained by setting
𝜅 = 1/9, which means that the weights of the performance
and speed in equation 2 are 0.9 and 0.1, respectively. As
regards the CT case (panel (a)), data demonstrate that look-
ing at the MOL-ENS predictions should be preferred for
all the precipitation thresholds more than 120 mm. On the
other hand, for the precipitation thresholds in the interval
[50-120] mm, MNH-ENS provide the more reliable infor-
mation. As regards the GE case (panel (b)), data show
that for precipitation thresholds greater than 120 mm the
WRF-ENS ensemble are the more accurate, owing to the
better localization of QPF maxima, and they are also the
more reliable taking into account the time to realize the
predictions. However, we stress the fact that the analysis
based on the novel 𝐿𝐼𝑆𝑃 index is strongly influenced by
the simulation speed of the MOL-ENS system, which is
much higher than that of the other two systems. In fact,
the simulation speed of MOL-ENS is, on average, approx-
imately 2.3 and 5.3 times faster than the WRF-ENS and
MNH-ENS speeds, respectively. On the other hand, the
performances of the three CP ensembles are close to each
other, since they amplify the forecasting capability of the
global predictions. If we set 𝜅 = 1/4, that is the weights
of the performance and speed are 0.8 and 0.2 respectively,
the MOL-ENS ensemble turns out the more reliable in
both cases and for all the precipitation thresholds (maps
not shown).

We note that the experimental setup is not the same
across the three CP models (see the settings reported in Ta-
ble 1), which may impact both the model performance and
the simulation speed. These experimental setups represent
the trade-off between the limited computational resources
available and the settings on the horizontal resolution and
the extent of the integration domain. To draw meaningful
assessments, the horizontal resolution has to be compara-
ble with that of the state-of-the-art regional CP ensembles
(see the references cited in Section 1) and high enough
to partially resolve convective processes. The integration
domain has to cover all of Italy to estimate the computa-
tional effort needed to deploy a CP ensemble system at the
national level. Furthermore, we have to take into account
the constraint on the time step, which has to satisfy the
numerical stability criterion, and this constraint is not the
same across the three CP models. These considerations led
to the choices summarized in Table 1. We claim that the
difference between the WRF grid spacing (3 km) and the
Meso-NH and MOLOCH grid spacing (2.5 km) does not
remarkably impact the model performance. In fact, as out-
lined in Buzzi et al. (2014), relevant improvements in the
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Fig. 15. Joint evaluation of the performance and simulation speed of
the CP ensembles based on the 𝐿𝐼𝑆𝑃 index (the higher the better) de-
fined in equation 2. Panel (a): CT case, MNH-ENS (red line) evaluated
against MOL-ENS (orange line). Panel (b): GE case, WRF-ENS (blue
line) evaluated against MOL-ENS (orange line).

MOLOCH model accuracy are achieved only when the grid
spacing is increased to 1.5 km. On the other hand, we un-
derline how the use of a larger domain would be beneficial
for the predictions based on the Meso-NH model (Davo-
lio et al. 2020). Because of the small time step needed
to guarantee numerical stability, the Meso-NH domain is
the smallest one and we speculate that the results presented
here most likely underestimate the potential accuracy of the
MNH-ENS forecasts. Future developments will evaluate
the performance of the three CP models in simulating the
heavy precipitating event that affected Genoa’s town cen-
ter on the 9th of October 2014. For this event, Fiori et al.
(2017) concluded that meso-𝛾 processes played a crucial
role in triggering the convection over the sea in front of the
city. Small scale uncertainties grew into upscale uncer-
tainties and contaminated the whole domain (Hohenegger
and Schär 2007). For this case, the simple dynamical
downscaling appears inappropriate and different strategies
should be adopted to start the CP ensembles.
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study are accessible through the Meteorological Archival
and Retrieval System (MARS) of ECMWF with experi-
ment IDs: gmm2 (CT case), b09s and b09y (GE case).

WRF-ENS, MNH-ENS and MOL-ENS data are avail-
able on Zenodo: http://doi.org/10.5281/zenodo.3895551
(CT case), http://doi.org/10.5281/zenodo.3895561 (GE
case).
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