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Abstract 

Processes occurring at the land surface impact weather and climate variability. We propose that constraining 

land-atmosphere exchanges using Earth Observations (EO) will enhance current weather forecasts skill of 

near-surface fields, such as temperature, and improve the realism of present day climate models leading the 

way to increase climate change projections reliability. The project will focus on three main components: (i) 

development of key processes in the land surface model HTESSEL (ii) use of EO data to constrain model 

parameters, and (iii) weather forecasts and climate simulations. The weather forecasts tests will be performed 

with the ECMWF IFS and the climate simulations with the EC-EARTH model.  

Motivation 

Land surface is an important component of the Earth System (ES) and, consequently, of numerical weather 

prediction (NWP) and climate models. It controls the partitioning of available energy at the surface between 

sensible and latent heat, the partitioning of available water between evaporation and runoff, and carbon 

exchanges. There is increasing evidence of land surface’s impact on climate (Alkama and Cescatti 2016), with 

changes in the land surface influencing regional-to global-scale climate from hours to millennia. The role of 

land surface in the ES has been investigated through observation-based studies (e.g. Teuling et al. 2017) and 

modelling studies (e.g. Dutra et al. 2012 ; Prodhomme et al. 2016). While observations provide the fundamental 

basis to understand the different processes and feedbacks, these need to be complemented by modelling studies 

that allow weather forecasts and climate simulations. Both lines of work are needed to advance our 

understanding of the role of the land surface in the ES and the computational resources requested in this project 

are essential to test the developments.  

Feedback processes between surface and atmosphere are of major importance for the ES. The increased 

variability of summer temperatures in Europe (Schar et al. 2004) is mainly due to feedbacks between the land 

surface and the atmosphere (Seneviratne et al. 2006). On shorter time-scales, the land surface and its initial 

conditions are a source of sub-seasonal to seasonal predictability (e.g. Paolino et al. 2012; Prodhomme et al. 

2016) and NWP skill (de Rosnay et al. 2004). However, current climate models revealed limitations in 

representing the recent hot summer of 2010 (Barriopedro et al. 2011). 

Despite the relevance of land surface in the ES, there is a large-uncertainty arising from the representation of 

land-atmosphere exchanges of water, energy and carbon. This stems from the turbulent nature of these 

exchanges, spatial heterogeneity and temporal variability of the land-surface, which are difficult to observe 

(Coenders-Gerrits et al. 2014) and differ among models (Schellekens et al. 2016). These processes are 

represented in weather and climate models via conceptual models, i.e. parameterizations. These are strongly 

dependent on parameters, either observed or effective, which tend to be poorly constrained. Although there 

has been a steady improvement in land surface models (Pitman 2003), current state-of-the-art surface models 

still struggle to represent turbulent exchanges (Best et al. 2015), with implications in simulating extremes, such 

as drought frequency (Ukkola et al. 2016) or heatwaves (Kala et al. 2016). 

The emergence of Earth Observations (EO) in the last two decades has enhanced our understanding of land 

surface dynamics (e.g. Künzer et al. 2015). EO data can help closing the gap between in-situ point observations 

and the grid-cell size models (from 1 to 100km), as well as to provide unique spatial sampling. The land surface 

temperature (LST) is a prime example: it can be estimated from polar and geostationary satellites with a high 

temporal and spatial frequency (Trigo et al. 2011). Moreover, LST is a key variable for land surface, as it 

controls the longwave emission and the turbulent exchanges of water and energy.  However, in current models, 

LST shows large discrepancies with EO data (e.g. Trigo et al. 2015 ; Wang et al. 2014). These can be associated 

with numerous issues, such as deficient surface parameters or model formulations (e.g. Beljaars et al. 2017). 

One area requiring attention is the uncertainty analysis: it is fundamental in environmental sciences, as it allows 

modelers and, ultimately, end users to identify uncertainties in model structures, drivers and prior estimates of 

parameters (Pappenberger; Beven 2006). Model uncertainty also provides guidance on processes and 
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parameterizations which could be enhanced via parameter optimization, fundamental to explore the potential 

of EO data for model constraint. There are recent examples of land surface model calibrations applied to NWP 

(e.g Jr. et al. 2013; Orth et al. 2016; Orth et al. 2017). These works showed the potential to constrain the models 

using in-situ and EO data. However, the use of EO LST has not been fully explored in an integrated dual 

parameter-state data assimilation framework (Evensen 2009 ; Moradkhani et al. 2005) nor has there been a 

seamless approach integrating such advances in weather forecasts and climate modeling. 

Considering the significant computations requirements to perform NWP and climate simulations, the 

computational resources requested in this project are fundamental to assess the current models deficiencies in 

terms of LST representation and testing of the model developments in both NWP and climate mode.   

Workplan  

The work will be organized in 3 main tasks to evaluate the current state of the models and their evolution in 

terms of weather forecast and climate using EO data and conventional observations. Evaluation will include 

the model developments and constrain to assess the added value of the use of EO data in constraining land-

atmosphere exchanges and their impact on the model climate and weather forecasts skill. 

Task 1. In this first task land-only (stand-alone or offline) simulations with the ECMWF land surface model 

HTESSEL will be carried out to test several developments including: (i) increased vertical resolution of the 

soil and (ii) new soil moisture root zone extraction based on a bulk root zone depth. This will be performed on 

a regional-scale at high resolution (initially over selected regions, e.g Iberia at about 5 km) to be compared 

with the LST from LandSAF.  Further developments and testing will include a careful model parameters 

uncertainty estimation and optimization.  

Task 2. In this second task, the development in task 1 will be tested in the full ECMWF IFS. These will include 

long simulations (at least 1 annual cycle) with nudged atmosphere above the boundary layer and medium-

range weather forecast focusing on transition seasons.  

Task 3. This last task will focus on climate simulations using the EC-EARTH model. Several multi-decadal 

simulations will be carried out with prescribed SST’s and sea-ice to assess the impact of the model 

developments in terms of current climate variability. In a second phase, future scenarios also with prescribed 

SST and sea-ice will be carried out to evaluate the impact of the model changes in terms of climate change 

projections.  

This work will benefit from a close interaction with researchers at ECMWF in the coupled process team, the 

EC-EARTH consortium and the Portuguese weather Service IPMA.  

Resources  

The resources are based on the following estimates:  

• Stand-alone simulations: T255, 35 years: approximately 3.000 SBU and 50 GB storage. These 

simulations are computationally cheap, but require some storage. 10 to 20 simulations are envisaged 

each year.  

• Atmosphere nudging: T255, 137 levels, 1 year: approximately 30.000 SBU and 200 GB data. Up to 

10 simulations are envisaged each year with a cost of about 300.000 SBU and 2TB of data.  

• Atmospheric medium-range weather forecasts: TCo399 30 days: 140.000 SBU and 100 GB. Up to 6 

months of simulations are envisaged year with a coast of about 840.000 SBU and 600 GB of data.  

• Climate simulations: T255, 90 levels with 1 year: approximately 20.000 SBU and 40 GB data. Up to 

100 years simulations are envisaged each year with a coast of about 2.000.000 SBU and 4TB of data.  

Not all simulations and configurations will be carried out each year, and the requested SUB of 2.500.000 per 

year will cover most of the required computational resources in each year. The storage will be managed to 

only keep important simulations while temporary testing and extra output will be removed after the analysis.  
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