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Summary of project objectives  
(10 lines max) 
 
The overarching goal of this project is to come to a better understanding of cloud-climate feedbacks, 
leading to reduced uncertainty in climate sensitivity estimates. To achieve this, we pursue a 
computational strategy of developing 3-dimensional superparameterization (3dSP) by embedding 3-d 
convection-resolving Large Eddy Simulation (LES) models in each grid column of a global model 
(OpenIFS). The LES models are embedded as a two-way nesting (or two-way coupling): the global 
model column state drives the LES model, and the LES feeds back to the global model. The nested 
LES models replace traditional convection parameterization schemes in the global model columns. 
We work with DALES, the Dutch Large Eddy Simulation model, as the convection-resolving LES. 
Because superparameterization with fully 3-d LES models is computationally very expensive, we 
develop the model coupling in such a way that it can be applied regionally, i.e. to user-selected model 
columns of OpenIFS. The computer resources of this special project are intended for performing 
simulations with the coupled (OpenIFS-DALES) 3dSP model. 
 

Summary of problems encountered 
(If you encountered any problems of a more technical nature, please describe them here.) 
 
In 2017 we found out that AMUSE does not work well with the Cray MPI which is installed on the 
ECMWF Cray, the reason being that when AMUSE spawns worker processes it launches them using 
MPI_Comm_spawn(), which the Cray MPI does not support. We solved this problem with a 
workaround where all workers are launched at the start of the simulation in a regular MPI job, after 
which the appropriate MPI communicators are created. This works for us, since we know ahead of 
time how many workers are needed for a particular simulation. Supposedly new versions of the Cray 
MPI will include MPI_Comm_spawn(). We are still using the work-around with pre-launched worker 
codes. 
 

Experience with the Special Project framework  
(Please let us know about your experience with administrative aspects like the application procedure, 
progress reporting etc.) 
 
We found the administrative aspects of the Special Project framework fairly straightforward to handle 
and not too demanding. For progress reports, we especially appreciate the possibility to present results 
through a short summary appended with an existing scientific report, this allows to convey detailed 
information about scientific results but saves time preparing the progress report. 
 
We appreciate the support from ECMWF in using OpenIFS and in obtaining initial states for the 
model (mainly by Glenn Carver), and the technical support by the helpdesk for using the HPC 
equipment. 
 

Summary of results  
(This section should comprise up to 10 pages, reflecting the complexity and duration of the project, and can 
be replaced by a short summary plus an existing scientific report on the project.)  
 
Our article describing the regional superparameterization set-up and initial results appeared in 2019 
in Journal of Advances in Modeling Earth Systems (see https://doi.org/10.1029/2018MS001600). 
One figure of our article was chosen as cover illustration of the journal issue; moreover, the article 
was highlighted as “Research Spotlight” in Eos (see https://doi.org/10.1029/2019EO132121). The 
preprint version of this paper was already attached to the progress report that we submitted in June 
2019. The published article is available via  https://doi.org/10.1029/2018MS001600 (fully Open 
Access). For completeness, the abstract is quoted once more below: 
 

https://doi.org/10.1029/2018MS001600
https://doi.org/10.1029/2019EO132121
https://doi.org/10.1029/2018MS001600


 

 

 

“As a computationally attractive alternative for global large eddy simulations (LESs), we 
investigate the possibility of using comprehensive three‐dimensional LESs as a 
superparameterization that can replace all traditional parameterizations of atmospheric processes 
that are currently used in global models. We present the technical design for a replacement of the 
parameterization for clouds, convection, and turbulence of the global atmospheric model of the 
European Centre for Medium‐Range Weather Forecasts by the Dutch Atmospheric Large Eddy 
Simulation model. The model coupling consists of bidirectional data exchange between the global 
model and the high‐resolution LES models embedded within the columns of the global model. Our 
setup allows for selective superparameterization, that is, for applying superparameterization in 
local regions selected by the user, while keeping the standard parameterization of the global model 
intact outside this region. Computationally, this setup can result in major geographic load 
imbalance, because of the large difference in computational load between superparameterized and 
nonsuperparameterized model columns. To resolve this issue, we use a modular design where the 
local and global models are kept as distinct model codes and organize the model coupling such that 
all the local models run in parallel, separate from the global model. First simulation results, 
employing this design, demonstrate the potential of our approach”. [Jansson et al., 2019] 
 
Furthermore, the Python interface that we developed for the DALES model to couple it to OpenIFS 
is described separately in more detail in a paper currently under review [Van den Oord et al., A 
Python interface to the Dutch Atmospheric Large-Eddy Simulation, 2020]. We append a preprint of 
the paper at the end of this report, and quote the abstract below: 
 
“We present a Python interface for the Dutch Atmospheric Large Eddy Simulation (DALES), an 
existing Fortran code for high-resolution, turbulence-resolving simulation of atmospheric physics.   
The interface is  based  on  an infrastructure for remote and parallel function calls and makes it 
possible to use and control the DALES weather simulations from a Python context.  The interface is 
designed within the OMUSE framework, and allows the user to set up and control the simulation, 
apply perturbations and forcings, collect and analyze data in real time without exposing the user to 
the details of set-ting up and running the parallel Fortran DALES code.  Another significant 
possibility is coupling the DALES simulation to other models, for example larger scale numerical 
weather prediction (NWP) models that can supply realistic lateral boundary conditions.  Finally, 
the Python interface to DALES can serve as an educational tool for exploring weather dynamics, 
which we demonstrate with an example Jupyter notebook”. [Van den Oord et al., 2020-a] 
 
We investigated the computational performance of the coupled OpenIFS-DALES model in another 
paper [Van den Oord et al., 2020-b], also under review. Because of the review procedure rules we 
cannot append the preprint to the report at this point (however we will make it available once the 
review procedure is completed). The abstract for the paper is: 
 
“We describe performance modeling and optimization efforts of (regional) superparametrization of 
the ECMWF weather model OpenIFS  by cloud-resolving, three-dimensional large-eddy 
simulations. This setup contains a two-way coupling between a global meteorological model that 
resolves large-scale dynamics on the global scale, with many local instances of the Dutch 
Atmospheric Large Eddy Simulation (DALES) \resolving cloud and boundary layer physics. The 
two MPI-parallel Fortran codes interact through a Python interface layer within the OMUSE 
framework. We study the performance and scaling behavior of the LES models and the coupling 
code and present our implemented optimizations. We mimic the observed load imbalance with a 
simple performance model and present strategies to improve hardware utilization in order to assess 
the feasibility of a world-covering superparametrization”. [Van den Oord et al., 2020-b] 



 

 

 

Finally, from our simulations and experiments with the OpenIFS-DALES coupled model we found 
that there is a fundamental and important challenge of how to advect clouds and small-scale 
variability into (and out of) superparameterized model columns. We completed our investigation, 
including numerical simulations, of this issue and are now in the process of writing a journal 
publication on it, to be submitted within ca 2 months. 
 
The (preliminary) abstract for this paper in preparation is: 
“In atmospheric modeling, superparameterization has gained popularity as a technique to improve 
the cloud and convection parameterizations of global atmospheric models, by coupling them to local, 
cloud-resolving models. We show how the different representations of cloud water at the local and the 
global models in superparameterization leads to a suppression of cloud advection in the large-scale 
model. This phenomenon is demonstrated in a regional superparameterization experiment with the 
global model OpenIFS coupled to the local model DALES (the Dutch Atmospheric Large Eddy 
Simulation), and in an idealized setup, where the large-scale model is replaced by a simple advection 
scheme. To mitigate the problem of cloud advection, we propose a scheme where the spatial 
variability of the local model's total water content is nudged in order to achieve the correct cloud 
condensate amount”. [Jansson et al., in preparation, 2020]. 
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Future plans  
(Please let us know of any imminent plans regarding a continuation of this research activity, in particular if 
they are linked to another/new Special Project.) 
 
The superparameterization framework developed within this special project will be used for 
simulations of the EUREC4A campaign. A special project request “Mesoscale Organisation of 
Shallow Cumulus Convection” including this research topic will be submitted in June 2020 by P. 
Siebesma et al.  
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Abstract

We present a Python interface for the Dutch Atmospheric Large Eddy Sim-
ulation (DALES), an existing Fortran code for high-resolution, turbulence-
resolving simulation of atmospheric physics. The interface is based on an
infrastructure for remote and parallel function calls and makes it possible to
use and control the DALES weather simulations from a Python context. The
interface is designed within the OMUSE framework, and allows the user to
set up and control the simulation, apply perturbations and forcings, collect
and analyze data in real time without exposing the user to the details of set-
ting up and running the parallel Fortran DALES code. Another significant
possibility is coupling the DALES simulation to other models, for example
larger scale numerical weather prediction (NWP) models that can supply re-
alistic lateral boundary conditions. Finally, the Python interface to DALES
can serve as an educational tool for exploring weather dynamics, which we
demonstrate with an example Jupyter notebook.

Keywords: Large-eddy simulation, Atmospheric sciences

1. Motivation and significance1

Since the advent of numerical weather prediction, many computational2

models have emerged within the realm of atmospheric sciences. This has re-3
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sulted in a broad landscape of models, each of them based on approximations4

and assumptions that are tailored to a typical resolved scale to keep the com-5

putational cost within limits. Where general circulation models reproduce6

large-scale dynamics within resolutions of 10 to 100 km, a large-eddy simu-7

lation (LES) is aimed at resolving convective cloud processes and turbulence8

in the atmosphere, for which a resolution of the order of tens of metres is9

required; these models therefore typically also assume a limited area domain10

and vertical extent. The interaction of the small-scale LES with the large11

scale dynamics has to be provided from an external source, often by specify-12

ing forcing profiles for the prognostic variables and boundary conditions at13

the surface. In practice, these parameters have to be present in files that are14

being read during the simulation.15

Our Python interface to the Dutch Atmospheric Large Eddy Simulation16

(DALES) [1] enables applying these external forcings and boundary condi-17

tions in a programmatic way, so that the model can be manipulated during18

its time stepping. Together with the interface for retrieving the state of the19

model, this makes it possible to couple DALES to an external agent. One20

such proven use case [2], and our initial reason for constructing the Python21

interface to DALES, is the so-called superparameterization [3] of the global22

model OpenIFS [4]. In this scheme, multiple high-resolution DALES in-23

stances are coupled to grid columns of OpenIFS, and are used to explicitly24

simulate cloud and convection processes which are otherwise parametrized25

in the global model.26

However, the applications we envision for the interface layer are much27

broader than this, since the Python interface to DALES is potentially useful28

in any application that aims to either (i) drive one or more DALES models29

with time-dependent forcings where one has full control over the time interpo-30

lation without the need to write long and tedious input text files for DALES,31

(ii) couple DALES instances to other models (with Python interfaces) or32

(iii) extract specialized diagnostics from DALES, without time-consuming33

post-processing or modifying the source code.34

Finally, we point out that our Python interface to DALES provides an35

interactive experience which is valuable for educational and exploratory uses36

of DALES for weather simulations. The software, although being an MPI-37

parallel Fortran code, can be run from within a user-friendly Python note-38

book environment thanks to the underlying OMUSE framework [5, 6, 7]39

which provides communication between the Python interface and the compu-40

tational DALES code. The Python-wrapped DALES model is thus exposed41

as a stateful, single-threaded Python object and access to its state is seamless42

despite the distribution of the state over multiple processors. We do stress43

however that our software does not expose the physical processes and partial44

2



tendencies of DALES as separate Python ’building blocks’ such as one finds45

in [8, 9]; rather we provide a lightweight wrapper around the entire model,46

which perhaps in a future effort may be decomposed at the process level.47

2. Software description48

2.1. The DALES model49

DALES simulates the atmosphere on scales fine enough to resolve cloud50

and turbulence processes. It does so by numerically solving the conserva-51

tion laws of momentum, mass, heat and humidity on a rectilinear three-52

dimensional grid assuming periodic boundary conditions along the horizontal53

axes, and uses a Fast Fourier Transform to solve the air pressure fluctuations54

from the Poisson equation. DALES uses second or higher order central differ-55

ence schemes to model advection and models the subgrid-scale stresses and56

residuals with eddy viscosities, which are computed either from the turbu-57

lence kinetic energy or with a Smagorinsky closure (see e.g. [10]). DALES58

accounts for all relevant physical processes needed for realistic simulations59

of cloudy atmospheric conditions, such as thermodynamics, microphysics,60

radiation and surface-atmosphere interactions.61

The program applies an adaptive third-order Runge–Kutta scheme for62

time stepping. The code is parallelized using the message passing interface63

(MPI) where the domain is partitioned in either vertical slabs or rectangular64

columns. DALES also can be forced externally by nudging its mean state65

towards profiles obtained from observations or another large-scale model.66

The Fortran code of DALES is structured in a straightforward and com-67

prehensive way, where all fields are stored globally in a dedicated module68

and the top-level time stepping loop consists of a sequence of physics rou-69

tines modelling the processes described above. This makes the code suitable70

to expose as a simple library with initialization, time stepping, and data71

access routines.72

2.2. Software Architecture73

Our Python interface to DALES is built using the Python framework74

OMUSE. It represents DALES with a Python class named Dales, enabling75

interaction with a user or with other Python wrapped models. The interface76

and the structure of its connections is illustrated in Figure 1, with the highest-77

level class Dales shown in pink.78

OMUSE enables remote procedure calls in Python to programs written79

in Fortran or C (or any other language with MPI or sockets bindings). The80
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Figure 1: Overview of the DALES Python interface. The classes Dales and
DalesInterface define the Python interface. Through OMUSE, these call the Fortran
functions in dales interface. The dales interface module and the DALES source
code are compiled together into a binary called dales worker, denoted by the green lines.
Multiple dales worker processes can be launched for a parallel simulation, where each
process itself can be (MPI and/or OpenMP) parallel. Here three are shown.
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OMUSE framework also provides a number of services to make the deploy-81

ment of the code as convenient as possible, such as automatic unit conver-82

sions, encapsulation of models in object-oriented data objects, an internal83

state model for wrapped components and proper error handling. These fea-84

tures are all implemented in the Python layer between user code and the85

model program, and it is up to the developer of a wrapped component to86

properly configure his Python class to use such services1. The OMUSE pack-87

age contains a collection of predefined Python interfaces to various oceano-88

graphic and atmospheric models, giving them consistent interfaces which89

enables coupling them together or comparing them with each other. The90

software we present in this paper adds atmospheric modelling to the reper-91

toire of OMUSE, and is now part of the official OMUSE distribution.92

The Python definitions of the remote DALES functions are gathered in a93

Python class named DalesInterface. Together with the higher-level func-94

tions in the class Dales, these form our Python interface to DALES. The95

interface functions in the class DalesInterface each have a Fortran coun-96

terpart in the module dales interface. These functions call the DALES97

original source code routines to handle initialization, getting and setting vari-98

able values, and time stepping.99

Also the DALES code itself required an additional set of routines in order100

to be interfaced from Python. The original DALES model was written as101

a stand-alone program, which performs a simulation according to settings102

read from a configuration file. To instead control DALES programmati-103

cally, we added the possibility to address DALES as a library, with functions104

for initialization, time stepping, retrieving prognostic fields, applying exter-105

nal forcings etc. This functionality is gathered in the new Fortran module106

daleslib.f90, which is included within the DALES source code package.107

This library version of DALES can also be used independently of OMUSE108

or Python interfaces, since its functions can be called directly from Fortran.109

The second modification that has been made is the option to pass an MPI110

communicator handle to the DALES MPI initialization routine; this is nec-111

essary for the integration in OMUSE where the MPI COMM WORLD is reserved112

for communication with the master script and models internally use sub-113

communicators.114

When compiling, the DALES source code, the Fortran part of the OMUSE115

interface and communication functions generated by the OMUSE frame-116

work are combined to form a binary called dales worker. When a new117

1For example, by assigning the correct units of DALES data in the OMUSE wrapper,
we allow the framework to automatically convert fields to units requested by the user code.
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Dales object is created in Python, OMUSE launches the requested number118

of dales worker processes by making use of MPI COMM SPAWN. The worker119

processes consist of an event loop polling for instructions from the user code.120

The function calls on the Dales object in Python are serialized by OMUSE121

over MPI, and mapped to Fortran routine calls in the remote worker pro-122

cesses. These function calls are used to get and set variable values and to123

time step the model.124

As a consequence of how OMUSE is structured, the Python process does125

not operate in the same memory space as DALES. This feature has the126

advantage that multiple independent instances of DALES can be run simul-127

taneously, even though the DALES internal state is stored as a set of global128

arrays. Furthermore, model instances or model subdomains can run on a dif-129

ferent cluster nodes in an HPC environment, communicating over MPI. An130

obvious drawback is that all data requested through the Python interface131

will pass through the communication channel, impacting performance if the132

full 3D grid of data is frequently requested.133

In many cases, for example in the superparameterization setup mentioned134

above, the model coupling is formulated in terms of horizontal averages. For135

this purpose, the interface provides dedicated functions to request horizon-136

tally averaged quantities, resulting in reduced communication volumes com-137

pared to averaging the fields on the Python side.138

Another performance optimization is provided by the OMUSE frame-139

work in the form of non-blocking (asynchronous) versions of the function140

calls, including the data transfer methods. These can be used to circumvent141

the Python global interpreter lock and for example to let several model in-142

stances time step concurrently (see Appendix B) or exchange data with one143

model instance while another is performing computations. This feature is144

essential to obtain a good performance in algorithms running e.g. ensembles145

of expensive models or to mitigate the costs of data transfers to the master146

script in multi-model setups.147

2.3. Software Functionalities148

Running a DALES atmospheric simulation using our Python interface149

involves setting up the model, evolving it over time, and reading or writing150

the current state of the simulation.151

After creating the top-level Dales Python object, the user can set model152

resolution, physical time-independent parameters and initial profiles as at-153

tributes to the Dales object. The names and the grouping of the time-154

independent model parameters follows the structure of the DALES configu-155

ration Fortran namelist [11].156
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The input and output variables in the Dales Python object are organized157

in grids, grouping them according to their role in the model and number of158

dimensions (see table A.2).159

The Dales Python object guides the user to call its methods in a sequence160

that makes physical sense. For example, it is necessary to define the vertical161

discretization before any vertical forcing profiles can be imposed, and it is162

also forbidden to change static properties such as the advection scheme after163

the model has started time-stepping.164

To minimize installation effort, we have created a Singularity [12] recipe165

for a CentOS-based container with DALES, OMUSE and Jupyter [13]. This166

recipe allows anyone with Singularity installed to run DALES interactively167

from a Jupyter notebook.168

3. Example: DALES simulation of a warm air bubble169

As an example of using the Python interface to DALES, we show how to170

set up and run a simple bubble experiment. In the experiment, the devel-171

opment of a bubble of warm air is studied over time. The resulting image172

sequence is shown in Figure 2, where the warmer air is initialized as a sphere173

near the ground, and then rises upwards with a mushroom-cloud-like appear-174

ance.175

import numpy176

import matplotlib.pyplot as plt177

from omuse.community.dales.interface import Dales178

from omuse.units import units179

180

# create Dales object181

d=Dales(workdir=’daleswork’, channel_type=’sockets’, number_of_workers=1)182

# add redirection=’none’ to see the model log messages183

184

# Set parameters: domain size and resolution, advection scheme185

d.parameters_DOMAIN.itot = 32 # number of grid cells in x186

d.parameters_DOMAIN.jtot = 32 # number of grid cells in y187

d.parameters_DOMAIN.xsize = 6400 | units.m188

d.parameters_DOMAIN.ysize = 6400 | units.m189

d.parameters_DYNAMICS.iadv_mom = 6 # 6th order advection for momentum190

d.parameters_DYNAMICS.iadv_thl = 5 # 5th order advection for temperature191

d.parameters_RUN.krand = 0 # initial state randomization off192

193

d.parameters_RUN.ladaptive = True194

7



0 min 4 min 8 min

12 min 16 min 20 min

24 min 28 min 32 min

36 min 40 min

2 km

4 km

ground level

te
m

pe
ra

tu
re

low

high

Figure 2: Warm bubble experiment: vertical cross sections of the air temperature. The
initial perturbation is a spherically symmetric shape at ground level. The time series
shows the warm air rising, and forming vortices familiar from mushroom clouds as the rise
is faster in the middle of the column. This simulation, which takes less than a minute, is
performed with the Python script shown in the text. The temperature shown is the liquid
water potential temperature - which is the temperature quantity DALES uses internally.
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d.parameters_RUN.courant = 0.5195

d.parameters_RUN.peclet = 0.1196

197

d.parameters_PHYSICS.lcoriol = False198

d.parameters_PHYSICS.igrw_damp = 3199

200

# initialize all velocities to 0 and a low spec. humidity201

d.fields[:,:,:].U = 0 | units.m / units.s202

d.fields[:,:,:].V = 0 | units.m / units.s203

d.fields[:,:,:].W = 0 | units.m / units.s204

d.fields[:,:,:].QT = 0.001 | units.kg / units.kg205

206

# add perturbation in temperature - Gaussian bubble at (cx,cy,cz), radius r207

cx,cy,cz,r = 3200|units.m, 3200|units.m, 500|units.m, 500|units.m208

d.fields[:,:,:].THL += (0.5 | units.K) * numpy.exp(209

-((d.fields.x-cx)**2 + (d.fields.y-cy)**2 + (d.fields.z-cz)**2)/(2*r**2))210

211

times = numpy.linspace(0, 44, 12) | units.minute # times for snapshots212

fig, axes = plt.subplots(3, 4, sharex=True, sharey=True)213

extent = (0, d.fields.y[0,-1,0].value_in(units.m),214

0, d.fields.z[0,0,-1].value_in(units.m))215

for t,ax in zip(times, axes.flatten()):216

print(’Evolving to’, t)217

d.evolve_model(t)218

thl = d.fields[:,:,:].THL219

wthl = d.fields[:,:,:].W * thl220

kwtmax = numpy.unravel_index(numpy.argmax(numpy.abs(wthl)), wthl.shape)[2]221

zwtmax = d.profiles.z[kwtmax]222

print("Height of the maximal heat flux is at", zwtmax)223

im = ax.imshow(thl[16,:,:].value_in(units.K).transpose(), extent=extent,224

origin=’bottom’, vmin=292.5, vmax=292.75)225

ax.text(.1, .1, str(t.in_(units.minute)),226

color=’w’, transform=ax.transAxes)227

plt.show()228

4. Impact229

As the Python language has become the dominant scripting language in230

scientific computing and data analysis, running experiments and accessing231

the model state from within Python will prove to be a valuable asset to users232

of high-resolution weather models, in the present case, users of the DALES233
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software specifically. Our Python interface supports procedures like setting234

up a high-resolution weather simulation, as well as nudging it in real time235

towards observed atmospheric profiles.236

Usually these profiles originate from observations or large-scale weather237

model output, and using the Python interface saves the user from the tedious238

job of writing the DALES input files in the appropriate format. In this sense,239

the Python interface enables experimentation and rapid prototyping with the240

model.241

The Python interface also provides a front-end to DALES that is suit-242

able for educational purposes. The possibility to manipulate DALES inter-243

actively within a Jupyter notebook helps students gain insight in topics like244

the thermodynamics of clouds, atmospheric convection, surface processes and245

boundary layer turbulence.246

The most significant added value of a library interface, however, is in cou-247

pling with other models. By encapsulating DALES in the OMUSE frame-248

work, there is a clear path to integration with other environmental soft-249

ware. One example of this is the superparameterization of the global weather250

and climate model OpenIFS, mentioned in Section 1, where multiple high-251

resolution DALES instances are coupled to grid columns of the global model.252

The advantage of the coupling strategy of OMUSE versus more implicit253

and less intrusive approaches like OASIS [14] is the expressive nature of the254

control script setup. The equations governing the coupling and time inte-255

gration scheme can be easily read and modified in the Python code because256

the objects contain recognizable methods, and the data transfers occur via257

NumPy [15] arrays with familiar names, as opposed to more generic frame-258

works like the model coupling toolkit of Ref. [16].259

As the interface enables one to extract tailored diagnostics from DALES,260

it may be used to offer high-resolution atmospheric boundary conditions to261

other environmental models. For example, the precipitation fluxes in DALES262

can be coupled to fine-scale hydrological models for flood risk assessment263

in future climate scenarios. The DALES surface fields and fluxes can also264

be coupled to advanced surface dynamics models to study realistic surface–265

cloud feedback processes, and the momentum fluxes can be coupled to wind266

stresses in coastal hydrodynamics models. Furthermore, the passive tracers267

in DALES can be coupled to external atmospheric chemistry or air quality268

models, without the need to integrate them into the DALES Fortran source269

code.270

Finally, the Python interface to DALES opens up the possibility to in-271

tegrate DALES into other complex workflows, such as downscaling external272

forcings and extracting dedicated diagnostics as needed in the forecasting of273

renewable energy yields, or the training of machine learning algorithms onto274

10



DALES output to construct fast surrogate models.275

5. Conclusions276

We have constructed Fortran and Python interfaces to the DALES pro-277

gram for interactive high-resolution weather modelling. The interface allows278

the user to retrieve data from DALES and manipulate the model dynami-279

cally from a scripting front-end. This functionality increases the usability of280

DALES significantly, and allows the code to be coupled to other earth sys-281

tem models. One such proven use case is the superparameterization of the282

global weather model OpenIFS, where multiple DALES instances are cou-283

pled to grid columns of the global weather model. Furthermore, the interface284

facilitates the use of the model for educational purposes, or in more complex285

workflows. The interface is object-oriented, contains familiar methods to ac-286

cess the model state, and allows creating multiple DALES instances, with287

full control over the occupation of the available hardware resources.288
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Nr. Code metadata description Please fill in this column
C1 Current code version 1.1

C2
Permanent link to

code/repository used for this
code version

https://github.com/omuse-
geoscience/omuse/tree/master/

src/omuse/community/dales
C3 Legal Code License Apache v2.0
C4 Code versioning system used git

C5
Software code languages, tools,

and services used

Fortran 90, Python 3,
Singularity, NetCDF4, NumPy,

mpi4py, AMUSE, OMUSE,
f90nml

C6
Compilation requirements,
operating environments &

dependencies

Linux, MPI, gcc-gfortran, make,
cmake, python3-wheel

C7
If available Link to developer

documentation/manual
https://omuse.readthedocs.io/en/

latest/
C8 Support email for questions g.vandenoord@esciencecenter.nl

Table 1: Code metadata

Required Metadata357

Current code version358

Appendix A. Table of model variables359

grid name description read/write variables

fields 3D prognostic vari-
ables

w u, v, w, θ`, qt

fields 3D general vari-
ables

r u, v, w, θ`, qt, q`,
qi, qr, qsat,

√
e ,

T , π, F ↑ , ↓S ,L, C↑ , ↓S ,L,
Fdir, Fdif

profiles horizontally aver-
aged fields

r 〈u〉xy, 〈v〉xy, 〈w〉xy,
〈θ`〉xy, 〈qt〉xy,
〈q`〉xy, 〈qr〉xy,
〈
√
e〉xy, 〈T 〉xy, p, ρ,

A
forcing profiles forcing profiles w 〈u〉xy, 〈v〉xy, 〈θ`〉xy,

〈qt〉xy
nudging profiles nudging profiles w 〈u〉xy, 〈v〉xy, 〈θ`〉xy,

〈qt〉xy
scalars uniform fields rw ps, 〈zm〉xy, 〈zh〉xy,

〈w θ〉xy, 〈w q〉xy
surface fields horizontal fields r lwp, twp, rwp, u∗,

zm, zh, Tskin, qskin,
Qs, Ql, Λ, w qt,
w θ`

Table A.2: Organization of data grids in the DALES Python API. The operator 〈. . .〉xy
denotes horizontal averaging of volume fields.
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symbol unit dimensions attribute variable description

u, v, w m/s xyz U, V, W east-, north- and
upward air velocity

θ` K xyz THL liquid water poten-
tial temperature

qt kg/kg xyz QT total specific hu-
midity√

e m/s xyz E12 turbulence kinetic
energy

T K xyz T air temperature

q`, qi, qr kg/kg xyz QL, QL ice, QR liquid, ice and rain
water content

lwp, twp, rwp kg/m2 xy LWP, TWP, RWP liquid, total and
rain water paths

qsat kg/kg xyz Qsat saturation humid-
ity

π m2/s2 xyz pi modified air pres-
sure

ρ kg/m2 z rho air density

p Pa z P hydrostatic air
pressure

A m2/m2 z A cloud fraction pro-
file

F ↑ , ↓S ,L W/m2 xyz r{s,l}w{u,d} up- and down-
welling short- and
longwave radiative
fluxes

C↑ , ↓S ,L W/m2 xyz r{s,l}w{u,d}cs clear-sky up- and
downwelling short-
and longwave ra-
diative fluxes

Fdir, Fdif W/m2 xyz rswdir, rswdif downwelling short-
wave direct and dif-
fuse radiative fluxes

Tskin K xy tskin skin temperature

qskin kg/kg xy qskin skin humidity

wθ` mK/s xy wt surface θ` flux

wqt m/s xy wq surface specific hu-
midity flux

Qs, Ql W/m2 xy H, LE sensible and latent
heat fluxes

Λ m xy obl Obukhov length

u∗ m/s xy ustar friction velocity

zm, zh m xy z0m, z0h roughness lengths
for momentum and
heat

Table A.3: List of DALES variables exposed in the Python wrapper.
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Appendix B. Asynchronous Requests to DALES Example360

In this section we illustrate the asynchronous requests functionality with361

a very basic example time stepping two DALES instances concurrently. To362

establish this, one should create a requests pool and call the ’asynchronous’363

versions of evolve model method.364

from amuse.rfi.async_request import AsyncRequestPool365

# In this code, we assume two instances of the Dales Python class,366

# dales1 and dales2, have been created and initialized367

pool = AsyncRequestsPool()368

nexttime = dales1.get_model_time() + 300 | units.s369

req1 = dales1.evolve_model.asynchronous(nexttime)370

pool.add_request(req1)371

req2 = dales2.evolve_model.asynchronous(nexttime)372

pool.add_request(req2)373

req3 = dales2.get_profile_THL.asynchronous()374

pool.add_request(req3)375

pool.waitall() # Wait until all asynchronous calls are finished376

thlprof = req3.result()377

In the code above, the θ` profile retrieval is executed asynchronously w.r.t.378

the master script too, but the pool ensures it is issued only after the evolve379

of dales2 has been finished.380

16


	spnlcrom_final_report_june2020.pdf
	SPECIAL PROJECT FINAL REPORT

	DALES_OMUSE_paper_revised

