REQUEST FOR A SPECIAL PROJECT 2013–2015

MEMBER STATE:	GERMANY
Principal Investigator ¹ :	Dr. Andreas Dörnbrack
Affiliation:	DLR Oberpfaffenhofen, Institut für Physik der Atmosphäre
Address:	Münchner Str. 20
	D – 82230 WESSLING
E-mail:	andreas.doernbrack@dlr.de
Other researchers:	Marc Rautenhaus Andreas Schäfler
Project Title:	

If this is a continuation of an existing project, please state **SP** DEHALO the computer project account assigned previously. Starting year: 2012 (Each project will have a well defined duration, up to a maximum of 3 years, agreed at the beginning of the project.) Would you accept support for 1 year only, if necessary? YES \square NO **Computer resources required for 2013-2015:** 2013 2014 2015 (The maximum project duration is 3 years, therefore a continuation project cannot request resources for 2014.) 100000 100000 100000 High Performance Computing Facility (units) 80 80 Data storage capacity (total archive volume) (gigabytes) 80

Mission Support System for HALO research flights

An electronic copy of this form **must be sent** via e-mail to:

special_projects@ecmwf.int

Electronic copy of the form sent on (please specify date):

30 April 2012

Continue overleaf

¹ The Principal Investigator will act as contact person for this Special Project and, in particular, will be asked to register the project, provide an annual progress report of the project's activities, etc.

Dr. Andreas Dörnbrack

Project Title:

Mission Support System for HALO research flights

Extended abstract

Mission Support System for HALO research flights

This special project is dedicated to assist activities that support research missions with the new German research aircraft HALO (High Altitude and Long Range Research Aircraft)². The activities include the ongoing development of software components for flight planning, research in visualisation of numerical weather predictions, and the deployment of developed modules during HALO-based field experiments. The project builds on work performed in the context of the existing special project SPDEHALO.

The extensive new possibilities offered by HALO require novel strategies for flight planning and flight operation. HALO exceeds many capabilities of currently available research aircraft in Germany and Europe. Its maximum payload of 3 tons allows the simultaneous operation of a multitude of instruments. Combined with flight altitudes of up to 15 km and a horizontal range of more than 10000 km, a variety of mission objectives in a single flight can be achieved. To carry out successful research flights, thorough flight planning is as essential as the aircraft with its instruments itself (illustrated in Figure 1).

Fig. 1: Thorough atmospheric forecasting and flight planning are essential for a successful field campaign.

During the preceding project, we have developed a first version of a software infrastructure that provides web-service based access to horizontal maps and vertical cross-sections of ECMWF forecast products and that lets the user interactively plan a flight route in relation to the forecasts, including flight performance computations (Rautenhaus et al., 2012). This software, the Mission Support System, is designed as a distributed system with interfaces based on the OGC³ Web Map Service (WMS), a user interface and WMS server implemented in the open-source Python programming language, and a web page that provides access to standard 2D visualisations and that

² <u>http://www.halo.dlr.de</u>

Open Geospatial Consortium: <u>http://www.opengeospatial.org</u>

serves as a communication platform for the campaign. In some parts of the system, the ECMWF software packages Metview and Magics++ are used for visualisation.

We request the present special project to continue research on the development and deployment of the system. The continuing access to ECMWF's meteorological forecast and analysis products will enable us to adapt the software to the requirements of future research aircraft campaigns and, due to ECMWF's global coverage, to deploy the system during campaigns all over the world. In respect of research and development, a focus will be put on novel visualisation methods for ECMWF forecasts that are suitable for the demands of research flight planning. Here, we are particularly interested in exploiting the uncertainty information provided by the Ensemble Prediction System when planning flights several days in advance. Regarding our research, we will continue and strengthen our collaboration with the ECMWF visualisation group that was initiated during the existing SPDEHALO project.

Specific tasks of the proposed project will be:

- Access to the meteorological archive of the ECMWF and to the sensible forecast data before and during the respective HALO campaign, in order to adapt the Mission Support System to the campaign and to provide forecasts during the mission.
- ▲ Conduction of runs with the ECMWF Integrated Forecast System in support of particular flight missions to provide meteorological data with higher temporal resolution (only in the hindcast mode).
- ▲ Usage of the ECMWF deterministic and EPS prediction data to develop novel visualisation methods, focussing on three-dimensional techniques and uncertainties.
- ▲ Continuation of the collaboration with the ECMWF visualisation group with respect to our research work and in using MetView and Magics++ within the Mission Support System.

Forecasts from the ECMWF have become an integral part of aircraft-based field experiments at DLR. With this project, the support of future HALO campaigns with global atmospheric predictions will be ensured.

References

Rautenhaus, M., Bauer, G., and Dörnbrack, A., 2012: A web service based tool to plan atmospheric research flights, *Geosci. Model Dev.*, **5**, 55-71, doi:10.5194/gmd-5-55-2012, 2012.