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Motivation: Data Overload

* New sensing systems provide
unprecedented high-resolution
data

 Satellites

* Mobile radar

* Crowd sourced data
* And more!

e Sifting through data in real-
time is challenging

 Much of the data is ignored




Motivation: Critical Decisions

* Forecasters must make life-or-
death decisions

* |ssue a tornado warning?
e Evacuate a city for a hurricane?
* Go-no-go launch

* End users make critical protective
decisions
* Close a business/school early
* Go into a shelter
* Get on the roads

* End user needs differ greatly

* Severe weather: Forecasters,
emergency managers, public

* Crops: Corporate or family owned




Google

NSF Al Institute for Research on Trustworthy Al in
Weather, Climate, and Coastal Oceanography

AlI2ES will uniquely benefit
humanity by developing novel,
physically based Al techniques
that are demonstrated to be
trustworthy, and will directly
improve prediction,
understanding, and
communication of high-impact
environmental hazards.
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https://www.ai2es.org/

AI2ES Research

Focus 1: Foundational research in trustworthy Al/ML

Focus 2: Use-inspired research in ES

Focus 3: Foundational research in Al risk communication for ES hazards
Focus 4: Al workforce development and broadening participation

Trustworthy Al
Physics-based
Explainable
Robust
Uncertainty

Risk Environmental

Communication Science
Transparency Convective Hazards
Attitudes & Perceptions Winter Weather
Dedision Making Coastal Environment
Tropical cydones

Broadening
Participation

URM partnerships
Industry Partnerships
Mentoring

Workforce
Development
Leadership training
Community college

Continuing education




Foundational research in trustworthy Al/ML

* Goal 1a: Develop explainable Al methods
aligned with ES domain perspectives and
priorities.

» Goal 1b: Develop physically based Al
techniques for ES domains.

» Goal 1c: Develop robust Al prediction
techniques, and empirically and
theoretically validate their performance
with adversarial data (e.g., missing data or
intentionally wrong data).
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Uncertainty
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Attitudes & Perceptions Winter Weather

Coastal Environment
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Use-inspired research in ES

* Goal 2a: Use trustworthy Al to provide

actionable ES information to diverse users. Trustworthy Al
- : i antifi : Physics-based

Goal 2b: Enhance scientific and physical E,(Y;:%naﬁz

understanding of basic ES processes Un’i‘;ﬂgffw

through trustworthy Al.

Risk Environmental

Communication Science
Transparency Convective Hazards
Attitudes & Perceptions Winter Weather
Dedision Making Coastal Environment
Tropical cyclones




ML Random Forest (Burke) 2020-05-05 12:00

Real-time
machine
learning hail
probability
prediction with
observed hail
R~ reports (green
=) and black)
From Burke et
al 2020

Environmental Science Applications
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Convective Weather:
* Goal: Improve understanding of tornado and hail formation

Winter Weather
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Foundational research in Al risk communication
for ES hazards

* Goal 3a: Increase knowledge and understanding of

how transparency, explanation, reproducibility and Trustworthy Al
representation of uncertainty influence trust in Al Elnabie
. . Robust

for ES for influential user groups. Uncertainty

* Goal 3b: Develop models to estimate how
attitudes and perception of Al trustworthiness Risk Environmental
) i i Communication Science
influence risk perception and use of Al for ES. P—— Convective Hazards

Attitudes & Perceptions Winter Weather

Coastal Environment

Decision Making Tropical cyclones

* Goal 3c: Develop principled methods to inform the
development of trustworthy Al approaches and the
provision of Al-based information to user groups
for improved ES decision making.




Foundational RC research with key, influential users

Relationships between trust and Human and ecological
populations at risk

technology acceptance are complex

Engagement with users is essential for ES decision makers

develo pl ng Al information that is Ecological and water resource Formative Research Evaluative Research
trustwort hy management (USEPA, USGS, USACE) P o] Qe ryee——
Weather (NWS—Storm prediction center, WFOs) perceptions of re:l’t,o’;slh,ps fett:teen ;fzr;ge; in p’:'r;'eptionsd

) Emergency management (Federal, State, Local) "":'c‘:‘:,”":":e’f; sk e e owrtine.

RC resea rch. will develop Transportation (Do, Parts] e . B

understanding of what trustworthy Interviews design longitudinal design

and explainable Al means to users, Al and ES

how trustworthiness and explainability Coastal Environment

. i . Convective Hazards

influence risk perceptions and uses of Tropical cyclones

Al Winter weather

RC research will inform Al innovation

and evaluation across ES hazards

“When [weather forecasters] cannot easily understand the workings of a probabilistic product or evaluate its accuracy,
this reduces their trust in information and their willingness to use it.” (Demuth et al. 2020)
Recommendations for developing useful and usable convection-allowing model
ensemble information for NWS forecasters



https://journals.ametsoc.org/doi/10.1175/WAF-D-19-0108.1
https://journals.ametsoc.org/doi/10.1175/WAF-D-19-0108.1
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My Al/ML Research for Environmental

Sclences

* Research questions:

* How can we use ML to improve prediction and
understanding of high-impact environmental
science phenomena?

e Can we use ML in real-time to save lives and
property?
* How can ML enable new scientific discovery?

* When/why do different end-users use automated
technology?

* My group focuses on making ML work in the
real world

* Focus extends beyond environmental sciences but
today focuses on weather

Trustworthy Al
Physics-based
Explainable
Robust
Uncertainty

Risk Environmental

Communication Science
Transparency Convective Hazards

Attitudes & Perceptions Winter Weather

Coastal Environment

Decision Maki
edision Vaking Tropical cyclones




Outline

* Motivation for trustworthy Al

* Current work
 Demonstrating ML can be used to improve prediction for multiple severe-
weather hazards (this talk: hail and tornadoes)

* Working with end-users to improve trust in ML predictions

* Developing physically-based model interpretation and visualization
techniques for environmental science

e Future work



Reflectivity -10C Mean No

<= 43.42527 Downdraft Speed SD
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e Can predict:
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e Real-values (hail size)
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Storm-Based Hail
Forecasting

* Overall steps:
e Extract data from NWP
* Train ML
* Predict hail & size

* Implemented and tested in
NOAA’s Hazardous Weather
Testbed (multiple years)

e Details:
* Gagne et al, WAF 2017
e Burke et al, WAF 2020

NWP Column MRMS
Total Graupel MESH

Enhanced Watershed Enhanced Watershed
Storm ldentification Storm ldentification

Storm Tracking Storm Tracking

NWP and MESH
Track Matching

NWP Storm
Variables
Calculate statistics

| on input ve}rie}ble Morphological
values within Variables

storms
NWP L
et ) w
Output storm

statistics and
track
information
\_ J




NWP Convection Allowing Models (CAMs)

* CAMs have high spatial and temporal resolution across CONUS
e Resolution too low to resolve hazards such as hail
* ML can predict missing hazards and correct spatial or temporal forecast errors

* Gagne et al 2017

* CAPS Spring Experiment ensemble
* NCAR ensemble

* Current work (Burke et al, WAF 2020)

e High Resolution Ensemble Forecast version 2 (HREFv2)
* Operational in Storm Prediction Center (SPC)

* Eight member ensemble
* |nitialized 0000z and 1200z
* Mixed model ensemble (WRF-ARW and NMMB)



ML Training Data

HREF Member. NAM Nest Run: Mon 2018-05-14 12:00 UTC
Composite reflectivity and 2-5 km UH =75 m#/s, ensemble member Valid: Mon 2018-05-14 23:00 UTC

[
&/ NOAANWSSStorm Prediction Center . .

e Extract data for each storm
object/track

» Storm data: updraft/downdraft,
reflectivity, precipitation, etc

* Environment: temperature, CAPE,
wind, sounding data, etc

* Morphological: Area, shape, etc

* Location: Forecast hour, duration,
motion

 Hail labels: Maximum Estimated
Size of Hail (MESH) > 19mm (3/4
in)




Initial Forecaster Evaluation: Too “hot”

The end-user’s needs (SPC forecasters) matter
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Random®ForestXlassification:

Calibration: Forecaster Trust ClassfynodelBtormirackssiait

orzhobthail

4

Random®Forest@Regression: }

e New addition to this work focuses on
trustworthy Al
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determinethailBize@romEammak
distribution

* Human analysts did not “trust” the output
of the model because it was “too hot” |
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Objective verification: Reliability

Probability of Hail Reliability >25mm
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Objective
verification

e Calibrated forecasts
have high ETS and
lower bias

Equitable Threat Score

Equitable Threat Score

Probability of Hail >25mm ETS
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Current time (in UTC/GMT/Zulu): 20:04:07

Continuing to Improve &:&: Storm Prediction Center

HOME | NEWS | SPC PRODUCTS | WEATHERINFO | FORECASTTOOLS | RESEARCH | OUTREACH | NWS/NCEP _p f ¥ 2
s

F O re Ca Ste r | r u St ((TAnysevere ) (T AllTornado ) (T Sig Tornado ) (T AllWind ) (0 SigWind ) (T AllHail ) (T SigHail. ) “Click here to see keyboard commands
Start

Stop FRAME 320f53 SPEED << >> 4 img/sec DIR REV FWD

Rock DWELL v Dwell - + 1 sec STEP < > v On/Off
R A e
QN (Hail Probabilities " : 08 January (1982-201@

* Observations: £
* Hail production differs by season
* Hail production differs by region
* Training data is limited

* Need both hail observations and
NWP data to train

e Research question: can we
weigh the training data to % il k
maXimize tra|n|ng pOWer and e s Lucorufly ZhY - i “Probabilty of hail > 075" within 25 miles

| | | | |

observe regional hail differences T

Probability

t . t t ? *These probability values were estimated from a 30-year period of severe weather reports from 1982-2011. The procedure to create the maps is as follows:
O Improve trust:

1. Reports for each day are put onto a grid 80 km x 80 km.

2. If one or more reports occur in a grid box, that box is assigned the value "1" for the day. If no reports occur, it's a zero.

3. The raw frequency for each day at each grid location is found for the period (number of "1" values divided by number of years) to get a raw annual cycle.
4. The raw annual cycle at each point is smoothed in time, using a Gaussian filter with a standard deviation of 15 days.

5. The smoothed time series are then smoothed in space with a 2-D Gaussian filter (SD = 120 km in each direction).
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Monthly Storm Weighting

May Storm Weights June Storm Weights
0] 0]
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imatology

Monthly Storm Cl

Images from Cintineo et al 2012



Evaluation of Forecaster
Trust;: HWT

* New spatial weighted tested in
NOAA’s Hazardous Weather

Testbed in Spring 2020 (all
virtual)

e “Al could be a game changer” —
Adam Clark of the Storm
Prediction Center

* Additional evaluations coming
soon (paper in preparation)

Tweet

A Adam Clark
@AdamClarkWx

CAMs don't directly simulate severe wx, so computing
model-derived tor/hail/wind probs is hard. Storm
“proxies"” (e.g., UH) are useful, but #Al could be a game
changer. #SFE2020 features 4 Al-based severe wx
projects. Good ex. of skillful hail prediction by
@AmandalLeo_wx here.

ML Random Forest (Burke) 2020-05-05 12:00

11:45 AM - May 9, 2020 - Twitter Web App



Outline

* Motivation for trustworthy Al

e Current work

 Demonstrating ML can be used to improve prediction for multiple severe-
weather hazards (this talk: hail and tornadoes)

* Working with end-users to improve trust in ML predictions

e Developing physically-based model interpretation and visualization
techniques for environmental science

e Future work



What Is Deep Learning?

Artificial Intelligence
Computers solving difficult tasks through
experience and observations

Machine Learning
Adaptive models learn to improve
performance on a task given experience Expert Systems

Operate autonomously

with human specified
rules. (e.g. fuzzy logic)

Deep Learning
Neural networks with
multiple specialized layers
for encoding structural
information




B Wi

Neural Network Basics

Artificial Neural Network Structure

Perceptron (artificial neuron)
L0 wo

*@® synapse
axon from a neuron
woT O

cell body _f(§:1wwf+b)
W12 i
> Zwiwi +b f

: output axon

activation
- function
input layer
hidden layer 1 hidden layer 2
Training Procedure Definitions
Send batch of training examples through network Batch: subset of training examples used to update weights
Calculate prediction error Epoch: One pass through all examples in training set

Calculate error gradients back through layers and update weights

Repeat over all training examples until errors are satisfactory
Images from http://cs231n.github.io/convolutional-networks/



convolution + max pooling
nonlinearity

convolution + pooling layers

Image source: adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

vec

|

LR

*ﬂﬂﬂﬂ'ﬂ'ﬂJ

sunset

fully connected layers

Nx binary classification




Convolutional Layers







CNN Example

(a) Input (b)After convolution (€) After activation (h)After batch norm (k) After pooling
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Training Data

* Merged radar data from
GridRad
e http://gridrad.org
e Resolution: 0.02° x 0.02° x 1 km

e GridRad fields for Tornado:
e Reflectivity (ZH)

 Velocity-spectrum width
(increases with mean wind
speed and turbulence)

* Vorticity (rotational wind)
* Divergence

"
wlls

7N

: a,i-:‘%*q.

6 km AGL

NINDMEHO AN O

NIDMHOANS O
N I I

Divergence (ks™?!)


http://gridrad.org/

Tornado Prediction: Input Data

Storm objects at 0210 UTC 27 Apr 2011

» Before training CNNs, data must be i 2
pre-processed. 32.7°N

* One CNN input = one storm object 32.4°N f EF

(one storm at one time). ﬁ."

32.1°N}

* Pre-processing steps are as follows: r\/
31.8°N

1. Outline storm cells at each time step ;
31.5°N

2. Track storm cells over time S
31.2°N 5

3. Create storm-centered radar images
= One per storm object
= On equidistant grid with storm

93°W 92.4°W  91.8°W  91.2°W  90.6°W

S o <o <o o o
motion towards the right o o o o o o
— N m <t LN (o)

40-dBZ echo top (kft ASL)



Tornado Prediction: Input Data

* Pre-processing steps are as follows:

4. Create proximity soundings
=  One per storm object
= Represents near-storm environment

5. Link tornado reports to storms
6. Create labels

=  One per storm object
= “Yes” if tornadic in next hour, else “no”

Pressure (mb)
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Training Data

* Training (2012-2014)
e 40,903 total
e 3575 tornadic

e Validation (2015-2018)
* 96,368 total
e 2884 tornadic

e Testing (2011)
e 130,955 total
e 4611 tornadic

* Data augmentation:
e 16 different augmentations
* Improves model robustness

(b) Translatead

) Rotated

:—:-O

~(d) Noised

__________

______________________

Reflectlvity (dBZ)
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(b)

45°N |

Spatial Evaluation

30°N|

25°N|

20°N

* Overall performance is best —
in areas with more
tornadoes

32
100
316

(d)

45°N |

40°N |

35°N|

* Need more examples in the
harder areas

30°N |

25°N|

1 20°N




Trustworthy Al: Model Interpretation

* Our goal: demystify ML and
deep learning models for
environmental scientists by
demonstrating benefits and
drawbacks of model

interpretation and visualization
(MIV)

THIS 15 YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLWERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

Public view/ef/ML

httpsi//xkcdi€om/1838/



https://xkcd.com/1838/

Saliency Maps

 Saliency = gradient of model activation with respect to input value
(Simonyan et al. 2014)

e Mathematically: saliency = %
xr

=T

e a3 = activation of some model component
» x = predictor (one variable at one pixel)
* X, = actual value (in dataset example)

* Linear approximation to % about x = X,.

. ]Icn other words, saliency tells us how model reacts when x is perturbed
rom X
0



Saliency Maps
on Tornado Data

Ptornado INCreases with vorticity in |

mesocyclone, especially at lower levels

Ptornado increases with spectrum width .., @

Piormado INCreases with reflectivity

in core, especially at upper levels

Average (PMM) saliency map for 100 best hits
(tornadic storms with average probability of
99.6%).

Ebert, E., 2001: "Ability of a poor man’s ensemble to predict the probability and distribution ¢

precipitation." Monthly Weather Review, 129 (10), 2461-2480.
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Backwards Optimization

* Also called “feature optimization” (Olah et al. 2017)

* Goal: create synthetic input example that maximizes activation of some
model component

* “Some model component” might be:
* Warm-front probability (activation of 2nd output neuron)
* Cold-front probability (activation of 3rd output neuron)
e Channels in final convolution layer (just before fully connected layer)

e Procedure involves gradient descent, which requires initial seed

* |nitial seed might be:
* Uniform image (e.g., all zeros)
e Random image
* Dataset example



Right: we use BWO to decrease tornado
probability for best hits.

On average for the 100 storms, decreases
probability from 99.2% to 6.9%.

Effects of BWO are small, except:
= Decreases depth of reflectivity core (see
10 km AGL)
= Removes moisture near surface (see
dewpoint in sounding)
= Decreases low-level wind speed and thus
shear (see sounding)

However, synthetic sounding looks a bit
unrealistic (has the “jaggies”).

This looks much worse for BWO without
physical constraints (next slide).

Nonetheless, more work needed if we want to
use ML to create realistic weather data.
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Right: we use BWO to decrease tornado
probability for best hits.

On average for the 100 storms, decreases
probability from 99.2% to 6.9%.

Effects of BWO are small, except:
= Decreases depth of reflectivity core (see
10 km AGL)
= Removes moisture near surface (see
dewpoint in sounding)
= Decreases low-level wind speed and thus
shear (see sounding)

However, synthetic sounding looks a bit
unrealistic (has the “jaggies”).

This looks much worse for BWO without
physical constraints (next slide).

Nonetheless, more work needed if we want to
use ML to create realistic weather data.
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