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Motivation: Data Overload

• New sensing systems provide 
unprecedented high-resolution 
data
• Satellites

• Mobile radar

• Crowd sourced data

• And more! 

• Sifting through data in real-
time is challenging  
• Much of the data is ignored



Motivation: Critical Decisions

• Forecasters must make life-or-
death decisions
• Issue a tornado warning?
• Evacuate a city for a hurricane?
• Go-no-go launch

• End users make critical protective 
decisions
• Close a business/school early
• Go into a shelter
• Get on the roads 

• End user needs differ greatly
• Severe weather: Forecasters, 

emergency managers, public
• Crops: Corporate or family owned



NSF AI Institute for Research on Trustworthy AI in 
Weather, Climate, and Coastal Oceanography

AI2ES will uniquely benefit 
humanity by developing novel, 
physically based AI techniques 
that are demonstrated to be 
trustworthy, and will directly 
improve prediction, 
understanding, and 
communication of high-impact 
environmental hazards.

@ai2enviro https://www.ai2es.org

https://www.ai2es.org/


AI2ES Research

• Focus 1: Foundational research in trustworthy AI/ML
• Focus 2: Use-inspired research in ES
• Focus 3: Foundational research in AI risk communication for ES hazards
• Focus 4: AI workforce development and broadening participation



Foundational research in trustworthy AI/ML

• Goal 1a: Develop explainable AI methods 
aligned with ES domain perspectives and 
priorities.

• Goal 1b: Develop physically based AI 
techniques for ES domains.

• Goal 1c: Develop robust AI prediction 
techniques, and empirically and 
theoretically validate their performance 
with adversarial data (e.g., missing data or 
intentionally wrong data).



Use-inspired research in ES

• Goal 2a: Use trustworthy AI to provide 
actionable ES information to diverse users.

• Goal 2b: Enhance scientific and physical 
understanding of basic ES processes 
through trustworthy AI.



Environmental Science Applications

• Convective Weather:
• Goal: Improve understanding of tornado and hail formation

• Winter Weather
• Goal: Exploit underutilized winter weather data to provide 

tailored guidance to emergency managers and decision 
makers

• Tropical Cyclones
• Goal: Improve forecasts of TC temporal evolution and rapid 

intensification

• Subseasonal to Seasonal (S2S) Prediction
• Goal: Predict extreme weather 2 weeks to 2 months ahead

• Coastal Oceanography
• Goal: Improve prediction and understanding of coastal 

impacts and processes

Real-time 

machine 

learning hail 

probability 

prediction with 

observed hail 

reports (green 

and black)

From Burke et 

al 2020
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predictive 
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Transportation, 

from N. Bassill



Foundational research in AI risk communication 
for ES hazards

• Goal 3a: Increase knowledge and understanding of 
how transparency, explanation, reproducibility and 
representation of uncertainty influence trust in AI 
for ES for influential user groups.

• Goal 3b: Develop models to estimate how 
attitudes and perception of AI trustworthiness 
influence risk perception and use of AI for ES. 

• Goal 3c: Develop principled methods to inform the 
development of trustworthy AI approaches and the 
provision of AI-based information to user groups 
for improved ES decision making.



Foundational RC research with key, influential users

• Relationships between trust and 
technology acceptance are complex 

• Engagement with users is essential for 
developing AI information that is 
trustworthy

• RC research will develop 
understanding of what trustworthy
and explainable AI means to users, 
how trustworthiness and explainability 
influence risk perceptions and uses of 
AI

• RC research will inform AI innovation 
and evaluation across ES hazards

“When [weather forecasters] cannot easily understand the workings of a probabilistic product or evaluate its accuracy, 
this reduces their trust in information and their willingness to use it.” (Demuth et al. 2020)

Recommendations for developing useful and usable convection-allowing model 
ensemble information for NWS forecasters

https://journals.ametsoc.org/doi/10.1175/WAF-D-19-0108.1
https://journals.ametsoc.org/doi/10.1175/WAF-D-19-0108.1


AI2ES Team



My AI/ML Research for Environmental 
Sciences
• Research questions:

• How can we use ML to improve prediction and 
understanding of high-impact environmental 
science phenomena?

• Can we use ML in real-time to save lives and 
property?

• How can ML enable new scientific discovery?
• When/why do different end-users use automated 

technology?

• My group focuses on making ML work in the 
real world
• Focus extends beyond environmental sciences but 

today focuses on weather



Outline

• Motivation for trustworthy AI

• Current work 
• Demonstrating ML can be used to improve prediction for multiple severe-

weather hazards (this talk: hail and tornadoes)

• Working with end-users to improve trust in ML predictions

• Developing physically-based model interpretation and visualization 
techniques for environmental science

• Future work



Decision Trees and 
Random Forests
• Human-readable ML model

• Can predict:
• Class labels (hail/no hail)
• Real-values (hail size)

• Demonstrated success in 
meteorology
• Selective model

• Random Forests
• Individual trees trained on 

bootstrap resampled subsets of 
data

• Trees use subsets of attributes at 
each level http://ncbi-hackathons.github.io/Pharmacogenomics_Prediction_Pipeline_P3/



Storm-Based Hail 
Forecasting

• Overall steps:
• Extract data from NWP

• Train ML

• Predict hail & size

• Implemented and tested in 
NOAA’s Hazardous Weather 
Testbed (multiple years)

• Details:
• Gagne et al, WAF 2017

• Burke et al, WAF 2020



NWP Convection Allowing Models (CAMs)

• CAMs have high spatial and temporal resolution across CONUS
• Resolution too low to resolve hazards such as hail
• ML can predict missing hazards and correct spatial or temporal forecast errors

• Gagne et al 2017
• CAPS Spring Experiment ensemble
• NCAR ensemble

• Current work (Burke et al, WAF 2020)
• High Resolution Ensemble Forecast version 2 (HREFv2)

• Operational in Storm Prediction Center (SPC)

• Eight member ensemble
• Initialized 0000z and 1200z
• Mixed model ensemble (WRF-ARW and NMMB)



ML Training Data

• Extract data for each storm 
object/track
• Storm data: updraft/downdraft, 

reflectivity, precipitation, etc
• Environment: temperature, CAPE, 

wind, sounding data, etc
• Morphological: Area, shape, etc
• Location: Forecast hour, duration, 

motion

• Hail labels: Maximum Estimated 
Size of Hail (MESH) > 19mm (3/4 
in)



Initial Forecaster Evaluation: Too “hot”

The end-user’s needs  (SPC forecasters) matter



Calibration: Forecaster Trust

• New addition to this work focuses on 
trustworthy AI

• Human analysts did not “trust” the output 
of the model because it was “too hot”

• Probability calibration
• Calibrated to local storm reports, practically 

perfect (SPC verification metric), and MESH

	

Random	Forest	Classification: 
Classify	model	storm	tracks	as	hail	

or	no	hail 

Random	Forest	Regression: 
Input	model	tracks	with	hail,	

determine	hail	size	from	gamma	
distribution 

Isotonic	Regression: 
Calibrate	the	NMEP	forecasts	

toward	a	target	dataset	 

Output	neighborhood	maximum	
ensemble	probability	(NMEP)	and	

ensemble	maximum	hail	size	
forecasts	 



Objective verification: Reliability



Objective 
verification
• Calibrated forecasts 

have high ETS and 
lower bias 



Continuing to Improve 
Forecaster Trust
• Observations: 

• Hail production differs by season

• Hail production differs by region

• Training data is limited
• Need both hail observations and 

NWP data to train

• Research question: can we 
weigh the training data to 
maximize training power and 
observe regional hail differences 
to improve trust?



Monthly Storm Weighting



Monthly Storm Weighting



Monthly Storm Climatology

Images from Cintineo et al 2012

May June

July August



Evaluation of Forecaster 
Trust: HWT
• New spatial weighted tested in 

NOAA’s Hazardous Weather 
Testbed in Spring 2020 (all 
virtual)

• “AI could be a game changer” –
Adam Clark of the Storm 
Prediction Center

• Additional evaluations coming 
soon (paper in preparation)



Outline

• Motivation for trustworthy AI

• Current work 
• Demonstrating ML can be used to improve prediction for multiple severe-

weather hazards (this talk: hail and tornadoes) 

• Working with end-users to improve trust in ML predictions

• Developing physically-based model interpretation and visualization 
techniques for environmental science

• Future work



What Is Deep Learning?
Artificial Intelligence

Computers solving difficult tasks through 
experience and observations

Machine Learning
Adaptive models learn to improve 

performance on a task given experience

Deep Learning
Neural networks with 

multiple specialized layers 
for encoding structural 

information

Expert Systems
Operate autonomously 
with human specified 
rules. (e.g. fuzzy logic)



Neural Network Basics
Artificial Neural Network Structure

Perceptron (artificial neuron)

Training Procedure
1. Send batch of training examples through network
2. Calculate prediction error
3. Calculate error gradients back through layers and update weights
4. Repeat over all training examples until errors are satisfactory

Definitions
Batch: subset of training examples used to update weights
Epoch: One pass through all examples in training set

Images from http://cs231n.github.io/convolutional-networks/



Convolutional Neural Net

Image source: adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/



Convolutional Layers



Pooling Layers



CNN Example



Input: storm-centered radar 
image (3 of 12 heights shown) 
and proximity sounding (not 
shown)

(b-e) Feature maps produced by conv and pooling layers

Output (next-hour 
tornado probability)



Training Data

• Merged radar data from 
GridRad
• http://gridrad.org
• Resolution: 0.02° x 0.02° x 1 km

• GridRad fields for Tornado:
• Reflectivity (ZH)
• Velocity-spectrum width 

(increases with mean wind 
speed and turbulence)

• Vorticity (rotational wind)
• Divergence

http://gridrad.org/


• Before training CNNs, data must be 
pre-processed.

• One CNN input = one storm object 
(one storm at one time).

• Pre-processing steps are as follows:

1. Outline storm cells at each time step

2. Track storm cells over time

3. Create storm-centered radar images
▪ One per storm object
▪ On equidistant grid with storm 

motion towards the right

Tornado Prediction: Input Data



Tornado Prediction: Input Data

• Pre-processing steps are as follows:

4. Create proximity soundings
▪ One per storm object
▪ Represents near-storm environment

5. Link tornado reports to storms

6. Create labels
▪ One per storm object
▪ “Yes” if tornadic in next hour, else “no”



Training Data

• Training (2012-2014)
• 40,903 total
• 3575 tornadic

• Validation (2015-2018)
• 96,868 total
• 2884 tornadic

• Testing (2011)
• 130,955 total
• 4611 tornadic

• Data augmentation:
• 16 different augmentations
• Improves model robustness



Objective Evaluation



Hourly 
Evaluation
• AUC fairly consistent 

across months

• POD peaks in tornadic 
months

• FAR is lower in tornadic 
months



Spatial Evaluation

• Overall performance is best 
in areas with more 
tornadoes

• Need more examples in the 
harder areas



Trustworthy AI: Model Interpretation 

• Our goal: demystify ML and 
deep learning models for 
environmental scientists by 
demonstrating benefits and 
drawbacks of model 
interpretation and visualization 
(MIV)

https://xkcd.com/1838/

Public view of ML

https://xkcd.com/1838/


Saliency Maps

• Saliency = gradient of model activation with respect to input value 
(Simonyan et al. 2014)

• Mathematically:

• a = activation of some model component
• x = predictor (one variable at one pixel)
• x0 = actual value (in dataset example)

• Linear approximation to         about x = x0.
• In other words, saliency tells us how model reacts when x is perturbed 

from x0



• Average (PMM) saliency map for 100 best hits
(tornadic storms with average probability of 
99.6%). 

Ebert, E., 2001: "Ability of a poor man’s ensemble to predict the probability and distribution of 
precipitation." Monthly Weather Review, 129 (10), 2461–2480.

Saliency Maps 
on Tornado Data

ptornado increases with reflectivity 
in core, especially at upper levels

ptornado increases with vorticity in 
mesocyclone, especially at lower levels

ptornado increases with spectrum width



Backwards Optimization

• Also called “feature optimization” (Olah et al. 2017)
• Goal: create synthetic input example that maximizes activation of some 

model component
• “Some model component” might be:

• Warm-front probability (activation of 2nd output neuron)
• Cold-front probability (activation of 3rd output neuron)
• Channels in final convolution layer (just before fully connected layer) 

• Procedure involves gradient descent, which requires initial seed
• Initial seed might be:

• Uniform image (e.g., all zeros)
• Random image
• Dataset example



• Right: we use BWO to decrease tornado 
probability for best hits.

• On average for the 100 storms, decreases 
probability from 99.2% to 6.9%.

• Effects of BWO are small, except:
▪ Decreases depth of reflectivity core (see 

10 km AGL)
▪ Removes moisture near surface (see 

dewpoint in sounding)
▪ Decreases low-level wind speed and thus 

shear (see sounding)

• However, synthetic sounding looks a bit 
unrealistic (has the “jaggies”).

• This looks much worse for BWO without 
physical constraints (next slide).

• Nonetheless, more work needed if we want to 
use ML to create realistic weather data.
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