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Introduction

Figure: Precipitation

Sherman Lo, Ritabrata Dutta, Peter Dueben, Peter Watson (University of Warwick, ECMWF, University of Bristol)Probabilistic downscaling to detect regional present and future climate hazards28th April 2020 4 / 55



Introduction

We have computer simulations of the weather/climate, they are called
model fields.

Temperature

Precipitable water content

Humidity

Geopotential

Wind speed and velocity
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Introduction

Figure: Air temperature
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Introduction

(a) Model fields (b) Precipitation

Figure: Sample from data
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Introduction

40 years of data (1979 - 2019)

Observed precipitation (∼ 10 km)

Simulated model fields (∼ 80 km)
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Introduction

Can we use the model fields on a coarse grid to forecast the precipitation
on the fine grid? This task is known as downscaling.
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Introduction
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Figure: Forecast (orange) and observed (blue)
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Introduction

1.2± 1.5 mm
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Statistical model
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Statistical model

Occurrence of precipitation

Quantity of precipitation

Autocorrelation of precipitation

Affected by the model fields
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Statistical model
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London: autocorrelation of rain

Figure: Autocorrelation of precipitation
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Statistical model

We are dealing with a zero-inflated random variable.

Sometimes, the
precipitation is exactly 0 mm, sometimes it is a positive number.

We introduce the compound-Poisson.
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Statistical model

Zt = number of times it rains at day t

R
(i)
t = amount of precipitation in a rain event at day t

Yt = amount of precipitation at day t

Yt |Zt =
Zt∑
i=1

R
(i)
t
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Statistical model

Zt ∼ Poisson(λt)

R
(i)
t ∼ Gamma(1/ωt , 1/(ωtµt))

Yt |Zt =
Zt∑
i=1

R
(i)
t ∼ Gamma(Zt/ωt , 1/(ωtµt))

Yt ∼ Compound-Poisson
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Statistical model

We make λt , µt , and ωt a function of the model fields xt.

We make Zt and Yt |Zt undergo an autoregressive and moving
average process.

For example

λt = exp

[
βλxt + φλ(lnλt−1 − kλ) + θλ

Zt−1 − λt−1√
λt−1

+ kλ

]

µt = exp

[
βµxt + φµ(lnµt−1 − kµ) + θµ

yt−1 − Zt−1µt−1

µt−1
√

Zt−1ωt−1
+ kµ

]

ωt = exp [βωxt + kω]
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Statistical model

Figure: Graphical model
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Statistical model
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Figure: Simulated data
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Statistical model
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Figure: Simulated data autocorrelation ARMA(5,5)
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Markov chain Monte Carlo
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Markov chains Monte Carlo

This model is wrong so it is important to quantify how wrong the
model is.

The problem of modelling fitting can be done using Bayesian
inference to get uncertainity quantification.

This was done using Markov chains Monte Carlo (MCMC).

We use Monte Carlo which uses random numbers to solve a model
fitting problem. Flucations in solutions, (samples), reflect the
uncertainity.

We use a Markov chain to draw dependent samples in such a way
they converge to the right answer.
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Markov chains Monte Carlo

In Bayesian inference, we are interested in studying the posterior
distribution

posterior ∝ likelihood× prior

π(β, z1:T |x1:T , y1:T )︸ ︷︷ ︸
posterior

∝ p(y1:T , z1:T |x1:T , β)︸ ︷︷ ︸
likelihood

× π(β)︸︷︷︸
prior
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Markov chains Monte Carlo

p(data|parameters)︸ ︷︷ ︸
likelihood

p(parameters|data)︸ ︷︷ ︸
posterior

∝ p(data|parameters)︸ ︷︷ ︸
likelihood

× p(parameters)︸ ︷︷ ︸
prior
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Markov chains Monte Carlo

But the prior is subjective!
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Figure: Simulated data
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Markov chains Monte Carlo

We use Gibbs sampling to split the posterior into two parts

Sample Zt |β,Z1:T\t , y1:T , x1:T

Sample β|y1:T ,Z1:T , x1:T

We use slice sampling and elliptical slice sampling.
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Markov chains Monte Carlo

We use slice sampling to sample Zt |β,Z1:T\t , y1:T , x1:T .

yt = 0⇒ Zt = 0
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Markov chains Monte Carlo

Slice sampling:

s ∼ Uniform(0, π(z(i)))

z(i+1) ∼ Uniform(z : π(z) > s)
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Markov chains Monte Carlo

We use elliptical slice sampling to sample β.

It can sample a posterior with
a Normal prior. For the technical:

Chain at β(i)

ν ∼ prior

s ∼ Uniform(0, posterior(β(i)))

θ ∼ Uniform(0, 2π)

β(i+1) = β(i) cos θ + ν sin θ if posterior(β(i+1)) > s, else try another θ
with a smaller support containing zero
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Markov chains Monte Carlo

Even more technical:

Initial: [θmin, θmax] = [θ − 2π, θ]

If: θ < 0, θmin = θ

Else: θmax = θ
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Markov chains Monte Carlo
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Figure: Example of a chain
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Forecasting
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Forecasting

Simulate the future using different samples from the posterior (MCMC
chain). Any variation reflect the uncertainity.
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Forecasting
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Figure: Forecast (orange) and observed (blue)
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Forecasting

Figure: Probability precipitation > 15 mm
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Forecasting
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Figure: Probability precipitation > 15 mm
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Forecasting
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Figure: ROC curve
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Downscaling
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Downscaling

We interpolate the model fields for now

(a) Coarse grid (b) Fine grid

Figure: Interpolation
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Downscaling

We impose a prior on β where neighbouring locations with similar
topography have similar values


β1
β2
...
βN

 ∼ N
(
0, τ−1K

)

where [K]i ,j = exp
[
−ν

2
(wi − wj)

2
]

and wi is the topography
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Downscaling
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Figure: Simulation from prior
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Downscaling
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Figure: MCMC chains
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Downscaling

Figure: Forecast at Wales
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Downscaling
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Downscaling

Instead of interpolating the model fields, we can learn the model fields on
the coarse grid. We use a Gaussian process.
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Downscaling

x ′i ,t = model fields at time t, location i on coarse grid

xj ,t = model fields at time t, location j on fine grid
x ′1,t
x ′2,t

...
x ′M,t

 ∼ N(0, τ−1K)

Sherman Lo, Ritabrata Dutta, Peter Dueben, Peter Watson (University of Warwick, ECMWF, University of Bristol)Probabilistic downscaling to detect regional present and future climate hazards28th April 2020 48 / 55



Downscaling

We can sample the model fields on the fine grid given:

model fields on the coarse grid

precipitation & Z on the fine grid


x1,t
x2,t

...
xN,t


∣∣∣∣∣∣∣∣∣


x ′1,t
x ′2,t

...
x ′M,t

 , {Y1:T} , {Z1:T}
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Conclusion
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Conclusion

We used the model fields on a coarse grid to forecast the precipitation
on the fine grid.

We have quantified uncertainity.
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Conclusion
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Figure: Forecast (orange) and observed (blue)
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Conclusion

The task of downscaling is computational expensive.
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Conclusion

To transistion from weather forecasting to climate prediction, we need
to forecast many years into the future.
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Conclusion

Thank you
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