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Abstract

This paper presents generalised perturbation forms of the nonhydrostatic partial
differential equations (PDEs) that govern dynamics of all-scale global atmospheric
flows. There can be many alternative perturbation forms for any given system of the
governing PDEs, depending on the assumed ambient state about which perturba-
tions are taken and on subject preferences in the numerical model design. All such
forms are mathematically equivalent, yet they have different implications for the
design and accuracy of effective semi-implicit numerical integrators of the govern-
ing PDEs. Practical and relevant arguments are presented in favour of perturbation
forms based on the solutions’ computational efficacy. The optional forms are im-
plemented in the high-performance finite-volume module (IFS-FVM) for simulating
global all-scale atmospheric flows [Smolarkiewicz et al., J. Comput. Phys. (2016)
doi:10.1016/j.jcp.2016.03.015]. The implementation of the general and flexible per-
turbation formulation is illustrated and verified with a class of ambient states of
reduced complexity. A series of numerical simulations of the planetary baroclinic
instability, epitomising global weather, illustrates the accuracy of the perturbation
equations. The novel numerical approach has the potential for numerically accurate
separation of a background state from finite-amplitude perturbations of the global
atmosphere. Practical implications include far less sensitivity to grid imprinting
on non-uniform meshes, undiluted interaction of background shear with rotational
motions, and an improved accuracy and reliability of extended-range predictions.
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1 INTRODUCTION

An important characteristic of the atmospheric dynamics is that it constitutes
a relatively small perturbation about dominant hydrostatic and geostrophic
balances established in effect of the Earth gravity, rotation, stably-stratified
thermal structure of its atmosphere and the energy provided by the incoming
flux of solar radiation. For illustration, consider that the total conversion of
available potential energy to kinetic energy in the global atmosphere is only
0.26% of the incoming solar radiation at the top of the atmosphere; cf. Fig. 1
in [46]. Preserving this fundamental equilibrium, while accurately resolving
the perturbations about it, conditions the design of atmospheric models and
subjects their numerical procedures to intricate stability and accuracy re-
quirements. In particular, extended-range (11-45 days) and seasonal weather
predictions (up to 1 year ahead) are subjected to dominant initial and model
biases in the simulation of the atmosphere/ocean and suffer from low signal-
to-noise ratios. In seasonal forecasting, this proofs a difficult problem for the
detection of anomalies, especially when there is also a model drift relative to
long-term biases in the simulated quantities [20]. The conceptual idea of the
approach implemented in this paper is a numerically accurate separation and
dual evolution of an arbitrary (but advantageously selected) ambient state
and finite-amplitude perturbations around this state, to improve conservation
properties, mean state bias and drift, and the reliability of extended-range
predictions.

Given the nature of atmospheric dynamics, it is compelling to formulate gov-
erning PDEs in terms of perturbation variables about an arbitrary state of
the atmosphere that already satisfies some or all of the dominant balances. In
fact, this is a standard approach in small-scale atmospheric modelling based
on soundproof equations, such as the classical incompressible Boussinesq sys-
tem or its anelastic or pseudo-incompressible generalisations. The key role of
the reference state in these equation systems is to uncouple a dominating hy-
drostatic balance from buoyancy driven motions, and to justify linearisations
required to achieve a physically-relevant complexity reduction. Otherwise, the
reference state does not have to be unique nor represent the actual mean state
of the system. The primary strength of established reference states is their
generally recognized theoretical and practical validity. However, such refer-
ence states are overly limited, most often consisting only of a single stably
or neutrally stratified vertical profile of thermodynamic variables. To allevi-
ate this limitation, soundproof models often account for an additional, more
general balanced state, hereafter referred to as an “ambient” state [27].

The notion of ambient states is distinct from that of the reference state. The
utilization of an ambient state is justified by expediency and optional for any
system of the governing equations. The role of ambient states is to enhance the
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efficacy of numerical simulation—e.g. by simplifying the design of the initial
and boundary conditions and/or improving the conditioning of elliptic bound-
ary value problems—without resorting to linearisation of the system. The key
underlying assumption is that the ambient state is a particular solution of the
governing problem, so that subtracting its own minimal set of PDEs from the
governing equations can provide a useful perturbation form of the governing
system. In general, ambient states are not limited to stable or neutral stratifi-
cations [8], can be spatially and temporally varying to represent, e.g. thermally
balanced large-scale steady flows in atmospheric models [26,35] or prescribe
oceanic tidal motions [39]. Here, we present a generalised formalism allowing,
in principle, for an arbitrary (yet advantageous) ambient state. In the context
of this development, it is hoped that there are special cases of such arbitrary
states that can be particularly useful for weather and climate applications.
All theoretical developments directly pertain to two advanced all-scale mod-
elling systems, the Eulerian-Lagrangian (EULAG) research model for multi-
scale flows [23,34,35] and the Finite-Volume Module (IFS-FVM) [36,13,37] in
the Integrated Forecasting System (IFS) of the European Centre for Medium-
Range Weather Forecasts (ECMWF).

The paper is organised as follows: Section 2 derives the perturbation form of
the nonhydrostatic compressible Euler equations of all-scale atmospheric dy-
namics. The related numerical procedures are described in Section 3. Section 4
substantiates technical developments of the preceding sections, with a series
of simulations of the planetary baroclinic instability. Section 5 concludes the
paper.

2 GOVERNING EQUATIONS

2.1 Generic form

The generalised PDEs of EULAG [35] and IFS-FVM [36] assume the com-
pressible Euler equations under gravity on a rotating sphere as default, but
include reduced soundproof equations [18,6] as options. From the perspective
of numerics, the design of the semi-implicit integrators in FVM follows the
same path for the compressible and the anelastic system. Hence, we focus on
the most general case of the compressible Euler equations. For simplicity, we
start the presentation with the physically more intuitive advective form of
the inviscid governing equations formulated on a rotating sphere, and intro-
duce the corresponding conservation forms implemented in FVM afterwards in
Section 3. With these caveats, the advective forms of equations for density ρ,
potential temperature θ and the physical velocity vector u can be compactly
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written as

dρ

dt
= − ρ
G
∇ · (Gv) , (1a)

dθ

dt
= H , (1b)

du

dt
= − θ

θ0
G̃∇φ+ g − f × u +MMM(u) + DDD(u) . (1c)

Here, d/dt = ∂/∂t+ v · ∇, with ∇ = (∂x, ∂y, ∂z) representing a vector of spa-
tial partial derivatives with respect to the generalised curvilinear coordinates
x = (x, y, z) [22,42,11] (assumed stationary for the purpose of this paper) and
v = G̃Tu, where G̃ denotes a 3× 3 matrix of known metric coefficients. Fur-
thermore, G symbolises the Jacobian—i.e. the square root of the determinant
of the metric tensor—whereas f and MMM(u) respectively mark the vectors of
Coriolis parameter and metric forcings (i.e., Christoffel terms) shown for a
plain geospherical framework in Appendix A. In (1b), H symbolises a heat
source/sink, including diffusion. In (1c), g is the vector of gravitational accel-
eration, while DDD(u) symbolises momentum dissipation. The pressure variable
φ = cpθ0π renormalises the Exner-function of pressure, π := (p/p0)

R/cp = T/θ,
upon which it satisfies the gas law

φ = cpθ0

(R
p0
ρθ

)R/cv . (2)

Here, cp and cv denote specific heats at constant pressure and volume, respec-
tively, R is a gas constant, T indicates the temperature, and subscripts “0”
refer to constant reference values.

2.2 Ambient state

We now assume an arbitrary ambient state (ρa, θa, φa,ua) that satisfies the
same generic form of the governing equations, or a subset thereof,

daρa
dt

= −ρa
G
∇ · Gva , (3a)

daθa
dt

= Ha , (3b)

daua
dt

= −θa
θ0

G̃∇φa + g − f × ua +MMM(ua) + DDD(ua) , (3c)
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where da/dt = ∂/∂t + va · ∇ with va = G̃Tua. Correspondingly, the ambient
pressure variable φa = cpθ0πa satisfies

φa = cpθ0

(R
p0
ρaθa

)R/cv , (4)

2.3 Perturbation forms

2.3.1 Derivation

In order to derive perturbation forms of the governing equations (1b) and (1c),
the perturbation dependent variables are first defined as

θ′ := θ − θa , u′ := u− ua , φ′ := φ− φa . (5)

Second, the two auxiliary relations are derived:

∀ ψ = ψ′ + ψa ,
dψ

dt
− daψa

dt
≡ dψ′

dt
+ v′ · ∇ψa ; (6a)

θ

θ0
G̃∇φ− θa

θ0
G̃∇φa ≡

θ

θ0
G̃∇φ′ + θ′

θ0
G̃∇φa . (6b)

Then subtracting (3b) from (1b) and (3c) from (1c), and rearranging the terms
while using (6a) and (6b), leads to the perturbation forms

dθ′

dt
= −v′ · ∇θa +H′ , (7a)

du′

dt
= −v′ · ∇ua −

θ

θ0
G̃∇φ′ − θ′

θ0
G̃∇φa

− f × u′ +MMM′(u′,ua) + DDD ′(u′,ua) ,
(7b)

where

H′ = H−Ha ,

v′ = G̃Tu′ ,

MMM′(u′,ua) =MMM(u′ + ua)−MMM(ua) ,

DDD ′(u′,ua) = DDD(u′ + ua)− DDD(ua) ,

(8)

the last of which reduces to DDD ′ = DDD(u′) for a solution-independent viscosity.

Among the two perturbation equations in (7), the entropy equation (7a) is
straightforward to interpret. The corresponding (specific) momentum equation
(7b) is revealing, in that it reduces a total of all ambient forcings into a
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generalised 3D buoyancy term relating to θ′∇φa on the rhs. This can be seen
readily when representing G̃∇φa in terms of (3c) as

G̃∇φa =
θ0
θa

(
g − f × ua +MMM(ua) + DDD(ua)−

daua
dt

)
. (9)

Importantly, substituting (9) in (7b) and manipulating the terms—such as to
separate the gravitational, inertial and dissipative forcings on the rhs—leads
to an alternative perturbation form of the momentum equation

du′

dt
=− v′ · ∇ua −

θ

θ0
G̃∇φ′ − g

θ′

θa
− f ×

(
u− θ

θa
ua

)

+

(
MMM(u)− θ

θa
MMM(ua)

)
+

(
DDD(u)− θ

θa
DDD(ua)

)
+
θ′

θa

daua
dt

,

(10)

where u = u′ + ua is utilised on the rhs. Furthermore, moving the first term
on the rhs of (10) to the lhs, then using (6a) and then moving dua/dt back to
the rhs to combine it with the last term, produces

du

dt
=− θ

θ0
G̃∇φ′ − g

θ′

θa
− f ×

(
u− θ

θa
ua

)

+

(
MMM(u)− θ

θa
MMM(ua)

)
+

(
DDD(u)− θ

θa
DDD(ua)

)
+

θ

θa

daua
dt

.

(11)

The latter form is already familiar from [35,36]—cf. eqs. (39) and (1c), respec-
tively, in [35] and [36]—where it was used for the special case of the thermally
balanced zonal wind (inviscid) in (3) implying daua/dt ≡ 0 and DDD(ua) ≡ 0 on
the lhs and rhs of (3c), respectively. Moreover, the process of navigating from
(7b) to (11) suggests yet another form

du

dt
=− θ

θ0
G̃∇φ′ − θ′

θ0
G̃∇φa − f × (u− ua)

+ (MMM(u)−MMM(ua)) + (DDD(u)− DDD(ua)) +
daua
dt

,

(12)

a variant of (11) formulated in terms of the generalised buoyancy or, alter-
natively, a variant of (7b) formulated in terms of full velocity rather than its
perturbations.

2.3.2 Discussion

The four perturbation forms of the momentum equation (7b), (10), (11) and
(12) are mathematically equivalent, as their derivations only manipulate se-
lected terms in the equations and redefine dependent variables. From the per-
spective of numerical approximations, however, different forms enable novel
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algorithmic designs, with (7b) promising greater efficacy, especially in the con-
text of “long or fussy integrations” [19]. Because of the aforementioned speci-
ficity of global atmospheric flows, our focus is on two-time-level nonoscillatory
forward-in-time (NFT) integrators, implicit with respect to acoustic, buoyant,
and rotational modes. At the highest level, the NFT template represents the
problem solution as a sum of explicit and implicit terms,

ψψψn+1
i = Ai

(
ψψψn+0.5δtRRR(ψψψn)

)
+0.5δtRRRi(ψψψ

n+1) ≡ ψ̂ψψ i +0.5δtRRRi(ψψψ
n+1) (13)

where ψψψ symbolises the vector of dependent variables (u, θ, φ, ρ) or pertur-
bations thereof, n and i refer to the temporal and spatial position on a dis-
cretisation mesh, A symbolises a NFT advective transport operator, and RRR
marks the cumulative forcings on the rhs of the PDE system at hand. The
template (13) is common for both the advective ( dψψψ/dt = RRR ) and the con-
servative ( ∂Gρψψψ/∂t + ∇ · Gρvψψψ = GρRRR ) forms of the governing equations.
In the former case, (13) represents a class of trajectory-wise semi-Lagrangian
integrators, whereas in the latter case it refers to a class of control-volume-
wise Eulerian integrators. Generally, RRR is composed of linear and nonlinear
complements in terms of ψψψ. The nonlinear elements are explicitly predicted
at n + 1, upon which all linear terms are treated implicitly. This class of
algorithms—widely-documented in the literature, see [35,36] and references
therein—benefits both computational stability and accuracy of discrete inte-
grations. In particular, the adopted trapezoidal-rule integration of all restor-
ing forces is free of amplitude errors, which is especially important for rep-
resenting slow oscillations and wave phenomena in geo/astrophysical systems
[43,4,32,45,8,24], and different perturbation forms encourage different level of
implicitness in determining final solutions for ψψψn+1.

Among (7b), (10), (11) and (12), (7b) implies integrators with the highest de-
gree of implicitness as, except for the coefficient of the pressure gradient and
the metric forcing, the remaining rhs can be viewed as an action of a linear
operator on the vector of the perturbation variables (u′, φ′, θ′). There are two
noteworthy aspects of (7b). One is the convective derivative of the ambient
velocity component analogous to the convective derivative of the ambient po-
tential temperature in (7a). The other is the vectorial buoyancy term, ∝ θ′,
appearing in all three components of the momentum equation. This contrasts
with (11), familiar from solving implicitly for the full velocity with buoyancy
standardly confined to the vertical (viz. radial on the sphere) component equa-
tion aligned with g. Furthermore, all coefficients θ/θa on the rhs of (11) are
predicted explicitly at tn+1. The form (10) is intermediate between (7b) and
(11), in that it retains many aspects of the familiar design while still solving for
the velocity perturbations. Conversely, (12) retains the generalised buoyancy
of (7b) while solving for the full velocity. The ability of solving all four forms
is useful for assessing the relative importance of various terms and balances
in numerical integrations. In the following, we shall focus on the complete de-
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scription of (7b), as it appears the most promising in terms of computational
efficacy and implementation flexibility while revealing the most challenging
elliptic Helmholtz problem associated with the implicit integration procedure.
Furthermore, having an effective integrator for (7b) enables incorporation of
the other three options in the same model code with relative ease.

3 NUMERICAL APPROXIMATIONS

3.1 Semi-implicit integrators

The system of PDEs based on (1a), (7a) and (7b) is cast in the conservation
form

∂Gρ
∂t

+∇ · (Gρv) = 0 , (14a)

∂Gρθ′

∂t
+∇ · (Gρvθ′) = −Gρ

(
G̃Tu′ · ∇θa −H′ − αθθ′

)
, (14b)

∂Gρu′

∂t
+∇ · (Gρv ⊗ u′) =− Gρ

(
G̃Tu′ · ∇ua +

θ

θ0
G̃∇φ′ + θ′

θ0
G̃∇φa

+ f × u′ −MMM′(u,ua)− DDD ′(u,ua)− αuu′
)
,

(14c)

and consistently augmented with the relaxation terms −αθθ′ and −αuu′ in the
entropy and momentum equation, respectively. These numerical devices sim-
ulate, e.g. wave absorbing devices in the vicinity of the open boundaries [27]
and/or immersed solids [31], or provide a basic tool for time-continuous data
assimilation [3]. The coefficients αθ and αu—generally, functions of (x, t)—
represent inverse time-scales for the relaxation of actual potential temperature
and velocity fields towards their ambient values. Although numerically moti-
vated, these devices are treated consistently with physical forcings and need
to be rigorously accounted for in the construction of semi-implicit integrators;
cf. Appendix A in [22].

The semi-implicit integrator of the system (14) adopts the general NFT tem-
plate (13) following the procedure detailed in [35,36]. This procedure com-
mences with integration of the mass continuity equation (14a) as

ρn+1
i = Ai

(
ρn, (vG)n+1/2 ,Gn,Gn+1

)
=⇒ Vn+1/2 = v⊥Gρn+1/2

(15)

where A denotes a bespoke multidimensional positive definite advection trans-
port algorithm (MPDATA) for compressible atmospheric flows [13], a hybrid
[36] of structured-grid [30] and unstructured-mesh [29] schemes for the verti-
cal and horizontal discretisations. Given the provision of a first-order accurate
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estimate of the advector (vG)n+1/2 at the intermediate time level tn+1/2, Ai

provides a second-order accurate solution for ρn+1
i ∀ i, together with the cumu-

lative face-normal advective mass fluxes Vn+1/2. These advective mass fluxes
and the updated density ρn+1 are subsequently applied in the integration of
(14b) and (14c) following (13). Namely,

θ′
n+1
i = θ̂′i − 0.5δt

(
G̃Tu′

n+1 · ∇θn+1
a + αθθ′

n+1
)
i

(16a)

u′
n+1
i = û′i − 0.5δt

(
G̃Tu′

n+1 · ∇un+1
a

)
i

− 0.5δt

(
θ?

θ0
G̃∇φ′ n+1

+
θ′ n+1

θ0
G̃∇φn+1

a

)
i

− 0.5δt
(
f × u′

n+1 −MMM′(u′
?
,un+1

a ) + αuu′
n+1

)
i
,

(16b)

where:

θ̂′i = Ai

(
θ̃′,Vn+1/2, (ρG)n, (ρG)n+1

)
, θ̃′ =

(
θ′ + 0.5δtRθ

)n
; (17a)

û′i = Ai

(
ũ′,Vn+1/2, (ρG)n, (ρG)n+1

)
, ũ′ = (u′ + 0.5δtRRRu)

n
; (17b)

and where superscript ? on the rhs of (16b) refers to explicit predictors exe-
cuted iteratively and lagged behind the linear terms; see section 3.2 in [36].
Furthermore, the perturbation heat source H′ has been included in the θ̃′ ar-
gument of the transport operator, by adopting the Rθ = G̃Tu′ · ∇θa + 2H′
representation at tn. Analogously, RRRu subsumes the perturbation dissipation
term 2DDD ′.

The integrator outlined in (16) contains fully implicit trapezoidal integrals of
generalised buoyancy, Coriolis and relaxation terms, whereas trapezoidal in-
tegrals of the nonlinear terms of pressure-gradient and metric forcings employ
explicit predictors of full potential temperature and velocity, respectively. The
derivation of the closed-form expression for the velocity update is involving.
The overall idea is to substitute the potential temperature in the generalised
buoyancy term of (16b) with the rhs of the entropy integral (16a) and gather all
terms depending on un+1 on the lhs of the momentum integral, upon which the
closed-form expression for velocity update emerges as an inversion of a linear
problem. To simplify the notation, in the following the spatial position index
i is dropped everywhere, as all dependent variables, coefficients and terms are
co-located in (16). Similarly, the temporal index n + 1 is also dropped, as
there is no ambiguity. Furthermore, the ratios of the potential temperature
and its reference value are subsequently referred to as θ/θ0 = Θ, whereas
δht = 0.5δt. Because further derivations require an intricate component repre-
sentation of the vector equation (16b), we adopt the notations u = (ux, uy, uz)
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and G̃∇ = ∇̃ = (∂̃x, ∂̃y, ∂̃z).
1 We also note the auxiliary relation

∀ ψ, (G̃Tu) · ∇ψ = u · (G̃∇ψ) ≡ u · ∇̃ψ , (18)

and define two auxiliary parameters

τ θ := δht (1 + δht α
θ)−1 , τu := δht (1 + δht α

u)−1 . (19)

With these simplifications (16a) can be rewritten as

Θ′ =
τ θ

δht

(
Θ̂′ − δhtu′ ∇̃Θa

)
, (20)

upon which (16b) can be rearranged as

u′ + τuu′ · ∇̃ua + τuf × u′ − τuτ θ
(
u′ · ∇̃Θa

)
∇̃φa

=
̂̂
u′ − τuΘ? ∇̃φ′ .

(21)

where the resulting explicit part of the velocity solution is

̂̂
u′ =

τu

δht

(
û′ − τ θΘ̂′ ∇̃φa + δhtMMM′(u?,ua)

)
. (22)

The implicit (in u′) equation (21) reveals the linear problem

L u′ =
̂̂
u′ − τuΘ? ∇̃φ′ =⇒ (23a)

u′ =
ˇ̌
u′ −C∇φ′ ; ˇ̌u′ = L−1

̂̂
u′ , C = τuΘ? L−1G̃ , (23b)

cf. §3.2 in [36]. The implied inverse (23b) provides closed-form expression
for the perturbation velocity update, provided the availability of φ′. For the
acoustic scheme that resolves propagation of sound waves, φ′ directly derives
from the gas law (2), and so (23b) basically completes the solution [35]. For
semi-implicit integrators that admit soundproof time steps, the closed-form
expression for u′ in (23b) is a necessary prerequisite of the elliptic boundary
value problem at the heart of the FVM [35,36]. The key element of (23b) is the
linear operator L, from which L−1 and C straightforwardly follow. Because
(21) differs from all NFT semi-implicit forms presented in the past [25,27,22],
the details of L are fully documented in Appendix B, whereas formulating the
elliptic pressure equation is discussed next.

1 Consider that each ∂̃ is composed of three terms; e.g. ∂̃x = g11∂x + g12∂y + g13∂z,

where gij are entries of G̃.
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3.2 Elliptic boundary value problem

3.2.1 Seasoned formulation

The boundary value problem (BVP) for ϕ ≡ φ′ supersedes (2) with its advec-
tive form d(Eq.2)/dt that, when integrated consistently with the model nu-
merics, can ensure computational stability independent of the speed of sound
[35,15,36,37]. In particular, recalling from §2.1 that v = G̃Tu, (23) entails

v = ˇ̌v − G̃TC∇ϕ , with ˇ̌v = G̃T ˇ̌u ≡ G̃T(ˇ̌u′ + ua) , (24)

whereby d/dt(2) leads to the PDE

∂Gρϕ
∂t

+∇ · (Gρvϕ) = Gρ
3∑
`=1

(
a`
ζ`
∇ · ζ`(ˇ̌v − G̃TC∇ϕ)

)
+ bϕ+ c , (25)

where coefficients a`, b, c may depend on ϕ but the modified densities ζ`
are explicitly known. The PDE (25) is integrated to O(δt2) with a mixed
forward/backward variant of the template algorithm (13)

ϕn+1
i = Ai

(
ϕ̃,Vn+1/2, ρ∗n, ρ∗n+1

)
+ δtR̃ϕ|n+1

i ≡ ϕ̂i + δtR̃ϕ|n+1
i , (26)

where R̃ϕ ≡ [rhs(25)− (bϕ+ c)]/Gρ denotes the implicit forcing composed of
the three divergence operators on the rhs of (25), while ϕ̃ = [ϕ+ δt(bϕ+ c)]n

under A combines the past pressure perturbation with the explicit thermody-
namic forcing; cf. [36,37] for details. Altogether, the template (26) provides a
discrete implicit constraint for (24), and thus for (23b), 2

0 = −
3∑
`=1

(
A?`
ζ`
∇ · ζ`(ˇ̌v − G̃TC∇ϕ)

)
−B?(ϕ− ϕ̂) . (27)

The coefficients A? and B? in (27) result from coefficients a` in (25) and the
superscript ? indicates that their dependence on ϕ is lagged. The Helmholtz
problem (27) was discussed in [35,15]. In NFT codes, we solve (27) with a
bespoke nonsymmetric preconditioned Generalised Conjugate Residual (GCR)
approach, widely discussed in the literature; see [33] for a recent overview
and a comprehensive list of references. The solution of (27) provides updated
pressure perturbation variable ϕ that subsequently completes the solution for
v in (24) and u′ = [G̃T ]−1v − ua. This completes the theory of the new
perturbation equations and their semi-implicit NFT integrators.

2 Taking the differential of an ideal gas law (2), and using R = cp − cv, leads to
cv dT = T cp d ln θ − p d(1/ρ); so (27) amounts to an internal energy constraint.
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3.2.2 Implementation

The formulation of the BVP (27) summarised above retains the structure of
the analogous BVP established for the “full-velocity” integrators of (11) ad-
vanced in [35,36]. Taking into account the substantial complexity of the new
perturbation approach, retaining this structure minimises the burden of re-
formulating the NFT model solver, in essence, to the re-specification of the
explicit vector field and the fields of coefficients that enter the semi-implicit
integrator and the BVP, while leaving intact the elliptic solver per se and
its elaborate boundary conditions, generally imposed along time-dependent
curvilinear boundaries [22,42,28,11,35]. However, notwithstanding the com-
pact symbolic representation of the linear operators L, L−1, and C outlined
above, programming the optimal computational representation of (27), is still
demanding. The goal is to minimise the round-off error and computational ex-
pense implied by straightforward matrix operations of Appendix B, by taking
advantage of numerous analytic cancellations and judicious rearrangements to
minimise floating point operations of the implicit solver.

The common molecule ζ`
−1∇ · ζ`(ˇ̌v − G̃TC∇ϕ) of the three Poisson op-

erators in (27), can be computationally intensive and, thus, determining the
complexity and the computational cost of evaluating the generalised Helmholtz
operator. Following Appendix A of [22], this molecule forms with accuracy to
a multiplicative factor the elliptic Poisson equation for the anelastic PDEs
evaluated as

1

ζ`

∂

∂xj

[
ζ`E

(
Ṽ j − C̃ jk ∂ϕ

∂xk

)]
= 0 , (28)

where j, k = 1, 2, 3, repeating indices indicate summation, and functions Ṽ j

and C̃ jk are

Ṽ j = G̃j
pV

p , C̃ jk = G̃j
pC

pk ; p = 1, 2, 3. (29)

Here, scalar fields G̃j
p correspond to the entries gpj of the matrix G̃T , while

V p and C pk are specified in detail in Appendix A of [22] for the anelastic
system [18] cast in a generalised curvilinear framework common to EULAG
and FVM. However, thanks to the coefficient field E the operator on the lhs
can accommodate equally well the pseudo-incompressible [6] and fully com-
pressible Euler equations discussed in this paper. For instance, in the latter
case

E Ṽ j ≡ ˇ̌vj ≡ G̃j
p
ˇ̌up , E C̃ jk ≡ [G̃TC]jk (30)

that de facto redefines the Ṽ j and C̃ jk input to the solver as the reciprocals of
the respective rhs in (30) and the scalar field E . In principle there is substantial
freedom in defining E , but its purpose is to factor out the greatest common
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factor of all entries [G̃TC]jk; e.g. E ∝ Θ? {L}−1, as suggested by the forms of
C and L−1 specified in (23b) and Appendix B, respectively.

With the given design, all explicit elements of the molecule (28) need to be
calculated once per call of the elliptic solver; whereas in calculations with fixed
geometry and constant time step, all C̃ jk coefficients can be precomputed
at the model initialisation. In the next section, the examples of applications
will be shown for the perturbation forms (7b), (10), (11) and (12) assuming
geostrophically balanced ambient states

[ρa, θa, φa,ua] = [ρa(y, z), θa(y, z), φa(y, z), (ua(y, z), 0, 0)] . (31)

Even such a simple ambient state adds complexity to existing codes that
employ (28). The interested reader is referred to Appendix C, where a complete
description of (28) is provided for the selected class of ambient states (31).

4 RESULTS

4.1 Preamble

Herein we verify the theoretical developments of the preceding sections, the
prospective goal of which is to extend the reliable range of simulations of
weather and climate that depend on both initial and boundary conditions.
Here, we do not anticipate spectacular differences between the solutions gen-
erated with the established all-scale compressible Euler equations and their
newly developed perturbation forms, simply because the established equations
are already proven to provide quality solutions in state-of-the-art weather-
prediction models [14]. Our objective is to verify that the new perturbation
forms reproduce the established solutions for shorter integration times at the
equivalent computational cost, and to look for hints indicating the potential
of the new forms for extending the range and reliability of numerical weather
prediction. We demonstrate this with an evolution of planetary baroclinic in-
stability that epitomises life cycles of natural weather systems in mid-latitudes,
while being well studied theoretically and numerically. In particular, we ex-
tend the range of the adopted benchmark [40] and follow the description in
the 2016 edition of DCMIP (Dynamical Core Model Intercomparison Project)
[41].

To illustrate the results using the different semi-implicit integrators that stem
from alternate perturbation formulations of the all-scale compressible Euler
equations, we compare the numerical solutions to the systems (7b), (10), (11)
and (12); hereafter referred to as GBIS, IS, REF and GB—for “generalised
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buoyancy and implicit shears”, “implicit shears”, “reference” and “generalised
buoyancy”, respectively. Rather than focusing on the results up to day 10, we
look at later solutions when the flow transition to geophysical turbulence and
the different equation sets and models start diverging. Comparing extended-
range solutions is currently not considered in model intercomparisons [40].

4.2 Baroclinic instability

The adopted basic setup assumes a dry, inviscid and adiabatic, deep atmo-
sphere with two mid-latitude zonal jets symmetric about the equator, in ther-
mal wind balance with the meridional temperature distribution. A localised
zonal velocity perturbation in the form of a simple exponential bell (tapered
to zero in the vertical) excites the instability, leading to eastward propagating
Rossby modes. After about 8 days of integration, the baroclinic wave breaks
and forms sharp fronts in the lower troposphere, whereas after 15 days the flow
in the region of the northerly jet becomes turbulent. Notwithstanding, after 15
days the results of all conducted simulations match each other closely—within
10% of the solution amplitude—regardless of the selected equations, and are
hardly distinguishable by eye. However three days later, the analogous solu-
tions evince departures sufficiently large to substantiate the significance of the
new equations.

On the numerical side, the simulations resolve spherical surfaces with the
median-dual finite-volume mesh developed about the nodes of the octahedral
reduced Gaussian grid [36]. The associated primary mesh is composed of tri-
angular and quadrilateral elements as illustrated in, e.g. Fig. 2 of [13]—the
dual mesh associated with this primary mesh consists of general polygons. For
computational economy, the discussion is focused on a series of experiments
using the O180 octahedral reduced Gaussian grid, corresponding to a quasi-
uniform mesh spacing of about 55 km, and only selected two experiments are
shown for the analogous O640 reduced Gaussian grid, with mesh spacing of
about 16 km. 3 In the vertical, the discretisation is structured and uniform in
computational space. Stretched smoothly by means of continuous mappings,
the vertical grid in physical space resolves a 44.25 km deep domain with 59
intervals varying from a minimum of 84 m near the surface to 1690 m near the
model top. The variable time step targets the maximum advective Courant
number 0.95—the time step for the O180 grid varied from 1200 s during the
first 6 days to 375 s towards the end of the 20 day simulation. The calcula-
tions are explicitly inviscid, delegating the solution regularisation at the mesh
resolution to nonoscillatory properties of the MPDATA based integrators.

3 The octahedral reduced Gaussian grid is special, in that it also supports spherical
harmonics transforms [36].
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Fig. 1. Surface potential temperature perturbation θ′ after 18 simulated days. The
solutions GBIS and REF, corresponding to perturbation equations (7b) and (11)
are shown at the top and bottom, respectively. The results from the O180 and 0640
mesh are shown on the left and right, correspondingly.

Figure 1 shows θ′ at the surface (z = 0) after 18 days of the instability evo-
lution for the GBIS and REF solutions to (7b) and (11), respectively, in the
top and bottom row. The IS and GB solutions to (10) and (12), respectively,
are not displayed as IS (GB) closely corresponds to the GBIS (REF) results,
due to the dominant role of the vertical shear of the ambient flow; cf. Fig 1
in [40]. The O180 results in the left column are supplemented with the corre-
sponding higher-resolution O640 results in the right column. In terms of the
overall pattern, the GBIS and REF solutions match each other closely, and
their relative departures appear confined to details, except for the more ad-
vanced development of the instability in the southern hemisphere for the O180
reference solution, visibly diminished towards the GBIS result at O640 reso-
lution. Although this somewhat delayed development of the instability in the
southern hemisphere appears consistent with the intent of the IS design—to
mitigate spurious nonlinear interactions of balanced ambient flows with trun-
cation errors of advection schemes and to possibly capture energy cascades
with greater accuracy—its actual cause is unclear.

The southern hemisphere instability onset was used as a criterion in the HI-
WPP [9] dynamical core intercomparison to illustrate the impact of increased
truncation errors near irregularities of the computational mesh. After day
8 when the wave breaks, the nonlinear effects become important and vari-
ous model predictions tend to diverge afterwards. In particular, the overall
gentle excitation of the instability on the southern hemisphere—physically
due to the gravity waves radiating from the baroclinic eddies in the northern
hemisphere—can be easily accelerated by the errors (truncation or round-off)
of numerical approximations; cf. Section 5e in [10] for a discussion. To assess
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Fig. 2. The 18 days surface θ′ REF (left) and GBIS (right) solutions on the O180
grid without the initial perturbation.

the role of discretisation errors due to irregularity of the mesh, we repeat the
O180 experiment but with zero initial perturbations on both hemispheres. Be-
cause the discretisation in the horizontal is unstructured, partial derivatives
in the zonal and meridional directions are evaluated from the Gauss diver-
gence theorem [36], using the same area stencil. In consequence, they do not
identically vanish for uniform fields in the zonal and meridional directions,
respectively. This leads to the so-called grid imprinting, which can provide
sufficient perturbations to excite the instability. The REF and GBIS solutions
without initial perturbations are shown in Fig. 2 for the O180 mesh. The cor-
responding O640 mesh results are undisplayable, as they reflect a gridscale
noise concentrated about four special points on each hemisphere—detectable
in the left panel by wider negative perturbations at the approximate locations
of 30◦, 120◦, 210◦ and 300◦—with the (average; standard deviation) measures
of (2.2×10−4; 2.4×10−2) and (2.7×10−11; 7.4×10−6), respectively, for REF
and GBIS solutions. Altogether, the potential temperature perturbations in
simulations without initial perturbations, are at least two and five orders of
magnitude smaller, for REF and GBIS respectively, than with the initial per-
turbations applied. This together with the wavelenght roughly corresponding
to the fastest growing mode of the baroclinic instability attests that the exci-
tation of the instability in the southern hemisphere is likely due to the resolved
global flow, whose later evolution proceeds differently in the GBIS and REF
results due to different behavioural errors of their corresponding solvers. Im-
portantly, however, the magnitude of the grid imprinting is four orders of
magnitude smaller in the GBIS solution than in the REF solutions.

Fig. 3. GBIS-REF differences of the θ′ solutions in Fig. 1.

The difference plots in Fig. 3 quantify the GBIS-REF differences of the solu-
tions in Fig. 1, using a bespoke nonlinear colour scale that covers about half
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the range of the solution amplitude ∼50K. While the overall differences are
comparable with the signal amplitude (approximately within 50% of the am-
plitude) for both resolutions employed in Fig. 1, there are conspicuous depar-
tures of the differences per se between the two resolutions. At lower resolution,
the GBIS-REF departures emphasize ”turbulent” trailing edge—followed by
the leading edge due to zonal periodicity—of the northern baroclinic wave
train and the growing instability in the southern hemisphere. At the higher
resolution these departures diminish in favour of sharp frontal structures in
the northern hemisphere. Consider that after 10 days—cf. section 6.2 in [13]—
these same differences are only within 1% of the solution amplitude at both
resolutions. For reference, the magnitude of the differences resulting from only
stochastic (i.e. no initial) perturbations applied to the physical parametriza-
tions in ECMWF’s ensemble system [17] are typically 1% over a 48 hour
forecast period when comparing control and perturbed forecasts for selected
parameters. Consequently, the effects due to the alternate perturbation equa-
tions are altogether subtle but potentially significant.

Fig. 4. The difference GBIS minus REF for surface potential temperature (top),
zonal wind [m/s] at 850hPa (centre) and surface pressure [hPa] (bottom) of the 18
days moist solutions.

17



Adding moisture to the problem [41] invigorates the evolution of the baroclinic
eddies and increases the solution uncertainty [47,12]. 4 This is evidenced in
Fig. 4 that show the GBIS-REF differences for 18 days moist solutions cor-
responding to that shown in the left column of Fig. 3, supplied with plots of
zonal wind at 850hPa and surface pressure. The differences between the moist
GBIS and REF results are more apparent. In the northern hemisphere they
are primarily correlated with the steep fronts of the overturning eddies (viz.
advanced nonlinearity). In the southern hemisphere, the persistently more ad-
vanced development of the instability in the REF solution is still evident.
Because moisture substantially complicates gravity wave dynamics [5,1] and
energises spectra in small scales [16], susceptible to truncation and round-off
errors, the consistency of the moist results with the dry solutions indicates
the dominant role of planetary-scale modulation in retarding the southern
hemispheric evolution in the GBIS result. The zonal wind at 850hPa and sur-
face pressure are are both weather evolution relevant parameters and clearly
indicate planetary-scale differences.

Fig. 5. GBIS-REF departures of the 18 days surface θ′ solutions on the O180 grid
for the symmetrically excited instability. Left and right panels show, respectively,
the solutions with one (default) and two outer iterations in (16b) and (27).

To further substantiate the improved accuracy of the GBIS solutions for global
weather evolution, we perturb the zonal jets symmetrically on both hemi-
spheres. There are two distinct aspects of this experiment. On the numerical
side, the results verify the cross-equatorial symmetry of the numerical solu-
tions, thereby exposing the solution departures solely due to the truncation
errors. On the physical side, the results are more relevant to real weather,
continuously forced on both hemispheres. In terms of truncation errors, the
GBIS solutions are by design more accurate and less dissipative than the
REF solutions (recall the discussion in section 2.3.2). In particular, the semi-
implicit integrators (16) for GBIS more broadly rely on the trapezoidal inte-
grals, whereby there are fewer lagged coefficients—marked with ? in (16b) and
(27)—in the outer iteration that improves the explicit estimates in the non-
linear terms. While all simulations discussed so far used one (default) outer
iteration, the current experiment was also conducted with two outer iterations

4 Extending (7b) to moist precipitating thermodynamics of [37] amounts to com-
bining the moisture contribution, (58) in [37], to the density potential temperature
in the buoyancy force with θ̂′ in the V and W expressions (44) of the Appendix C.
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in REF and GBIS semi-implicit integrators. Figure 5 shows the hemispheric
patterns of the 18 day GBIS-REF departures of θ′ solutions on the O180 grid
with left and right panels corresponding to the default and two outer iter-
ations. Both results evince perfect equatorial symmetry with the GBIS and
REF results differing pattern-wise in fine details everywhere but in the re-
gion where the wavetrain leading and trailing edges collapse evincing solution
departures comparable to the solution amplitude at ∼50%. Moreover, the so-
lutions departures are visibly smaller for the runs with two outer iterations.
Although this this illustrates the iteration convergence, it does not resolve
which solver is more accurate. On the other hand, Fig. 6 quantifies the im-
pact of the additional iteration on each solver, by showing differences of REF
(left) and GBIS (right) results with two and one outer iterations. Clearly the
additional iteration has visibly smaller impact on the GBIS result, which doc-
uments that it is REF that approaches GBIS in Fig. 5, and not vice versa.
Incidentally, the latter makes the GBIS run effectively cheaper than REF for
short and medium-range applications, because adding the outer iteration to
REF with effectively similar solution errors increases its execution time (oth-
erwise comparable in both cases) by ∼10%.

Fig. 6. The respective departures of REF (left) and GBIS (right) solutions with two
and one (default) outer iterations.

5 CONCLUDING REMARKS

The key achievement of the technical development summarised in this paper is
a novel numerical approach and implementation of perturbation equations for
more accurate simulations of all scale atmospheric dynamics. The new pertur-
bation form (7) of the compressible Euler equations and the associated numer-
ical solvers extend the equivalent apparatus advanced in [35,15,16,36,37] for
the equations formulated in terms of the pressure and entropy perturbations
onto the velocity perturbations. This opens new opportunities for extended-
range and seasonal weather and climate applications, by enabling exploitation
as well as a dissection of the solution sensitivities to various processes and
realisations of numerical errors.

Apart from the practical consequences of reducing grid imprinting on more
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flexible but non-uniform meshes, the new formulation requires a learning effort
in real applications in order to be used beneficially. The perturbation equations
are formulated about a principally arbitrary ambient state that satisfies the
generic equations (from which the perturbation forms derive) or a subset. Not
all the ambient states are expected to be useful, and a separate research effort
is required to identify suitable ambient states for weather simulations with full
complexity. The examples provided in this paper assumed a class of idealised
zonally uniform ambient states in a geostrophic balance (31). Such simple
states already expose the complexity of the development, mainly concentrated
in the coefficients of the elliptic BVP (27) at the heart of the large-time-step
semi-implicit integrators (16) for the all-scale compressible Euler equations.

The tailored derivations of the BVP coefficients summarised in Appendices B
and C are instructional, as they shed light on the physical significance of the
new development and the associated interpretation of the governing equations.
For instance, (39) reveals how the ambient shears modify the Coriolis force,
hinting that the trapezoidal integrals of the −v′ · ∇ua terms on the rhs of
the momentum (vector) equation (7b) should benefit long-term simulations of
large scale flows dominated by vorticity dynamics. In the established formu-
lation (11) the same terms are included in the advection, thus being subject
to truncation terms that serve monotonicity of the transport but dilute the
amplitude of the ambient balance, which is circumvented in (7b).

Extended-range simulations of the planetary baroclinic instability illustrate
the impact of the new perturbation formulation. As all considered formu-
lations are mathematically equivalent, and their associated solvers are for-
mally second-order-accurate, we verified no significant differences in short-
and medium-range weather evolution. The simulations show that extreme so-
lution differences between different formulations are within 1% and 10% of
the solution amplitude, respectively, after 10 and 15 days of the instability
evolution, but become comparable to the amplitude (50%) three days later.
At this later time there is a marked signal that (7b) offers improved accuracy
in the long planetary waves, attributable to a better conditioning of the BVP
problem. Because the accurate representation of the large scales is a prerequi-
site for extended-range predictability, the generalised perturbation equations
offer significant potential for further evaluation.

The hypothesis that GBIS is also more accurate than REF due to an improved
accuracy of the implicit-shear solutions in planetary scales is corroborated
with similar EULAG simulations that integrate (11) on a regular longitude-
latitude grid, using two variants of the operator preconditioning in the elliptic
solver. The standard deflation preconditioner, common to EULAG and FVM,
relies on the direct inversion in the vertical, whereas its optional (in EULAG)
ADI extension [21] directly inverts the operator also in the zonal direction.
Calculations with the ADI variant evince substantially smaller residual errors
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on planetary scales (not shown).

All considerations so far exploited a pristine approach with perturbations de-
fined with respect to the actual solutions of the generic equations. However,
the developed numerical apparatus offers technical advantages equally ap-
plicable to approximate ambient states constructed based on alternative or
surrogate models and/or (machine-learned) data. This may call for the inclu-
sion of additional forcing terms (bias correction) to model the ambient state
errors as opposed to bias correcting the entire state evolution —in the spirit
of turbulence closures or continuous data assimilation [3]. However, impor-
tantly this will not affect the machinery of the semi-implicit integrators and
the BVP coefficients. Consequently, the proposed solvers form the basis for the
development of new multilevel methods, time parallel and/or hardware-failure
resilient algorithms as well as blending with novel data-informed approaches.

Acknowledgements: This work was supported in part by funding received from
the European Research Council under the European Union’s Seventh Frame-
work Programme (FP7/2012/ERC Grant agreement no. 320375).

Appendix A. Specifications of the spherical frame

In the spherical curvilinear framework of [22], the vector u represents the
physical velocity with components aligned at every point of the spherical shell
with axes of a local Cartesian frame (subsequently marked as c) tangent to the
lower surface (r = a) of the shell; r is the radial component of the vector radius,
and a is the radius of the sphere, cf. Fig. 7.7, section 7.2 in [7]. Consequently,
dxc = r cosφ dλ, dyc = r dφ and zc = r−a; where λ and φ denote longitude and
latitude angles, respectively. Then, in the formalism of Sections 2 and 3 and
in the absence of coordinate stretching, x = aλ, y = aφ, and z = zc; thereby
effectively employing longitude-latitude coordinates standard in many global
atmospheric models [38]. Furthermore, the coefficient matrix G̃ consists of zero
off-diagonal entries, whereas G̃1

1 = [Γ cos(y/a)]−1, G̃2
2 = Γ−1, and G̃3

3 = 1. Here,
Γ = 1 + χ z/a, and indices 1, 2, and 3 correspond to x, y, and z components.
Consequently, the Jacobian is G = Γ2 cos(y/a). The parameter χ is set to unity
by default; whereas the optional setting χ = 0 selects the shallow atmosphere
approximation in the governing PDEs [44].

In the momentum equation, the components of the Coriolis acceleration are
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−f × u =
[
v f0 sin(y/a)− χw f0 cos(y/a) , (32)

−u f0 sin(y/a) ,

χ u f0 cos(y/a)
]
,

where u = [u, v, w] and f0 = 2|Ω|. Furthermore, the metric forcings (viz.,
component-wise Christoffel terms associated with the convective derivative of
the physical velocity) are,

MMM(u) = (Γa)−1
[

tan(y/a)u v − χ uw , (33)

− tan(y/a)uu− χ v w ,

χ (uu+ v v)
]
.

Appendix B. Details of the linear operator on the lhs of
(23a)

Expanding (21) in components leads to
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which upon regrouping all terms in the spirit of a matrix-vector product,
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reveals the entries of the linear operator L = [lij] in (23a) as

l11 = 1 + τu(∂̃xu
x
a − τ θ∂̃xΘa∂̃xφa) ,

l12 = τu(∂̃yu
x
a − τ θ∂̃yΘa∂̃xφa − f z) ,

l13 = τu(∂̃zu
x
a − τ θ∂̃zΘa∂̃xφa + f y) ,

(36a)

l21 = τu(∂̃xu
y
a − τ θ∂̃xΘa∂̃yφa + f z) ,

l22 = 1 + τu(∂̃yu
y
a − τ θ∂̃yΘa∂̃yφa) ,

l23 = τu(∂̃zu
y
a − τ θ∂̃zΘa∂̃yφa − fx) ,

(36b)

l31 = τu(∂̃xu
z
a − τ θ∂̃xΘa∂̃zφa − f y) ,

l32 = τu(∂̃yu
z
a − τ θ∂̃yΘa∂̃zφa) + fx) ,

l33 = 1 + τu(∂̃zu
z
a − τ θ∂̃zΘa∂̃zφa) .

(36c)

Having defined all entries of L, its inverse is evaluated as analytically as L−1 =
{L}−1adj(L) where {L} ≡ det(L) and “adj” denotes the matrix adjugate, with
column-wise entries:

adjl11 = l22l33 − l23l32 ,
adjl21 = l23l31 − l21l33 ,
adjl31 = l21l33 − l23l31 ,

(37a)

adjl12 = l13l32 − l12l33 ,
adjl22 = l11l33 − l13l31 ,
adjl32 = l12l31 − l11l32 ,

(37b)

adjl13 = l12l23 − l13l22 ,
adjl23 = l13l21 − l11l23 ,
adjl33 = l11l22 − l12l21 .

(37c)

Appendix C. Further details of the Poisson problem (28)

To highlight the connection of the matrix-algebra formalism of Appendix B
with hand-derived compact formulae of [22], it is instructive to specify further
details of (28), for the perturbation equations (7) and a class of zonally-uniform
ambient states (31) assumed in Sections 3.2.2 and 4. In particular, when solv-
ing (7b), accounting for ϑx ≡ 0 and adopting normalisations accordant with
[22] (to be explained shortly),

E −1 = [G3F̃2F3 + G2(1+F̃2F2)]ϑy + [G2F2F̃3 + G3(1 + F̃3F3)]ϑz

+(1+α̃∗)(1 + F̃2F2 + F̃3F3) .
(38)
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Here G2 and G3 correspond to normalised meridional and radial components
of θ−10 G̃∇φa, and

F̃2 = F2 + ∂̃∗zua , F̃3 = F3 − ∂̃∗yua, (39)

where the symbols Fj, ϑζ , α̃
∗ correspond to normalised components of the

Coriolis parameter, components of the ambient gradients ∇̃Θa and αθ, and
the asterisk by ∂̃y, ∂̃z marks the normalisation.

The functions V p and C pk from the rhs of (29) are compactly written as

V 1 = A U + BV −X W ,

V 2 = CU + DV + Y W ,

V 3 = H U + I V + ZW .

(40)

where the coefficients A to I (named after [22]) and X to Z (introduced
here for conciseness) are equal to

A = R + G2ϑy + G3ϑz ,

B = RF̃3 + G3(F̃2ϑy + F̃3ϑz) ,

X = −RF̃2 − G2(F̃2ϑy + F̃3ϑz) ,

(41)

C = −RF3 − (G2F2 + G3F3)ϑz ,

D = R(1 + F2F̃2) + G3ϑz ,

Y = RF̃2F3 − G2ϑz ,

(42)

and

H = RF2 + (G2F2 + G3F3)ϑy ,

I = RF2F̃3 − G3ϑy ,

Z = R(1 + F3F̃3) + G2ϑy

(43)

Here as well as in (38) and the model code, R = τu/τ θ (recall Eqs. 19),
whereas all the components of the Coriolis parameter, ambient gradients ∇̃Θa

and generalised buoyancy θ−10 G̃∇φa are multiplied by τu, in effect of which the
factor (1 + α∗)−1 ≡ τuδ−1h t in the corresponding formulae of [22] is absorbed
in definitions of the normalised fields. Furthermore, the velocities U , V and
W are

U =β ̂̂u+ ua ,

V =β ̂̂v + G̃2θ̂′ + δhtf3ua ,

W =β ̂̂w + G̃3θ̂′ − δhtf2ua ,
(44)

where β = δht/τ
u is the reciprocal of the normalising prefactor in (22), 5 and

G̃k = Gk/R.

5 Note two typos in (A.16) of [22]: θ̃′ should be LE(θ̃′) and θ′ = θ − θe, for consis-
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The coefficients C pk used in (29) take the explicit form:

C 11 =R(G̃1
1 + G̃1

2F̃3) + G2G̃
1
1ϑy + G3

[
G̃1

2F̃2ϑy + (G̃1
1 + G̃1

2F̃3)ϑz
]
,

C 12 =R(G̃2
1 + G̃2

2F̃3) + G2G̃
2
1ϑy + G3

[
G̃2

2F̃2ϑy + (G̃2
1 + G̃2

2F̃3)ϑz
]
,

C 13 =R(G̃3
1 + G̃3

2F̃3 − G̃3
3F̃2) + G3

[
G̃3

2F̃2ϑy + (G̃3
1 + G̃3

2F̃3)ϑz
]

+ Gy
[
−G̃3

3F̃3ϑz + (G̃3
1 − G̃3

3F̃2)ϑy
]
,

(45)

C 21 =R
[
−G̃1

1F3 + G̃1
2(1 + F2F̃2)

]
−
[
G2G̃

1
1F2 − G3(G̃

1
2 − G̃1

1F3)
]
ϑz ,

C 22 =R
[
−G̃2

1F3 + G̃2
2(1 + F2F̃2)

]
−
[
G2G̃

2
1F2 − G3(G̃

2
2 − G̃2

1F3)
]
ϑz ,

C 23 =R
[
−G̃3

1F3 + G̃3
2(1 + F2F̃2) + G̃3

3F̃2F3

]
+
[
G3(G̃

3
2 − G̃3

1F3)− G2(G̃
3
3 + G̃3

1F2)
]
ϑz ,

(46)

C 31 =R(G̃1
1F2 + G̃1

2F2F̃3) +
[
G2G̃

1
1F2 + G3(G̃

1
1F3 − G̃1

2)
]
ϑy ,

C 32 =R(G̃2
1F2 + G̃2

2F2F̃3) +
[
G2G̃

2
1F2 + G3(G̃

2
1F3 − G̃2

2)
]
ϑy ,

C 33 =R
[
G̃3

1F2 + G̃3
2F2F̃3 + G̃3

3(1 + F3F̃3)
]

+
[
G2(G̃

3
1F2 + G̃3

3) + G3(G̃
3
1F3 − G̃3

2)ϑy
]
.

(47)

The provided expressions are general, in that they account for all the four
forms of the considered perturbation equations. Namely, for (10)

G2 ≡ 0, G3 ≡ G , (48)

where G is the normalised gravitational acceleration of [22]; whereas for (12)

F̃2 ≡ F2 , F̃3 ≡ F3 . (49)

Furthermore, (11) combines (48) and (49), reproducing the formulae of [22]—
all under the assumption of ϑx ≡ 0. Consequently, the compact modifications
(48) and (49) verify the field E specified in (A.4) of [22], the explicit V p = ˇ̌up/E
velocities in their formulae (A.5)-(A.7) as well as the coefficients A -I in
their (A.8)-(A.15). The latter coefficients correspond to the entries of the
L−1E −1 operator that (here) acts on the explicit counterpart of the physical

velocity
̂̂
u′ + Lua—the components of which correspond in turn to U , V and

W converted to V p|p=1,2,3 in (A.5)-(A.7) of [22] and specified in their (A.14)-
(A.16). Furthermore, these modifications also verify the C pk coefficients in
(A.17)-(A.25).

tency with their Eq. (12).

25



References

[1] I. Barstad, W.W. Grabowski, P.K. Smolarkiewicz, Characteristics of large-scale
orographic precipitation: Evaluation of linear model in idealized problems, J.
Hydrol. 340 (2007) 78-90.

[2] P. Bauer, A. Thorpe, G. Brunet, The quiet revolution of numerical weather
prediction, Nature 525 (2015) 47–55.

[3] J.-F. Cossette, P. Charbonneau, P.K. Smolarkiewicz, M.P. Rast, Magnetically-
modulated heat transport in a global simulation of solar magneto-convection,
Astrophysics. J. 841 (2017) 65 (17pp).

[4] A. Dörnbrack, J.D. Doyle, T.P. Lane, R.D. Sharman, P.K. Smolarkiewicz, On
physical realizability and uncertainty of numerical solutions, Atmos. Sci. Let. 6
(2005) 118-122. doi:10.1002/asl.100

[5] D.R. Durran, J.B. Klemp, A compressible model for the simulation of moist
mountain waves, Mon. Weather Rev. 111 (1983) 2341–2361.

[6] D.R. Durran, Improving the anelastic approximation. J. Atmos. Sci. 46 (1989)
1453–1461.

[7] J.A. Dutton, The Ceaseless Wind, Dover Publications (1986) pp. 617.

[8] M. Ghizaru, P. Charbonneau, P.K. Smolarkiewicz, Magnetic Cycles in Global
Large-eddy Simulations of Solar Convection, Astrophys. J. Lett. 715 (2010)
L133–L137

[9] https://hiwpp.noaa.gov/.

[10] C. Jablonowski, D.L. Williamson, A baroclinic instability test case for
atmospheric model dynamical cores, Q.J.R. Meteorol. Soc. 132 (2006) 2943–
2975.
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[14] C. Kühnlein, S. Malardel, P.K. Smolarkiewicz, Simulation in the greyzone with
the Finite-Volume Module of the IFS, Workshop: Shedding light on the greyzone,
ECMWF, Reading, 13-16 Nov. 2017; https://www.ecmwf.int/sites/default/files/
elibrary/2017/17804-simulation-greyzone-finite-volume-module-ifs.pdf

26



[15] M.J. Kurowski, W.W. Grabowski, and P.K. Smolarkiewicz, Anelastic and
compressible simulations of moist deep convection, J. Atmos. Sci. 71 (2014) 3767–
3787.

[16] M.J. Kurowski, W.W. Grabowski, and P.K. Smolarkiewicz, Anelastic and
compressible simulations of moist dynamics at planetary scales, J. Atmos. Sci.
72 (2015) 3975–3995.

[17] M. Leutbecher et al., Stochastic representations of model uncertainties at
ECMWF: state of the art and future vision, Q.J. Roy. Meteorol. Soc., 143 (2017)
2315–2339.

[18] F.B. Lipps, R.S. Hemler, A scale analysis of deep moist convection and some
related numerical calculations, J. Atmos. Sci. 39 (1982) 2192–2210.

[19] H.R., Miller, 1991: A horror story about integration methods, J. Comput. Phys.,
93 (1991) 469–476.

[20] L. Magnusson, M. Alonso-Balmaseda, S. Corti, F. Molteni, T. Stockdale,
Evaluation of forecast strategies for seasonal and decadal forecasts in presence
of systematic model errors, Clim. Dyn. (2013), 41:23932409.

[21] Z.P. Piotrowski, B. Matejczyk, L. Marcinkowski, P.K. Smolarkiewicz, Parallel
ADI preconditioners for all-scale atmospheric models, in Parallel Processing and
Applied Mathematics, LNCS 9574, Springer International Publishing, 607-618.

[22] J.M. Prusa, P.K. Smolarkiewicz, An all-scale anelastic model for geophysical
flows: dynamic grid deformation, J. Comput. Phys. 190 (2003) 601–622.

[23] J.M. Prusa, P.K. Smolarkiewicz, A.A Wyszogrodzki, EULAG, a computational
model for multiscale flows, Comput. Fluids 37 (2008) 1193–1207

[24] E. Racine, P. Charbonneau, M. Ghizaru, A. Bouchat, P.K. Smolarkiewicz, On
the mode of dynamo action in a global large-eddy simulation of solar convection,
Astrophys. J. 735:46 (2011) 22 pp.

[25] P.K. Smolarkiewicz, L.G. Margolin, Variational solver for elliptic problems in
atmospheric flows, Appl. Math. Comp. Sci. 4 (1994) 527–551.

[26] P.K. Smolarkiewicz, L.G. Margolin, A.A Wyszogrodzki, A class of
nonhydrostatic global models, J. Atmos. Sci. 58 (2001) 349–364.

[27] P.K. Smolarkiewicz, L.G. Margolin: On forward-in-time differencing for fluids:
an Eulerian/semi-Lagrangian non-hydrostatic model for stratified flows, Atmos.-
Ocean, 35 (1997) 127–152.

[28] P.K. Smolarkiewicz, J.A. Prusa, Towards mesh adaptivity for geophysical
turbulence: continuous mapping approach, Int. J. Numer. Meth. Fluids 47 (2005)
789–801.

[29] P.K. Smolarkiewicz, J. Szmelter, MPDATA: An edge-based unstructured-grid
formulation, J. Comput. Phys. 206 (2005) 624-649.

27



[30] P.K. Smolarkiewicz, Multidimensional positive definite advection transport
algorithm: an overview, Int. J. Numer. Meth. Fluids 50 (2006) 1123–1144.

[31] P.K. Smolarkiewicz, R. Sharman, J. Weil, S.G. Perry, D. Heist, G. Bowker,
Building resolving large-eddy simulations and comparison with wind tunnel
experiments, J. Comput. Phys. 227 (2007) 633–653.

[32] P.K. Smolarkiewicz, A. Dörnbrack, Conservative integrals of adiabatic
Durran’s equations, Int. J. Numer. Meth. Fluids 56 (2008) 1513–1519.
doi: 10.1002/fld.1601

[33] P.K. Smolarkiewicz, J. Szmelter, A nonhydrostatic unstructured-mesh
soundproof model for simulation of internal gravity waves, Acta Geophysica 59
(2011) 1109–1134.

[34] P.K. Smolarkiewicz, P. Charbonneau, EULAG, a computational model for
multiscale flows: An MHD extension, J. Comput. Phys. 236 (2013) 608–623.

[35] P.K. Smolarkiewicz, C. Kühnlein, N.P. Wedi, A consistent framework for
discrete integrations of soundproof and compressible PDEs of atmospheric
dynamics, J. Comput. Phys. 263 (2014) 185-205

[36] P.K. Smolarkiewicz, W. Deconinck, M. Hamrud, C. Kühnlein, G. Mozdzynski,
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