Computer Physics Communications 220 (2017) 188-204

ééMPUTER PHYSICS
COMMUNICATIONS

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Atlas: A library for numerical weather prediction and climate @Cmssm
modelling

Willem Deconinck *, Peter Bauer, Michail Diamantakis, Mats Hamrud,

Christian Kiihnlein, Pedro Maciel, Gianmarco Mengaldo, Tiago Quintino,

Baudouin Raoult, Piotr K. Smolarkiewicz, Nils P. Wedi
European Centre for Medium-Range Weather Forecasts (ECMWF), Shinfield Park, Reading RG2 9AX, United Kingdom

ARTICLE INFO ABSTRACT

Article history: The algorithms underlying numerical weather prediction (NWP) and climate models that have been
Received 10 January 2017 developed in the past few decades face an increasing challenge caused by the paradigm shift imposed
Received in revised form 31 May 2017 by hardware vendors towards more energy-efficient devices. In order to provide a sustainable path
Accepted 5 July 2017

to exascale High Performance Computing (HPC), applications become increasingly restricted by energy
consumption. As a result, the emerging diverse and complex hardware solutions have a large impact on
the programming models traditionally used in NWP software, triggering a rethink of design choices for

Available online 22 July 2017

Keywords: R . .

Numerical weather prediction future masswely parallel software frameworks. In this paper, we present Atlas, a new software library that
Climate is currently being developed at the European Centre for Medium-Range Weather Forecasts (ECMWE),
Earth system with the scope of handling data structures required for NWP applications in a flexible and massively
High performance computing parallel way. Atlas provides a versatile framework for the future development of efficient NWP and climate
Meteorology applications on emerging HPC architectures. The applications range from full Earth system models, to
Flexible mesh data structure specific tools required for post-processing weather forecast products. The Atlas library thus constitutes a

step towards affordable exascale high-performance simulations by providing the necessary abstractions
that facilitate the application in heterogeneous HPC environments by promoting the co-design of NWP

algorithms with the underlying hardware.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the early days of HPC, computational power was gained through taking advantage of vector instructions on large single-processor
computers. With little modification to existing code bases, shared memory parallelisation was introduced when more and more processors
were added to one computer, bringing forth multi-core units. However, when multi-node/multi-core architectures (many computers
linked together) became widespread in the 1990s, the required effort to port existing codes to make use of distributed memory was
significant, and often meant rewriting or redesigning large parts of the codes. Over a decade later, many NWP codes, such as the ECMWF
Integrated Forecasting System (IFS), have grown in size to millions of lines, making use of hybrid parallelisation with distributed and
shared memory on multi-node/multi-core architectures [1]. Here performance was gained through increasing the CPU flop-rates and the
number of nodes of the HPC system.

In today’s HPC landscape, it has become unfeasible to boost computational performance by increasing the CPU’s clock speed as the
Dennard scaling [2] has broken down since around 2006, so the increase in computational performance has to be obtained largely by
introducing more parallelism. Enlarging the HPC systems with more nodes of current CPU technology will ultimately result in unaffordable
energy costs for many NWP operational centres. For these reasons, and with the goal to develop solutions suitable for the next generation
exascale systems, hardware vendors introduced many-core processors (also known as accelerators), such as Graphic Processing Units
(GPUs) and Intel's Many Integrated Core (MIC) architectures. These computing technologies have a higher flop-rate and lower power
consumption than traditional multi-core CPU processors, and they have less stringent cooling requirements. On the other hand, they
suffer from lower single-thread performance than traditional multi-core CPU processors. To exploit their higher degree of parallelism, a
substantial effort in redesigning existing codes is required, as with the advent of multi-node/multi-core architectures in the 1990s.

* Corresponding author.
E-mail address: willem.deconinck@ecmwf.int (W. Deconinck).

http://dx.doi.org/10.1016/j.cpc.2017.07.006
0010-4655/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).

http://dx.doi.org/10.1016/j.cpc.2017.07.006
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2017.07.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:willem.deconinck@ecmwf.int
http://dx.doi.org/10.1016/j.cpc.2017.07.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

W. Deconinck et al. / Computer Physics Communications 220 (2017) 188-204 189

While there is no definitive answer regarding what the optimal solution in terms of performance and energy requirements is, many
NWP centres are looking at hybrid strategies, having both traditional multi-core and many-core units within the same HPC system and
inter-operate them exploiting at best the advantages of the two [3]. In the next few decades, there might be a complete transition to many-
core architectures and some NWP centres have already adopted this solution [4,5]. Interoperating across different hardware is a key factor
for a sustainable development of Earth system models and for an efficient software/hardware co-design [6]. In order to achieve these goals,
it is essential to have full flexibility on the underlying data structure. This involves not only having flexibility in terms of algorithmic design
and memory layout most suited for different hardware, but also enabling the development of different numerical modelling strategies for
solving the partial differential equations (PDEs) describing the atmosphere and ocean dynamics.

A good example for the importance of the latter point is the current numerical modelling infrastructure adopted at ECMWE. The
IFS at ECMWEF solves the system of governing PDEs through a spectral-transform-based approach [7]. This approach requires discrete
transformations between physical space (grid-points) and spectral space (spherical-harmonics or Fourier coefficients). In general,
spectral-transform-based approaches require data-rich global communications that become the main limiting factor for extreme-scale
computations [8]. In addition, the IFS has been developed targeting traditional multi-node/multi-core computing technologies while its
portability and efficiency on emerging many-core hardware is still under investigation [9]. Research may show that alternative numerical
strategies offer better scalability and efficiency for certain hardware configurations, such as compact-stencil grid-point methods that only
require nearest-neighbour communication.

ECMWEF is developing a library called Atlas, with the primary goals to exploit the emerging hardware architectures becoming available
in the next few decades, and to support the development of alternative numerical algorithm strategies in operational NWP. These
developments apply not only to the forecast model, but also to the post-processing of model output to generate products.'

Atlas is also expected to facilitate the coupling of an increasing number of Earth system components, such as the atmosphere, ocean,
wave, surface, or sea-ice, and could effectively enhance existing couplers such as OASIS [10]. The challenge of coupling Earth system
components has been addressed in the Earth System Modelling Framework (ESMF) [11] and the Earth System Prediction Suite [12]. ESMF
and Atlas both provide similar fundamental building blocks for data structures and model development. However, Atlas has the distinct
primary goal of accelerating novel numerical algorithm development for emerging hardware architectures, compared to ESMF's effort
to enhance collaborative Earth system model development. More specifically, novel discretisation methods using hybrid unstructured
meshes require specialised data structures currently not available in ESMF. Atlas does not aim to be used as an alternative to a coupler’s
“super structure”, designed to couple different models or model components, but rather intends to be a flexible toolkit of components
that can be combined to create custom parallel data structures.

The implicit assumption behind the design of Atlas is the ability to exploit the structure that may be present in a physical system. In
a global NWP or climate model for example, there is a strong asymmetry of large horizontal and small vertical scales with dominant
hydrostatic balance in the Earth’s atmosphere. Moreover, there is a need to efficiently model the statistical effect of sub-grid-scale
processes. The latter are typically arranged in independent vertical columns constituting what is called physical parametrisation, coupled
via process-splitting to the atmospheric flow itself, called the dynamical core. The dynamical core in global NWP integrates the PDEs on the
sphere whereas limited-area models (LAMs) solve the PDEs on a particular area of the sphere [13] to which lateral boundary conditions
are supplied by a global model. Alternatively a LAM may be directly embedded into a global domain [14]. For more information on NWP
and climate models, refer to [15].

Historically the development of an operational NWP model takes about 10 years. Therefore, it is imperative for Atlas to remain flexible
and maintainable, aiming towards substantially reducing this development time. Given the aforementioned assumptions and restrictions,
Atlas’ aims are:

e Target massively parallel global and limited-area NWP and climate applications such as new dynamical core developments, and
pre- and post-processing tools.

o Offer flexibility of choices in new numerical strategies and algorithmic paradigms under the same software platform to explore
emerging hardware such as many-core architectures.

e Facilitate the implementation of different structured and unstructured point distributions on the sphere (global grids) and on limited
areas of the sphere (non-global grids).

e Support different spatial discretisation strategies, such as the spectral transform approach currently used at ECMWF [7], compact-
stencil finite volume methods [16-18], discontinuous spectral element methods [19-21] and possibly others, to solve the set of
PDEs forming the dynamical core.

e Provide an array-type container to store variables (or fields) that is parallel-enabled variables (or fields) and provides support for
domain-specific languages (DSL) such as GridTools [22]. The latter is achieved through an advanced data storage layer (for instance,
Kokkos [23] or the GridTools native storage layer [22]). This core aim tries to ensure optimal use of emerging hardware such as
many-core architectures.

e Support different programming languages, including Fortran and C++, providing object-oriented (OO) designs and data structure
flexibility, so that Atlas can be used to update existing and support new code infrastructures.

e Provide object-oriented programming interfaces enhancing multi-disciplinary collaboration at multiple levels ranging from
e.g. high-level mathematical operators, typically developed by domain scientists, to low-level data-storage abstractions, typically
maintained by computer scientists.

The development of the Atlas library is part of the wider ‘Scalability Programme’ ongoing at ECMWF and Atlas represents one of the core
strategic software infrastructure tools that ECMWEF has initiated during the FP7 funded project on Collaborative Research into Exascale
Systemware, Tools and Applications (CRESTA, http://www.cresta-project.eu). A first public version of the Atlas library is intended to be
delivered as part of ESCAPE (http://www.hpc-escape.eu),a H2020 funded initiative that aims at finding energy-efficient numerical solution
for Exascale computations [8], for which Atlas capabilities are used in the implementation of alternative numerical discretisations on
emerging hardware.

1 products are fields that are disseminated upon request and post-processed to satisfy a customer’s specific requirements.

http://www.cresta-project.eu
http://www.hpc-escape.eu

190 W. Deconinck et al. / Computer Physics Communications 220 (2017) 188-204

Grid Mesh (distributed)

Finite Volume

Continuous
Spectral Element

iy

P
PO
e
5;"

5
DAL

Discontinuous
Spectral Element

~

Spectral
Transform

Field (distributed)
interpreted by
FunctionSpace

N\

FunctionSpace

Fig. 1. The conceptual design of Atlas.

In this paper, we present the conceptual design of Atlas by describing the key concepts in Section 2 and a typical operating workflow
of the software. Implementation details of these concepts are presented in Section 3. We outline capabilities of the Atlas library through
selected application examples in Section 4 for global NWP applications but these concepts apply to LAM applications as well. Section 5
summarises the paper and lays out future perspectives.

2. Conceptual design

Consider the following (simplified) PDE system

D¢
Dp = Ral®)+ Ry(9). M

The symbol ¢ denotes the prognostic variables or fields of the model and D/Dt denotes the material derivative. The right hand side contains
terms of resolved dynamics R4(¢) and physical parametrisations R,(¢). In particular, Rq(¢) includes terms such as the pressure gradient
and the Coriolis force. Atlas provides data structures for building a numerical strategy to solve Eq. (1). These data structures may contain
a distribution of points (grid) and, possibly, a composition of elements (mesh), required to implement the numerical operations required.
Atlas can also represent a given field ¢ within a specific spatial projection. Atlas is capable of mapping fields between different grids as part
of pre- and post-processing stages or as part of coupling processes whose respective fields are discretised on different grids or meshes.
The latter is particularly relevant for the physics R(¢), where some physical processes such as radiation may be represented on a coarser
grid or mesh and may need to be projected onto a finer grid or mesh [24,25].
The key concepts in the design of the Atlas data structure are:

Grid: ordered list of points (coordinates) without connectivity rules;

Mesh: collection of elements linking the grid points by specific connectivity rules;
Field: array of discrete values representing a given quantity;

FunctionSpace: discretisation space in which a field is defined.

These concepts are depicted in Fig. 1, where we used the sphere to represent a global grid, mesh and field.

A grid is merely a predefined list of two-dimensional points, typically structured and using two indices i and j so that point coordinates
and computational stencils (for e.g. derivatives) are easily retrieved without connectivity rules. In many cases a grid is enough to define
fields with appropriate indexing mechanisms. For element-based numerical methods (generally unstructured) however, the mesh concept
is introduced that describes connectivity lists linking elements, edges and nodes.

A mesh may be decomposed in partitions and distributed among MPI tasks. Every MPI task then allows computations on one such
partition. Overlap regions (or halos) between partitions can be constructed to enable stencil operations in a parallel context.

In addition to a grid and mesh, it is necessary to introduce the concept field, intended as a container of discrete values of a given variable.
A field can be discretised in various ways. The concept responsible for interpreting or providing the discretisation of a field in terms of
spatial projection (e.g. grid-points, mesh-nodes, mesh-cell-centres) or spectral coefficients is the function space. The function space also
implements parallel communication operations responsible for performing synchronisation of fields across overlap regions, which we
refer to as halo-exchange hereafter.

A possible Atlas workflow consisting of the creation and discretisation of a field, is illustrated in Fig. 2, where we also emphasise some
additional characteristics of each step.

The building blocks illustrated in Fig. 2 can then be used to implement additional operations required for specific applications.

W. Deconinck et al. / Computer Physics Communications 220 (2017) 188-204 191

Grid » MeshGenerator —»> Mesh » FunctionSpace > Fields
- Point locations - Parallel - Distributed - Memory layout - Memory
and ordering - Unstructured - Parallelisation - Metadata
- Halo - Hardware

Fig. 2. Workflow of Atlas starting from Grid to the creation of a Field, discretised on a Mesh and managed by a FunctionSpace.

C++ Object Fortran Object
public: public:

method() method()
private: private:

data C_PTR object

C interface Fortran-C bindings

Fig. 3. Procedure how the Fortran interface to the C++ design is constructed. When a method in the Fortran object is called, it will actually be executed by the instance of its
matching C++ class, through a C interface.

3. Implementation details

In this section, we present the implementation of concepts introduced in the preceding section, highlighting relevant snippets of code
and outlining the OO design. We first introduce how the support for Fortran has been implemented, followed by each of the concepts
introduced in the previous section: Grid, Mesh, FunctionSpace and Field. Lastly, we describe the parallelisation aspects and the software
structure that performs operations of the vector calculus, using e.g. an edge-based finite volume spatial discretisation.

This section makes use of concepts from OO languages, in particular C++ [26], such as class, derived type, member function, member
variable. Diagrams presented in this article make use of the Unified Modeling Language (UML) [27].

3.1. Programming languages

Atlas is primarily written in the C++ programming language. The C++ programming language facilitates OO design, and is high
performance computing capable. The latter is due to the support C++ brings for hardware specific instructions. In addition, the high
compatibility of C++ with C allows Atlas to make use of specific programming models such as CUDA to support GPU’s, and facilitates
the creation of C-Fortran bindings to create generic Fortran interfaces.

With much of the NWP operational software written in Fortran, significant effort in the Atlas design has been devoted to having a
Fortran OO Application Programming Interface (API) wrapping the C++ concepts as closely as possible.

The Fortran API mirrors the C++ classes with a Fortran derived type, whose only data member is a raw pointer to an instance of
the matching C++ class. The Fortran derived type also contains member functions or subroutines that delegate its implementation to
matching member functions of the C++ class instance. Since Fortran does not directly interoperate with C++, C interfaces to the C++ class
member functions are created first, and it is these interfaces that the Fortran derived type delegates to. The whole interaction procedure
is schematically shown in Fig. 3.

The overhead created by delegating function calls from the Fortran API to a C++ implementation can be disregarded if performed outside
of a computational loop. Atlas is primarily used to manage the data structure in a OO0 manner, and the actual field data should be accessed
from the data structure before a computational loop starts.

3.2. Grid

In the NWP and climate modelling community (as opposed to, for instance, the engineering community) the grid is often a constant
factor to be reused in many simulations, and one of Atlas’ functions is to provide a catalogue of a variety of global grids defined by the
World Meteorological Organisation in support of model inter-comparison initiatives.

The grids within Atlas are classified hierarchically from a completely unstructured to a fully structured interpretation. A non-exhaustive
classification of grids used for global NWP is presented in Fig. 4. Note that the grid has no knowledge of any domain decomposition or
parallelisation strategy.

In this classification the Grid class presents a generic unstructured view of all the points present in the grid (Fig. 5(a)). Even if the grid
contains some form of structure, it can always be interpreted as being unstructured. A grid point is thus always accessible by a single
index:

G={r,r,...,m, r e R? (2)

where r; = [x;, y;]" is the ith set of coordinates in a given frame of reference.

The next level in the inheritance tree is the StructuredGrid class, which makes the assumption that grid points are aligned equispaced in
parallels along the x direction. Every parallel may have a different amount of gridpoints (Fig. 5(b) and Fig. 5(d)). No assumption is made on
the spacing between the parallels in the y direction. The StructuredGrid class provides the grid point locations via a index j corresponding
to the jth parallel, and an index i corresponding to the ith grid point on parallel j:

G=f(i,]), f:N? > R? (3)

192 W. Deconinck et al. / Computer Physics Communications 220 (2017) 188-204

JAN

UnstructuredGrid

I l l

StructuredZonesGrid
JAN

’ RegularGrid ‘ ’ GaussianGrid ‘ ’ ReducedGrid ‘ CubedSphereGrid
[% l [ﬁk l [fk | IIHEHHHHHII
Regular Regular Reduced Reduced . .
LonLatGrid GaussianGrid GaussianGrid LonLatGrid YinYangGrid

Octahedral Classic
GaussianGrid GaussianGrid

Fig. 4. A non-exhaustive classification of grid classes. Hollow arrows represent a “is a” relationship. With every step in the classification, more structure is present in the
grid that can be exploited.

where f is generally a function of two indices, denoting the two coordinate directions, x and y. The grid is therefore a two-dimensional
entity. A vertical direction z can be considered orthogonal to the horizontal direction and is then discretised by adding vertical layers.

The ReducedGrid class is a specialisation of the StructuredGrid that is explicit in having parallels with different amounts of gridpoints.

The RegularGrid class inherits from the StructuredGrid class and adds the restriction that every parallel has an equal number of grid
points in the x-direction, making the grid regular and grid point locations are defined by two independent indices (i, j) associated to the
x and y directions, respectively.

The RegularLonLatGrid is a global RegularGrid defined in geographical coordinates where parallels are equidistant in latitude. The grid
includes parallels for the North Pole and the South Pole and every parallel contains a grid point on the Greenwich meridian.

The GaussianGrid is a global StructuredGrid that has parallels that are distributed according to the roots of the Legendre polynomial of
order 2 N where N is the number of parallels between a Pole and the equator. This distribution of the parallels is referred to as “Gaussian”
and facilitates numerical integration and spherical-harmonics transforms for fields discretised on a Gaussian grid [28,29]. Note that a
GaussianGrid by construction has no points on any of the Poles or the equator.

The RegularGaussianGrid is both a RegularGrid and a GaussianGrid, in which each parallel has 4 N equidistant grid points of which one
lies on the Greenwich meridian.

The ReducedGaussianGrid is both a ReducedGrid and a GaussianGrid, in which each parallel can contain a different number of equidistand
grid points, of which one lies on the Greenwich meridian.

The ClassicGaussianGrid is a ReducedGaussianGrid in which the number of grid points on the parallels reduces towards the poles, keeping
the physical distance between grid points approximately equal [28,29].

The OctahedralGaussianGrid is similar to the ClassicGaussianGrid. However, the number of grid points on each parallel can be inferred
from triangulating a regular octahedron projected onto the sphere. Certain modifications are required such as modifying the latitude of
the parallels to the roots of the Legendre polynomial [30].

For convenience the above concrete grids can be retrieved by a short grid identifier, e.g. 01280, in which the number represents
the number of parallels between the North Pole (90° latitude) and equator (0° latitude). The grid identifiers for the grid classes
RegularLonLatGrid, RegularGaussianGrid, ClassicGaussianGrid and OctahedralGaussianGrid are respectively L#, F#, N# and O#. These grid
identifiers provide a common language to uniquely reference a grid in terms of resolution and category.

The classification further envisions to incorporate grids like the IcosahedralGrid, the CubedSphereGrid, and the YinYangGrid [31], which
can be seen as combinations of sub-grids. These grids inherit from a class StructuredZonesGrid as illustrated in Fig. 4.

Listing 1 details how one can create the grids shown in Fig. 5 using either a grid identifier as described previously, or a Config object
containing enough information to construct the correct grid. Such Config object could be constructed using JavaScript Object Notation
(JSON), either programmatically (from a string) or from a file. Internally a Factory design pattern [32] is responsible for instantiating the
correct concrete grid implementation.

Grid unstructured(Config(file_path));

Grid N16¢(DE
Grid L16¢(DR
Grid 016¢()

Listing 1: Construction of grids shown in Fig. 5

The object-oriented construction of the Grid object allows one to add any other grid of interest without disrupting the existing design.

3.3. Mesh

For a wide variety of numerical algorithms, a Grid (i.e. a mere ordering of points and their location) is not sufficient and a Mesh might
be required. This is usually obtained by connecting grid points using polygonal elements (also referred to as cells), such as triangles or

W. Deconinck et al. / Computer Physics Communications 220 (2017) 188-204 193

css sssese CUEOEELEENEEO0E0L Pttty
.

454

+ ¥
0 90 180 270 360

(c) RegularLonLatGrid, L16.

(d) OctahedralGaussianGrid, 016.

Fig. 5. Four examples of global grids in geographical coordinates with similar resolution in the equatorial region. All grids can be represented by the base class Grid. Grids
(b)-(d) can be represented by the StructuredGrid class. Grid (c) can furthermore be represented by the RegularGrid class.

Mesh

+ nodes : Nodes
+cells : Cells
+ edges : Edges

1 1 1
1 1 1

Nodes Cells Edges

+ lonlat : Field

+ global_index : Field

+ partition : Field

+ remote_index : Field

+ edge_connectivity : Connectivity
+ cell_connectivity : Connectivity

+ global_index : Field

+ partition : Field

+ remote_index : Field

+ node_connectivity : Connectivity
+ edge_connectivity : Connectivity
+ elements : vector<Elements>

+ global_index : Field

+ partition : Field

+ remote_index : Field

+ node_connectivity : Connectivity
+ cell_connectivity : Connectivity
+ elements : vector<Elements>

Fig. 6. Mesh composition.

quadrilaterals. A mesh, denoted by M, can then be defined as a collection of such elements £2;:

N
M= 2. (4)
i=1
For RegularGrids, the mesh elements can be inferred, as a blocked arrangement of quadrilaterals. For the UnstructuredGrid class or even
the StructuredGrid class (Section 3.2), these elements can no longer be inferred, and explicit connectivity rules are required. The Mesh class
combines the knowledge of classes Nodes, Cells, Edges, and provides a means to access connectivities or adjacency relations between these
classes (Fig. 6).

Nodes describes the nodes of the mesh, Cells describes the elements such as triangles and quadrilaterals, and Edges describes the lines
connecting the nodes of the mesh. Fig. 6 sketches the composition of the Mesh class with common access methods for its components.
Differently from the Grid, the Mesh may be distributed in memory. The physical domain S is decomposed in sub-domains S, and a
corresponding mesh partition M, is defined as:

M, ={UR, V 2 €S} (5)

More details regarding this aspect are given in Section 3.4.

A Mesh may simply be read from file by a MeshReader, or generated from a Grid by a MeshGenerator. The latter option is illustrated in
Fig. 2, where the grid points will become the nodes of the mesh elements. Listing 2 shows how this can be achieved in practice, and Fig. 7
visualises the resulting mesh for grids N16 and 016.

194 W. Deconinck et al. / Computer Physics Communications 220 (2017) 188-204

©
>

—T —T— —=

©
E=3

=T —=. = == =T
VAVAV4) S S S SO SE S S ATST s 1y
L AV W (WA AWz AW) AV WA =7 AWZd\ 7 \ A 1 J \ ra \
(NANAVAVANAVAVA AVAVA RS AVAVAVAIRSA ANAVAVAYZ) v AV) AVAVAVARAN) (VAZARNANAN) v VAV
T T NN IEEEEENEEN} 1T IANAVAY L (AVAVA TAVANA LV YA AV4)
457 ASSRNANAAAAAA Vava) N VAVAY VAV VAVAVAVa)
ANAVAVA AYAVAVA ANA%AY) AVAVAYA
ANANAAVAVAVAVAVAVA NAYAVAVAVAYS NavaY) NNSSAAAAAAA
ANANAVAYAYA AVAVAVAYA7A NANAVAYAYA AVAVAVAVAYAVA AVAYA AYA AVAVAVAVA (RVAYA AVAVA
IS ARAAAAAA K
0 O T H IENNINNENEREEE] T T IHEN]
Vavir var
00K KRR
AVAYAYA AVAVATANS (V4%
PAYAVAVAVAY VAYAVAVAVAN) {VAVAVAVAVAYA YAVANAN {VAVAVAYAVAY AVAVAVAN) AVAVAVAY FAVANAN
VAVAVAY AN VaYaYa) VAYAVA, AVANLY
-45 -45] AVAVAVAVAVAV) (VAVAYaAVa {VAVAVAVAVAVAVANANAN
1T EEE NN IEEEEEEEEE 1 {WAVAY i) | VZAVZAY A P4 VAY YAV \ TAN)
\VAVAYAYAN AN \AVAVAY VaVay)
SN AR AR NS ENAA RIS v SN SESSEEE s
AVAVANANAN PV
VAN SIN SIS VAN ZaY AN =y 1ZaY |z L VA Vi 3\ L
AN PZaY = VA PZaV AY L
90 = VA v S=225= SIS Si= o
- } t i 90
0 90 180 270 360 0 90 180 270 360
(a) ClassicGaussianGrid, N16. (b) OctahedralGaussianGrid, 016.

Fig. 7. Mesh generated for two types of StructuredGrids (Fig. 5).

Elements (of 1 type)

0. 1
‘ ElementType ‘ ‘ BlockConnectivity MultiBlockConnectivity

Fig. 8. Mesh Cells diagram.

Block
Connectivity
MultiBlock -
Connectivity - o
T - _ Block
3 T~~~ _ Connectivity
4 1
5 24
\\\\\\3 4

Fig. 9. BlockConnectivity points to blocks of MultiBlockConnectivity. Zig-zag lines denote how the data is laid out contiguously in memory.

Grid grid()8
MeshGenerator generator(E
Mesh mesh = generator‘generate(grid)3

Listing 2: C++ Mesh generation from a StructuredGrid

Several element types can coexist as cells, consequently the class Cells is composed from a more complex interplay of classes, such as
Elements, ElementType, BlockConnectivity, and MultiBlockConnectivity. This composition is detailed in Fig. 8.

Often a numerical algorithm benefits from performing operations using elements of one element type at a time. This benefit typically
comes from the constant number of nodes and edges that every element of one type connects to. To cater for this case, the Elements
class provides node and edge connectivities as a BlockConnectivity, where every row of the connectivity table has the same constant size.
The interpretation of the elements of this one type is delegated to the ElementType class. However, as some numerical algorithms do
not require this distinction between element types, the class Cells provides a unified view of all elements regardless of their shape. The
MultiBlockConnectivity provides a matching unified connectivity table.

To avoid duplication of memory, the actual data connectivity is stored in the MultiBlockConnectivity class, whereas BlockConnectivity
instances point to blocks of the MultiBlockConnectivity, as can be seen in Fig. 9. Although currently the mesh is composed of two-
dimensional elements such as quadrilaterals and triangles, three-dimensional mesh elements such as hexahedra, tetrahedra, etc. are
envisioned in the design and can be naturally embedded within the presented data structure. However, at least for the foreseeable future
in NWP and climate applications, the vertical discretisation may be considered orthogonal to the horizontal discretisation due to the large
anisotropy of physical scales in horizontal and vertical directions. Given a number of vertical levels, polygonal elements in the horizontal
are then extruded to prismatic elements oriented in the vertical direction (e.g. [33]).

W. Deconinck et al. / Computer Physics Communications 220 (2017) 188-204 195

PERE K
, K
CORSRXRRRR
VORI
ORI
ORI

AvavavavvavAs i
T

ORI

Vi RN Y

‘o AT

AR

¥ ANAvAAvAvaara AT "
S ot

VYT,

Fig. 10. EqualRegions domain decomposition. Left: 01280 mesh with ~6.6 million nodes (~9 km grid spacing) in 1600 partitions. Right: 032 mesh with 5248 nodes (~280 km
grid spacing) in 32 partitions.

Periodic Periodic
halo halo

Internal halo

Fig. 11. Parallel overlap regions or halos shown for a 032 mesh with 32 partitions.

3.4. Parallelisation

Parallelisation in Atlas is achieved through distributing the Mesh into different partitions, each acting like a smaller mesh and each
mesh partition M, is managed by one MPI task. The idea is to load-balance numerical computations and memory among the MPI tasks,
meaning that every mesh partition has approximately the same number of elements, or the same number of nodes.

There exist various strategies in how to partition a mesh, where each strategy may offer different advantages. While for RegularGrids,
such as the one depicted in Fig. 5(c), the partitioning is logically following a checkerboard pattern, for general ReducedGrids as the ones
shown in Fig. 5(b) and Fig. 5(d), an “equal regions” partitioning is more advantageous [8,34,35]. The “equal regions” partitioning algorithm
divides a two-dimensional grid of the sphere (i.e. representing a planet) into bands from the North pole to the South pole. These bands are
oriented in zonal directions and each band is then split further into regions containing equal number of nodes. The only exceptions are
the bands containing the North or South Pole, that are not subdivided into regions but constitute North and South polar caps.

Examples of two meshes partitioned into different parallel regions using the EqualRegions partitioning algorithm are illustrated in
Fig. 10.

Every mesh partition can be regarded as an independent mesh, but to allow for computational stencils that span from one mesh partition
to the next, halos that overlap are created between relevant mesh partitions. Atlas provides functionality to incrementally grow the overlap
between mesh partitions by node-sharing elements. Fig. 11 shows the overlap region generated for two such regions, as well as a so called
“periodic overlap region” that can be used to treat the periodic East-West boundary as if it were an internal boundary between mesh
partitions.

Discrete field values present in overlap regions require synchronisation with values of neighbouring partitions for performing stencil
operations. For this synchronisation, the mesh partition must be aware of how it fits inside the whole mesh. As shown in Fig. 6, the Nodes,
Cells, and Edges classes contain three fields, intended as discrete values, that provide exactly this awareness.

e The field named global_index contains a unique global index or ID for each node or element in the mesh partition as if the mesh was
not distributed. The global index is independent of the number of partitions.

e The field named partition contains the partition index that has ownership of the node or element. Nodes or elements whose partition
does not match the partition index of the mesh partition are also called ghost nodes or ghost elements respectively. These ghost
entities merely exist to facilitate stencil operations (such as derivatives) or to complete, for instance, a mesh element.

e The field named remote_index contains the location of each node or element on the partition that owns it.

With the knowledge of partition and remote_index, it is possible to know, for each element or node, which partition owns it and at
which index therein. Usually the Atlas’ user will not be aware of these three fields as they are required only for constructing Atlas’ internal
parallel communication capabilities.

Currently, Atlas provides two parallel communication classes that, given the three fields such as partition, remote_index and global_index,
can apply parallel communication operations repeatedly as needed:

e The GatherScatter class implements the communication operation that gathers data from all MPI tasks to one MPI task, and vice
versa: the communication operation that scatters or distributes all data from one MPI task to all MPI tasks.

196 W. Deconinck et al. / Computer Physics Communications 220 (2017) 188-204

d b

Field |--------- ety FunctionSpace

functionspace:: functionspace:: functionspace:: functionspace::

NodeColumns EdgeColumns StructuredColumns Spectral

1 1 Tj o.;T 1 1 1 l[0.* 1

7 Mesh] . StructuredGrid

r=|-1r-—-~"~~"~"~"77777771 T T T T -t - - == ==-=-=-=-= R
| 1 1 1 1 |
| HaloExchange Trans |
| |
| ! ! . . |
I GatherScatter Parallelisation
| |

Fig. 12. FunctionSpace implementations including building blocks required to interpret Fields and abstract parallelisation.

e The HaloExchange class implements the communication operation that sends and receives data to and from MPI tasks containing
nearest-neighbour partitions. This operation is typically required when synchronising small halos of ghost entities surrounding a
domain partition.

These parallel communication classes form building blocks that provide parallel capabilities to the FunctionSpace class, which can
manage the gathering, scattering or halo-exchanging of Fields.

Currently Atlas also optionally makes use of ECMWF's spherical harmonics transforms library, Trans, which implements communication
operations for parallel distributed spectral fields discretised as spherical harmonics coefficients. It is envisioned that this functionality will
instead be implemented in Atlas directly in future releases.

3.5. FunctionSpace

The FunctionSpace class (P) is introduced because a Field (¢, Section 3.6) can be discretised on the computational domain in various
ways: e.g. on a grid, on mesh-nodes, mesh-cell-centres or spectral coefficients. The representation of a given variable is intimately related
to the spatial numerical discretisation strategy one wants to adopt (e.g. finite volume, spectral element, spectral transform, etc.). In addition
to interpreting how a Field is discretised, the FunctionSpace also manages how the Field is parallelised and laid out in memory. Concrete
FunctionSpace classes may implement parallel operations such as gather and scatter, reduce-all, or point-to-point communications, thus
enabling the practical use of fields within parallel numerical algorithms. This step can be represented in a compact form as follows

bp = P(P), (6)

where ¢, indicates that the field is distributed and is fully enabled to perform numerical operations within the used representation.

In Atlas, the FunctionSpace concept, depicted in Fig. 12, is implemented in a modular OO paradigm that allows adding as many different
function spaces as required. This modularity allows third-party applications to extend the library with their own FunctionSpaces while
still profiting from the parallelisation primitives provided by Atlas (highlighted in dashed blue). The currently implemented FunctionSpace
classes include NodeColumns, EdgeColumns, StructuredColumns and Spectral:

e The NodeColumns function space class describes the discretisation of fields with values collocated at the nodes of the mesh,
horizontally, and may have multiple layers defined in the vertical direction. Parallelisation is defined in the horizontal plane, so that
complete vertical columns are available on each partition. The memory layout for fields defined using the NodeColumns function
space is illustrated in Fig. 13. A HaloExchange object and GatherScatter object are responsible for the necessary parallel operations
(Section 3.4). The NodeColumns function space also implements some simple additional features, such as calculating global minimum
and maximum values of fields as well as some global reduction computations such as arithmetic mean values.

e The EdgeColumns function space class describes the discretisation of fields with values collocated at edge-centres of the mesh, and
may have multiple layers defined in a vertical direction. The various operations described for the NodeColumns class are also available
for this class.

e The StructuredColumns function space class describes the discretisation of distributed fields on a StructuredGrid object. Currently
the StructuredGrid must be Gaussian (see Section 3.2) because currently the function space delegates its parallel primitives to a
specific Trans object that only supports Gaussian grids. As the Trans object is an interface with an external library that implements
spectral transformations, we do not report the details here, but it is a good example of how Atlas interfaces with pre-existing high
performance codes. In a future release the parallelisation will be generalised to use a GatherScatter object instead, which does not
rely on having a Gaussian grid. A field described using this function space, like the two above, can also have vertical levels.

e The Spectral function space class describes a field in terms of vertical layers of horizontal spherical-harmonics (global spectral
representation). The parallelisation (gathering and scattering) is again delegated to the Trans object.

W. Deconinck et al. / Computer Physics Communications 220 (2017) 188-204 197

® 4 L4
* *
0*N|+ 3 I3 s 3
| | |
o2 e 3T 2 L O A,
' 1*N|+ 3 I 2%N|+ 3 I
: | ' | |
ox?+ 1 0 3*NT+ 1 ° e
! 1N |+ 2 | 2%N|+ 2 I
L 1 l 1 !
0*N"R_0 * ELTE N * o
1NN+ 1L 24N+ 1
| |
1*N + 0 2%N + 0

Fig. 13. Memory layout for fields discretised using the NodeColumns function space. A vertical column is contiguous in memory, and can be indexed using direct addressing.
N stands for the number of vertical layers.

| I
Value, Rank |

Array ArrayView

+ size() : Integer operator(] (i, j, ... : Integer) : Value
+rank() : Integer
+ shape(dim : Integer) : Integer

+ size() : Integer
+ rank() : Integer
+ shape(dim : Integer) : Integer

‘ ArrayT

<<constructor>> ArrayT(spec : ArraySpec)

- data_storage_ : DataStorage<Value>

Fig. 14. Left: Field composition. Right: Array and ArrayView implementation.

With respect to parallelisation, each concrete FunctionSpace may implement methods like haloExchange, gather, scatter, or choose to
delegate its implementation to one or more parallelisation primitives like HaloExchange and GatherScatter, which are then setup for the
required memory layout. For global reduction operations, there are currently no primitives implemented, so that if required, each concrete
FunctionSpace must implement the desired global reduction operations. This may be consolidated in future versions of the library.

Listings 3 and 4 are provided to help understand how a FunctionSpace can be used in practice to create a field, and perform a halo-
exchange on this field. Listings 3 and 4 show both the C++ and the Fortran code, respectively.

NodeColumns functionspace(mesh, Levels(100), Halo(1));
Field field = functionspace.createField<double>(D3
functionspace.haloExchange(field);

Listing 3: C++ FunctionSpace example use

type(atlas_NodeColumns) :: functionspace

type(atlas_Field) :: field

functionspace = atlas_NodeColumns(mesh, levels=100, halo=1)

field = functionspacelcreate_field(, atlas_real(8))

call functionspace%halo_exchange(field)

Listing 4: Fortran FunctionSpace example use

3.6. Field

The Field class contains the values of a full scalar, vector or tensor field. The Field values are stored contiguously in memory, and
moreover they can be mapped to an arbitrary indexing mechanism to target a specific memory layout. The ability to adapt the memory
layout to match, for instance, the most efficient data access patterns of a specific hardware is a key feature of Atlas . A Field also contains
Metadata which stores simple information like a name, units, or other relevant information. The composition of the Field class is illustrated
in Fig. 14.

A Field delegates the access and storage of the actual memory to an Array that accommodates memory storage on heterogeneous
hardware.? If the Field is associated to a particular FunctionSpace, then the Field also contains a reference to it.

Fields can also be grouped together into one or more FieldSets. They can then be accessed from the FieldSet by name or by index. In
C++, access to the actual field data is via an ArrayView object that provides a multi-dimensional indexing accessor. In Fortran, the data is
directly accessed through the multi-dimensional array intrinsics of the language. Practical use of the Field, both using C++ and Fortran, is
given in Listings 5 and 6.

2 The Array is responsible to synchronise data across the device (e.g. a GPU) and the host (e.g. a CPU).

198 W. Deconinck et al. / Computer Physics Communications 220 (2017) 188-204

Nabla

+ create(Method) : Nabla

+ gradient()
‘ + divergence()

Operator Method +ourl) | Method

+ laplacian()
l | | fvm::Nabla |?—1| fvm::Method |
0.* 1 1
TO“' 1/. ‘\1
| Cincionepscer || fetenseece: |

‘ ConcreteOperator

XY
o

[
2

Fig. 15. Left: general design of numerical operators. Right: Derivative, divergence, curl, and Laplacian implemented in the Nabla vector operator specific for a finite volume
Method (Section 4.3).

FieldSet fields;
fields.add(functionspace.createField<double>())
fields.add(functionspace.createField<double>() Dsg

Field field_T = fields[1;
Field field P = fields[13

ArrayView<double ,2> T = make_view<double,2>(field_T);

ArrayView<double ,2> P = make_view<double,2>(field_P);

for(size_t jnode=0; jnode<functionspace.nb_nodes(); ++jnode) {
for(size_t jlev=0; jlev<functionspace.nb_levels(); ++jlev) {
// T(jnode, jlev) = ...
// P(jnode, jlev) = ...

}

}
Listing 5: C++ Field creation and data access

type(atlas_FieldSet) :: fields
type(atlas_Field) i1 field T, field_P
real(8), pointer o T(:,:), P(:,:)
fields = atlas_FieldSet ()
call fields%add(functionspacelcreate_field(,atlas_real(8)))
call fields%add(functionspacelcreate_field(s atlas_real(8)))
field_T = fields¥kget()
field P = fields¥%get ()

call field_T%data(T)
call field_P%data(P)

do jnode=1,functionspace’nb_nodes ()
do jlev=1,functionspace’%nb_levels()
! T(jlev, jnode) = ...
! P(jlev, jnode) = ...
enddo
enddo

Listing 6: Fortran Field creation and data access

3.7. Mathematical operations

Many NWP and climate models contain algorithms to perform a variety of mathematical operations on fields such as computing
derivatives or integrals. These operations are common to various applications, and relate closely to certain spatial discretisations or
function spaces. Atlas provides implementations for some of these operations given a field that is compatible with the related FunctionSpace
(Section 3.5). Fig. 15 sketches the philosophy adopted by Atlas regarding how to provide these operations.

The concrete implementation of the Method concept uses the FunctionSpace and Field classes, both required to generate a concrete
numerical method. Atlas currently provides a fvm::Method class, which contains everything required to construct mathematical operators
using an edge-based finite volume scheme (Section 4.3). A concrete fvm::Nabla operator then implements the actual numerical algorithm
using the fvm::Method. Listing 7 details the practical construction of the fvm::Method and how the gradient of a scalar field defined in
NodeColumns is computed using the Nabla operator.

W. Deconinck et al. / Computer Physics Communications 220 (2017) 188-204 199

fvm::Method method(mesh);

Nabla nabla(method);

Field scalar_field, gradient_field;

// Assume scalar_field, and gradient_field are defined in functionspace::NodeColumns
nabla.gradient (scalar_field,gradient_field);

Listing 7: C++ numerical operator Nabla that computes the gradient of a scalar field

4. Examples of applications

This section illustrates use cases of the Atlas library as part of different applications, highlighting the flexibility of the library in different
contexts. Through Atlas, the development time of these applications was decreased significantly, as Atlas readily provides mesh generation
functionalities, parallelisation solutions and certain mathematical operations. First we present two applications in Section 4.1 relying
on Atlas that each implement a different advection scheme to solve a simple transport equation on the sphere. We then present how
Atlas is used in the existing Fortran-based IFS model to contribute element-based gradient computations in Section 4.2. Section 4.3 then
illustrates developments of a novel compact-stencil finite volume based dynamical core to solve the non-hydrostatic equations governing
the atmosphere.

Finally, in Section 4.4, we present the developments of a new interpolation and remapping infrastructure which can be used for post-
processing purposes or eventually within a model.

Most presented applications contain the following code to define distributed fields that are discretised collocated with a given grid’s
points.

// Input

string grid_name
size_t nb_levels
size_t halo_width

137;
1;

// Generate a parallel distributed mesh from a given StructuredGrid’s name
Grid grid (grid_name);
Mesh mesh = MeshGenerator () .generate(grid);

// Define discretisation of fields using a function space
NodeColumns functionspace(mesh, Levels(nb_levels), Halo(halo_width));

// Coordinate field in longitude and latitude (degrees)
Field lonlat = mesh.nodes().lonlat();

// Create fields
FieldSet fields;
fields.add(functionspace.createField<double>(field_name));

/% ... Initialise fields (see Listing 5) ... */

// Parallelisation
functionspace.haloExchange(fields);

Listing 8: Code used by most application examples to define distributed fields discretised collocated with a given grid’s points.

The code presented in Listing 8 could also be written using Atlas’ Fortran APIL All applications can then use access methods to the
fields’ data as described in Listing 5 or 6. The correctness of the Atlas implementations is verified by a suite of unit-tests, and confidence
is obtained through the correctness of following application examples.

4.1. Trajectory-based semi-Lagrangian and control-volume-based Eulerian advection approaches

Non-linear advective transport is fundamental in NWP and climate applications, where it is commonly applied to run the model forward
in time for days (NWP) or up to hundreds of years (climate). Two approaches to advective transport are the trajectory based semi-Lagrangian
(SL) method [36], and the formally conservative and sign-preserving control-volume-based MPDATA (multidimensional positive definite
advection transport algorithm) method [18,37,38].

The two approaches are applied to the following passive advective transport problem

Dy D a

— =0, — =—+4Vv-V, v=(u,v, w), 7
Dt TR T (v, w) @

on a three-dimensional geospherical domain (longitude x latitude x height). In Eq. (7) the scalar tracer field v
is advected by a prescribed wind field v = (u, v, w)

u(r, ¢, z) = awcos(¢p) + aK cos(42) cos(¢)°,

v(A, ¢, z) = —4aK sin(¢) sin(4x) cos(¢)?,

w(k, ¢,2) =0,

200 W. Deconinck et al. / Computer Physics Communications 220 (2017) 188-204

©
>

a0

45

-90
0 90 180 270 360

Fig. 16. Left: constant in time wind field where solid lines mark the wind isolines. Right: tracer field at initial time.

90 90

S ~ / N o NS
T

90 180 270 360 90 180 270 360

Fig. 17. Tracer field as initialised in Fig. 16 at t+7 days simulated using SL method (left) and MPDATA (right) using the same 0512 mesh.

where @ = 6371 x 10® [m] is the Earth radius, w = K = 7.848 x 107 [s~] is the Earth angular velocity and A, ¢ are the longitude and
latitude, respectively. The prescribed wind field is derived from the Rossby-Haurwitz test case [39] initial condition, and kept constant
in time. Fig. 16 shows both the wind field (on the left) as well as the initially square-shaped tracer (on the right). The tracer is evolved
forward in time for 7 days, and Fig. 17 shows the resulting tracer field at the end of the simulation. The subfigure on the left represents
the trajectory based SL solution, while the subfigure on the right depicts the control-volume-based MPDATA solution.

The time-step used for the SL method is 900 [s] and the horizontal resolution is approximately 20 [km] corresponding to a maximum
CFL number (timestep x wind speed/grid spacing) close to 5. MPDATA used a time step such that the maximum CFL number was 0.5. Even
though the time step for the MPDATA scheme is smaller, the scheme contains no conservation errors.

In both applications Atlas aided in mesh generation and the parallelisation. Whereas the SL application currently is restricted to
structured grids, the MPDATA algorithm is applicable to unstructured meshes, and Atlas helped in managing the complexities of such
data structures.

4.2. Compute grid-point element-based derivatives in IFS using Atlas

The operational IFS model at ECMWF is a spectral-transform model, relying on spherical-harmonics transforms to compute horizontal
derivatives. In the IFS, the Atlas library introduced the possibility of computing derivatives in grid-point space using the Atlas library with
a finite volume based second-order scheme. The required derivatives have been constructed as a mathematical operator on Field classes
(cf. Section 3.7). An example of derivatives computed with the spectral-transform method compared to derivatives computed with Atlas
can be seen in Fig. 18.

It can be seen that there are some small differences in proximity to steep gradients (where the density of the isolines increases). In
order to compare the difference in using spectral derivatives (the current operational approach) and grid-point second-order finite volume
derivatives during a forecast simulation, we used the virtual temperature T, field, defined as

RTERdwrszdryT[1+(Rﬂ—1>q]. (8)
dry

In this equation, T is the temperature, Ry, and Rqyy are the specific gas constants of water vapour and dry air, respectively, and q is the
specific humidity. The derivatives of T, are then used inside the IFS model to calculate the horizontal gradients of the geopotential as
needed in the rhs of the momentum equation.

To calculate the horizontal derivatives of geopotential we used three different approaches. We first adopted the operational method-
ology of calculating the derivatives of R T using the spectral transform approach (Spectral). As an alternative to this methodology we used
spectral derivatives for only T and computed additionally the local derivatives of q (Grid-point 1), or in a second alternative the local
gridpoint derivatives of the specific gas constant R (Grid-point 2). The latter may be advantageous as moist variables in IFS are never
transformed to spectral space to avoid spurious negative values. The mean scores of 12 forecasts using the three different methods can
be seen in Fig. 19. Scores are a measure of forecast skill and are computed in this case as the anomaly correlation of 500 hPa geopotential
height in the Northern hemisphere verified against ECMWF operational analysis.

Up to five days into the forecast, the three approaches show identical behaviour. From day six, the two grid-point approaches
(overlapped) deviate from the reference. Given the small sample size it can only be concluded that the differences are larger than typically

W. Deconinck et al. / Computer Physics Communications 220 (2017) 188-204 201

Fig. 18. Solid lines show the magnitude of the specific humidity q horizontal gradient obtained using the spectral-transform method (left) and using the grid-point finite
volume based second-order method (right). The coloured shaded areas show the temperature at the 850 hPa model level. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

100

" T

—e— Spectral

—e— Grid-point 1
704~ ==-®---- Grid-point 2
- ; - - -
0 2 4 6 8
Forecast Day

Fig. 19. Scores comparing forecasts using T, derivatives computed with the spectral transform approach and compared to two alternative approaches where part of the
derivatives of moist quantities are calculated locally in grid point space.

incurred by a random perturbation and they may depend on the implementation details of the gradient calculation. Nevertheless, this
application example highlights the ability of the Atlas library to interplay with the existing Fortran-based IFS code and to contribute with
new algorithmic developments (i.e. compact-stencil grid-point derivatives). The possibility of using locally computed grid-point gradients
within the IFS model is attractive for scalability reasons since local gradients are cheaper to calculate, and they may also be used to calculate
auxiliary local flow diagnostics not readily available in the spectral context.

4.3. Non-hydrostatic finite volume dynamical core

The FVM of the IFS is developed as an alternative dynamical core module at ECMWEF to supplement the spectral formulation currently
employed in operational forecasting [16] and is built using Atlas. FVM integrates the compressible Euler equations in a geospherical
framework [16,40]. The horizontal spatial discretisation is fully unstructured using the median-dual finite volume approach. This is
combined with a structured flux-form finite difference approach in the vertical direction. A centred two-time-level integration scheme is
employed with 3D implicit treatment of acoustic, buoyant, and rotational modes [17]. The integration procedure uses the finite volume
implementation of the multidimensional non-oscillatory MPDATA advection scheme [38,18]. A generalised, optionally adaptive, terrain-
following vertical coordinate is implemented to accommodate the underlying orography [41,42]. For interoperability with the currently
operational spectral IFS, the finite volume mesh of FVM is built about the points of the octahedral reduced Gaussian grid depicted in
Fig. 5(d).

Fig. 20 illustrates FVM capabilities for the simulation of a tropical cyclone at intermediate complexity [43]. The model configuration
involves the moist compressible formulation of FVM [44] with coupling to parametrisations for warm-rain cloud microphysics, surface
fluxes from the ocean, and vertical turbulent mixing in the planetary boundary layer. The results after 10 days of simulation in Fig. 20
show a coherent vortex with typical features of a tropical cyclone. Weak winds are apparent in the centre of the storm (the “eye”) and a
ring of strong winds of speed greater than 60 [m/s] around. Largest precipitation amounts occur in the “eye-wall” region about the storm
centre, where horizontal convergence in the boundary layer leads to significant vertical velocities (not shown).

In the implementation of the FVM module, the mesh and connectivity requirements for FVM have been implemented using Atlas, along
with the nearest-neighbour communication operations (halo-exchanges), parallel management, and memory layout. In particular, the
Atlas function space NodeColumns is responsible for defining the memory layout (cf. Fig. 13) and parallel communication operations.

This example illustrates the value of the Atlas library in accelerating new developments of alternative dynamical cores.

4.4. Interpolation, remapping and filtering capabilities

In a variety of numerical applications, it is convenient to represent data in different spaces, or in the context of NWP, different grids or
the spectral domain. Mapping data between representations is commonly achieved through transformation or interpolation operations
and may be done for many different reasons, such as normalising variables (or fields) to the same grid, decreasing or increasing resolution,
rotating the grid, etc. When mapping a variable from one representation to another, there is an intrinsic loss of information and, generally,

202 W. Deconinck et al. / Computer Physics Communications 220 (2017) 188-204

Fig. 20. FVM global simulation of a tropical cyclone at day 10. Left: surface wind ([ms~'], shaded), right: zonal-height cross section at the latitude 27° N of the horizontal
wind ([ms~'], shaded) and precipitation mixing ratio ([g kg~'], A =0.1 starting from zero, white contour lines). The simulation employed the 0360 octahedral reduced
Gaussian grid and 30 stretched vertical levels over a 30 km deep domain (only up to 22 km shown).

Fig. 21. Geopotential height (z [J] kg~!] or [m? s—2]) at the surface mapped from octahedral reduced Gaussian grid (01280, right) to 032 (left), with P1 FE elements;
Quadrilaterals are placed at the equator, with the North/South poles patched for visualisation.

there are no exact methods. It is therefore important to choose an interpolation methodology with the desired numerical properties. In
NWP and climate modelling, properties such as conservation and monotonicity may be crucial.

Due to its design, Atlas provides a management of fields abstracted from the lower-level details: data locality, global reduce operations
(both order-independent and not) and other parallelism concerns. In this way, it provides a solid and flexible foundation to build
interpolation methods compatible with a variety of field representations. In Atlas, one particular interpolation method interprets fields in
the classical finite element (FE) sense. The field is discretised on mesh-nodes (Section 3.3), and linear basis functions (P1), defined in the
mesh-elements, describe a continuous linear evolution of the field between the nodes. It is these elements - typically a simple polygon
(e.g. triangle or quadrilateral) —that form the units of the discretised space by associating a geometry to field values, and are therefore
the fundamental linear interpolating entities by definition. Currently the Atlas space discretisation (mesh generation) and interpolation
methods apply linear (P1) basis functions on 3D triangles and quadrilaterals, from which follows a natural extension to quadratic (P2) and
cubic (P3) elements. Interpolation methods operate on two fields, associated to their (different) grids: a source and a target. Using a FE
approach, the interpolation consists of constructing a linear operator Wj;, of i rows and j columns, relating the source field values x; to
the target x;:

Xj = Winj. (9)

To maintain global conservation in the interpolation process, it is possible to rebalance the interpolant matrix using diagonally lumped
mass matrices from the source and target meshes (M;;, M;;). These mass matrices can be built by distributing and averaging the mesh
element sizes (area) to the source and target grid points (m;, m;):

M; = dlag m;

L T x.
X = MuWUij Xj, ij = diagmj.

(10)
A typical interpolation procedure consists in first projecting each target grid point i to the source mesh. This projection is implemented
using a ray tracing algorithm [45], with the encompassing source mesh element found using a k-d tree search algorithm [46]. Subsequently,
P1 basis functions are used within that element to calculate the weights to interpolate the field value in target point i from the source point
j field values [47]. Two mapping examples are provided for geopotential height and 2 m temperature in Fig. 21 and Fig. 22 respectively.

This application is another example of how Atlas accelerates the development of interpolation tools, by offering data structures to
describe Grids and by the construction of a Mesh used in element-based interpolation algorithms.

5. Summary and future perspectives

Atlas is an innovative software library developed at ECMWF for NWP and climate services. It brings together interoperability on existing
and emerging hardware with flexibility in terms of dynamical core design, spatial discretisation and pre- and post-processing options. The

W. Deconinck et al. / Computer Physics Communications 220 (2017) 188-204 203

oS,
S0

7

véve

0
AVAY ‘
0
00

2 metre temperature @ ground or water surface
277

225 329

= T —

- - e e e e e e e s s s
e 7 e e e = ;ggg— s> T | gt
= o = O = I o 2 = S R . 2 =
E [Eae | E G N A & =

e

I EARESE

\
r

Fig. 22. 2 m temperature at ground or water surface (2t [K], 24th August 2016 12 UTC) mapped from octahedral reduced Gaussian grid 01280 (right) to 032 (left).
Interpolation uses P1 FE elements. Colour maps are limited to the range [225.15, 329.15]. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Atlas library can be used in Fortran and C++ codes, and provides parallel decomposition, threading, and 0O paradigms for more flexible
code design. These characteristics are essential when co-designing algorithms on emerging hardware technologies, on the route to exaflops
(and beyond) computations.

Atlas supports and implements in one framework different numerical discretisations for integrating the PDEs of NWP and climate
models. Atlas can be employed in the context of a forecast model, or in post-processing of the forecast data. Atlas supports the efficient
mapping of fields from one mesh to another. This aids in the generation of products that need to be disseminated to external institutions,
and in visualisation of NWP results.

Atlas is written in the C++ programming language and supports Fortran developments widely used in the HPC scientific community.
The Atlas library exploits extensively the OO capabilities of C++, and various design patterns [32], making Atlas a modular framework that
simplifies developing new features and improves maintainability.

Atlas source code is kept in a git version control repository [48] and its operating system portability is maximised by a build system
based on CMake [49].

Atlas supports various software developments at ECMWEF. One example is the development of FVM, an alternative dynamical core
module for the IFS based on the finite volume method [16,44]. Another example in which Atlas is fundamental is the development of so
called NWP and climate dwarfs — isolated algorithmic building blocks that constitute a NWP or climate model. These dwarfs are then
scrutinised and optimised for many-core architectures both in terms of time to solution as well as energy to solution as part of the ESCAPE
project [8].

Future perspectives.

In the coming years, Atlas will continue its integration within the ECMWF modelling infrastructure, extending its current functionalities.
In particular, Atlas is already used by ECMWF's Meteorological Interpolation & Regridding (MIR) software package. MIR will handle the
mappings between grids for the retrieval of data from ECMWF’s Meteorological Archive and Retrieval System (MARS) [50], one of the
largest meteorological data archives in the world.

In the research context, Atlas allows flexible choices for hybrid use of various discretisation techniques. Atlas is also expected to facilitate
the integration of new Earth System Model components, each operating with different numerical discretisation techniques. Atlas also opens
research avenues in the area of model uncertainty quantification, e.g. by supporting the generation of random fields based on the solutions
of stochastic PDEs or facilitating the calculation of auxiliary flow dependent perturbations.

6. Availability

Currently, Atlas is an ECMWEF proprietary software. A first public version is expected to be released under an open-source Apache 2
license in 2018.

204 W. Deconinck et al. / Computer Physics Communications 220 (2017) 188-204
Acknowledgements

This work was supported by funding received from the EU’s Seventh Framework Programme (FP7/2007-2013) under the grant
agreements No. 287703 (CRESTA project), by funding received from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 671627 (ESCAPE project) and, in part, by funding received from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2012/ERC Grant agreement No. 320375). We also want to thank Anna
Agusti-Panareda for providing an input file for Fig. 1.

References

[1] D.Dent, G.-R. Hoffmann, P.A.E.M. Janssen, A.J. Simmons, Fujitsu Sci. Tech. J. 33 (1) (1997) 88-101.
[2] R.H. Dennard, F.H. Gaensslen, H. nien Yu, V.L. Rideout, E. Bassous, Andre, R. Leblanc, IEEE]. Solid-State Circuits (1974) 256.
[3] O.Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, B. Cumming, M. Bianco, A. Arteaga, T. Schulthess, Supercomputing Frontiers and Innovations 1 (1) (2014) 45-62.
[4] D.Leutwyler, O. Fuhrer, B. Cumming, X. Lapillonne, T. Gysi, D. Liithi, C. Osuna, C. Schar, EGU General Assembly Conference Abstracts, Vol. 16,2014, p. 11914.
[5] X.Lapillonne, O. Fuhrer, P. Sporri, C. Osuna, A. Walser, A. Arteaga, T. Gysi, S. Riidis{ihli, K. Osterried, T. Schulthess, EGU General Assembly Conference Abstracts, Vol. 18,
2016, p. 13554.
[6] T.Schulthess, Nat. Phys. 11(5) (2015) 369-373.
[7] N.Wedi, M. Hamrud, G. Mozdzynski, Mon. Weather Rev. 141 (10) (2013) 3450-3461.
[8] W.Deconinck, M. Hamrud, C. Kiithnlein, G. Mozdzynski, P. Smolarkiewicz,]. Szmelter, N. Wedi, Parallel Processing and Applied Mathematics, Springer, 2016, pp. 583-593.
[9] A.Miiller, M.A. Kopera, S. Marras, L.C. Wilcox, T. Isaac, F.X. Giraldo, Int. J. High Perform. Comput. Appl. (2017) in press.
[10] S. Valcke, Geosci. Model Dev. 6 (2013) 373-388.
[11] C. Hill, C. DeLuca, V. Balaji, M. Suarez, A. d. Silva, Comput. Sci. Engg. 6 (1) (2004) 18-28.
[12] G. Theurich, C. DeLuca, T. Campbell, F. Liu, K. Saint, M. Vertenstein,]. Chen, R. Oehmke, J. Doyle, T. Whitcomb, A. Wallcraft, M. Iredell, T. Black, A.M. d. Silva, T. Clune, R.
Ferraro, P. Li, M. Kelley, I. Aleinov, V. Balaji, N. Zadeh, R. Jacob, B. Kirtman, F. Giraldo, D. McCarren, S. Sandgathe, S. Peckham, R. Dunlap, Bull. Amer. Meteor. Soc.
[13] Y. Seity, P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, V. Masson, Mon. Weather Rev. 139 (3) (2011) 976-991.
[14] G.Zangl, D. Reinert, P. Ripodas, M. Baldauf, Q. J. R. Meteorol. Soc. 141 (687) (2015) 563-579.
[15] P.Bauer, A. Thorpe, G. Brunet, Nature 525 (7567) (2015) 47-55.
[16] P.K. Smolarkiewicz, W. Deconinck, M. Hamrud, C. Kiihnlein, G. Mozdzynski,]. Szmelter, N.P. Wedi, J. Comput. Phys. 314 (2016) 287-304.
[17] P.K. Smolarkiewicz, C. Kithnlein, N.P. Wedji,]. Comput. Phys. 263 (2014) 185-205.
[18] C.Kiihnlein, P.K. Smolarkiewicz,]. Comput. Phys. 334 (2017) 16-30.
[19] G. Mengaldo, Ph.D. thesis, Imperial College London, 2015.
[20] G.Mengaldo, D. Grazia, P. Vincent, S. Sherwin, J. Sci. Comput. 67 (3) (2016) 1272-1292.
[21] S.Marras, J. Kelly, M. Moragues, A. Miiller, M. Kopera, M. Vazquez, F. Giraldo, G. Houzeaux, O. Jorba, Arch. Comput. Methods Eng. (2015) 1-50.
[22] T. Gysi, C. Osuna, O. Fuhrer, M. Bianco, T. Schulthess, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis,
SC’15, ACM, New York, NY, USA, 2015, pp. 41:1-41:12.
[23] H.Edwards, C. Trott, D. Sunderland, J. Parallel Distrib. Comput. 74 (12) (2014) 3202-3216.
[24]].-J. Morcrette, G. Mozdzynski, M. Leutbecher, Mon. Weather Rev. 136 (12) (2008) 4760-4772.
[25] G. Mozdzynski, J.-]. Morcrette, ECMWF Technical Memorandum (721).
[26] B. Stroustrup, The C++ Programming Language, Pearson Education, 2013.
[27] http://www.uml.org.
[28] M. Hortal, A. Simmons, Mon. Weather Rev. 119 (1991) 1057-1074.
[29] N.P. Wedi, Philosophical Transactions of the Royal Society A 372.
[30] S.Malardel, N. Wedi, W. Deconinck, M. Diamantakis, C. Kithnlein, G. Mozdzynski, M. Hamrud, P. Smolarkiewicz, ECMWF Newsletter 146 (2016) 23-28.
[31] A. Staniforth, J. Thuburn, Quarterly Journal of the Royal Meteorological Society 138.
[32] E. Gamma, R. Helm, R. Johnson,]. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Pearson Education, 1994.
[33] A.MacDonald, J. Middlecoff, T. Henderson, L,J.-L., High Perform. Comput. Appl. 25 (1) (2011) 392-403.
[34] P.Leopardi, Electron. Trans. Numer. Anal. 25 (12) (2006) 309-327.
[35] G.Mozdzynski, Proceedings of the Twelfth ECMWF Workshop: Use of High Performance Computing in Meteorology, Vol. 273, World Scientific, 2007, pp. 148-166.
[36] H.Ritchie, Mon. Weather Rev. 115 (1987) 608-619.
[37] P.Smolarkiewicz, L. Margolin, J. Comput. Phys. 140 (2) (1998) 459-480.
[38] P.Smolarkiewicz, J. Szmelter, J. Comput. Phys. 206 (2) (2005) 624-649.
[39] D.Williamson, J. Drake, J. Hack, R. Jakob, P. Swarztrauber, . Comput. Phys. 102 (1) (1992) 211-224.
[40] J. Szmelter, P.K. Smolarkiewicz, J. Comput. Phys. 229 (1) (2010) 4980-4995.
[41] N.P. Wedi, P.K. Smolarkiewicz, J. Comput. Phys. 193 (1) (2004) 1-20.
[42] C.Kiihnlein, P.K. Smolarkiewicz, A. Dérnbrack, J. Comput. Phys. 231 (7) (2012) 2741-2763.
[43] K.Reed, C.Jablonowski, J. Adv. Modelling Earth Syst. 4 (2012) 4001.
[44] P.K.Smolarkiewicz, C. Kiithnlein, W. Grabowski,]. Comput. Phys. 341 (2017) 208-229.
[45] T.Moller, B. Trumbore, ACM SIGGRAPH 2005 Courses, ACM, 2005, p. 7.
[46]].L. Bentley, Commun. ACM 18 (9) (1975) 509-517.
[47] M.]. Fagan, Finite Element Analysis: Theory and Practice, Longman Scientific & Technical, 1992.
[48] L. Torvalds,]. Hamano, Git: Fast Version Control System, 2010. http://git-scm.com.
[49] https://cmake.org.
[50] B.Raoult, ECMWF Newsletter 72 (1996) 15-19.

http://refhub.elsevier.com/S0010-4655(17)30213-8/sb1
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb2
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb3
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb4
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb5
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb5
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb5
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb6
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb7
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb8
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb9
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb10
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb11
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb13
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb14
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb15
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb16
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb17
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb18
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb20
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb21
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb22
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb22
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb22
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb23
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb24
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb26
http://www.uml.org
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb28
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb30
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb32
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb33
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb34
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb35
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb36
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb37
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb38
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb39
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb40
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb41
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb42
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb43
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb44
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb45
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb46
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb47
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb48
http://git-scm.com
https://cmake.org
http://refhub.elsevier.com/S0010-4655(17)30213-8/sb50

	Atlas: A library for numerical weather prediction and climate modelling
	Introduction
	Conceptual design
	Implementation details
	Programming languages
	Grid
	Mesh
	Parallelisation
	FunctionSpace
	Field
	Mathematical operations

	Examples of applications
	Trajectory-based semi-Lagrangian and control-volume-based Eulerian advection approaches
	Compute grid-point element-based derivatives in IFS using Atlas
	Non-hydrostatic finite volume dynamical core
	Interpolation, remapping and filtering capabilities

	Summary and future perspectives
	Availability
	Acknowledgements
	References

