

Observations for Reanalysis

Nick Rayner, Met Office Hadley Centre

Symposium on Climate Reanalysis and Services for Society, University of Bern, 14th December 2017

Material provided by Peter Thorne, Philip Brohan, Mark McCarthy, Alexander Sterin, Sylvie Jourdain, Maria Antonia Valente, Rob Allan, John Kennedy

- Diversity and evolution of the climate observing system
- Data assembly the importance of clear, transparent, traceable access to data
- The importance of data rescue
- Continuation of observations and ongoing timely production of data sets
- Quantifying uncertainty errors and biases in observations
- Evaluation of reanalysis using independent observations
 - Not discussed here, but very important

The diversity and evolution of the climate observing system

Global Climate Observing System

Met Office

Artist's impression

- Concept now of coordinated instrumentation, optimally distributed
- Actually has evolved from handful of locations to complicated web of intermingling systems, set up for different purposes
- Need to know how to use it

Release 2.5 1880-1889 SLP

Late C19th coverage

Beginnings of a global network

Release 2.5 1880-1889 SST

Release 2.5 1880-1889 RH

10 20 40 80 160 320 640 1280

Met Office

Global Climate Observing System

Offices in UK, Netherlands, etc operated own observatories No international standardisation of details

A wealth of satellite measurements

From weather to weather and climate, including:

- Meteosat-1 launched in 1977. The Meteosat series continues today providing ability to create longterm climate records from weather forecasting satellites.
- ERS-1 launched in 1991. Series of high-quality climate measurements continued until 2012. To be continued with the Sentinel-3s.

Met Office

 Sentinel series launched in 2014. Wide variety of different types of data for European Copernicus programme.

What do we need for provision of climate services?

- Long records of a century or more in length to enable us to characterise extremes
- Daily or sub-daily observations
- No non-climatic discontinuities
- Have information pretty much everywhere
- Have information updating in an ongoing manner (quickly)
- Clear, transparent traceable access to data

The importance of clear, transparent, traceable access to data

Met Office Data assembly

- As observing system was not designed but evolved, measurements made were not kept
 in one central location
- Today there is no one place from which to access all the observations we need for producing a reanalysis or for providing climate services
- In many cases, the same measurements were kept in multiple places and are duplicated, or almost duplicated, in different archives
- Can also have portions of the records for a particular place in different archives, sometimes in different countries; this can particularly arise if one country is a former colony of another

Example of merging sources

Climate

BLACK= 01007976 RED= 34000106 BLUE= 38012395

Met Office Data assembly

- As observing system was not designed but evolved, measurements made were not kept
 in one central location
- Today there is no one place from which to access all the observations we need for producing a reanalysis or for providing climate services
- In many cases, the same measurements were kept in multiple places and are duplicated, or almost duplicated, in different archives
- Can also have portions of the records for a particular place in different archives, sometimes in different countries; this can particularly arise if one country is a former colony of another
- What users need to have confidence in the information is traceability of the information to the original measurements, clarity and transparency in documentation and open access to the information
- National, regional and global archives are fundamental components of the whole system and every reanalysis and service is built upon them and relies upon them wholly

The importance of data rescue

Met Office Extending our climate observations

- Need a baseline of current weather and climate risks, against which to assess how climate change will affect extreme weather events and the risks of climate variability and change
- Rescue historical data from archives and pull through into improved data sets and reanalyses
- Various past and current international efforts, including Climate Database Modernization Program, Climate ACRE, I-DARE, ERA-CLIM, ERA-CLIM2, EURO4M, OldWeather, Weather Detectives, Data Rescue @ home, C3S Data Rescue Service, etc

Met Office Data rescue coordinated by ACRE

as China

See also similar in video form: <u>https://vimeo.com/philipbrohan</u>

Outcome: nearly 18 million historical observations new to science **this year** to improve global historical data sets and dynamical reanalyses

Met Office Extending UK climate observations

Outcome: we can now map the UK's wettest (Oct 1903) and driest (Feb 1891) months on record using 93,000 additional monthly rainfall observations for 1862-1909

ERA-CLIM and ERA-CLIM2 have rescued >5.5 million station days of surface measurements and >1.1 million station days of upper air measurements

246 RIHMI stations containing sub-daily meteorological observation, mostly mid-1930s-1965.

Portuguese former colonies Angola & Mozambique, Portugal & Isles & S China Seas

C3S Data Rescue structure, Work Package interlinks & alignments with C3S Data Store, users & Lot 2

Continuation of observations and ongoing timely production of data sets

Annual maximum of 3-day maximum temperature Observations up to July 6, 2015

CLIMATE (O) CENTRAL

Ups Chances of Europe Heat

NEWS, BLOGS & FEATURES

May 22nd 2016 Citiae Monfully

Need:

Development of short-delay updates to monitoring data sets (particularly surface air temperature and precipitation), consistent with the long-term record
 Also development of short-delay updates to SST and sea ice data for boundary forcing of atmospheric models

Quantifying uncertainty – errors and biases in observations

Met Office Hadley Centre Ways of achieving consistency

- Compare everything and develop empirical corrections, relative to a chosen reference
 - Risks picking the wrong reference and biasing the whole system
- Understand each data source physically and correct according to its own biases
 - Then compare to everything else and check consistency
 - But this requires good metadata, which is often lacking
 - However, this allows potential propagation of error structure
- Let the reanalysis handle it still requires good understanding and metadata

A Call for New Approaches to Quantifying Biases in Observations of Sea Surface Temperature. Kent et al. (2017) BAMS https://doi.org/10.1175/BAMS-D-15-00251.1

Evolution of the SST observing system

www.metoffice.gov.uk

© Crown Copyright 2017, Met Office

Met Office Hadley Centre Not possible to represent uncertainties with one number

The mean or "best estimate" might not be a representative or physically realisable state of the system

One solution is to represent uncertainties using ensembles

- Multiple versions of the data with different choices made when constructing the dataset
- Spread of the ensemble members represents underlying uncertainty
- Very easy to use

SST anomaly ensemble, January 1926

Member 69

Member 1194

-10 -2.5 -1 0 1 2.5 10

_ Member 1346

© Crown copyright Met Office

Compare to prototype HadISST2 realisations of same events

Different SST data sets

Ensemble of one data set

© Crown copyright Met Office

Met Office Summary

- Diversity and evolution of the climate observing system
- Data assembly the importance of clear, transparent, traceable access to data
- The importance of data rescue
- Continuation of observations and ongoing timely production of data sets
- Quantifying uncertainty errors and biases in observations
- Evaluation of reanalysis using independent observations
 - Not discussed here, but very important