

INSTITUTO DOM LUIZ

Data Rescue, QC and a metadatabase: FCiências.ID's contribution to WP3

Maria Antónia Valente, Maria Clara Ventura, Pedro Gomes, Maria Helena Cordeiro, Maria João Rocha, Liliana Matos, Anabela Simões, Irina Pedroso

FFCUL /FCiências.ID

Instituto Dom Luiz

Faculty of Science of the University of Lisbon – Portugal

ERA-CLIM2 4rd General Assembly Bern 12-15 December 2017

WP3 – Earth Systems Observations

Task 3.1 – Data rescue for in-situ observations, quality control and metadata (112 persons/month)

D3.1 Data catalogue
D3.2 Priorities for data rescue
D3.3 Metadatabase update (new)
Month 48
D3.4 In-situ data for reanalysis
Month 36
D3.5 In-situ data (other)
Month 42
D3.6 Quality controled version of D3.4
Month 48
Month 48
Month 48

Contents

1 - Data rescue of Portuguese former colonies Angola,
Mozambique surface data; Continental Portugal and Isles +
South China Sea

- 2 Digitisation of early Spanish upper air data
- **3 Recovery of Chilean surface and maritime data**
- **4 QC tests for surface data**
- **5 ERA-CLIM2 Global Registry**
- **6 Conclusions**

1 - Data rescue of Portuguese former colonies Angola, Mozambique sub-daily land surface data; Continental Portugal and Isles + South China Sea

Table 1: Surface observations (in station days) digitized within ERA-CLIM and ERA-CLIM2.

Source	Cataloged	Digitized	QC'ed
Backward extension (<1965) of meteorological data	2738595	2738595	2738595
from 246 Russian stations			
41 Chilean stations 1950-1999	383151	357456	36682
76 Portuguese stations in Portugal and ex-colonies in Africa and Asia	1020727	1009131	605478
South China Sea logbooks for 100 stations	830286	830286	830286
Snow data for 20 stations in Russia	622325	622325	622325

Broennimann et al, (2017)

 2.2M ESD catalogued & in digital image, 98% digitised, 66% QC'ed – Total for ERA-CLIM and ERA-CLIM2

•South China Sea (Rob Allan – UKMO collaboration) 1894-1941 mslp formatted and supplied (ISPD + project).

• All Portuguese ex-colonies 1915-1946 supplied to project and ISPD; Portugal and Isles (1863-1946) digitised, and partly supplied. 1 - Data rescue of Portuguese former colonies Angola, Mozambique sub-daily land surface data; Continental Portugal and Isles + South China Sea

1 - Data rescue of Portuguese former colonies Angola,
Mozambique sub-daily land surface data; Continental
Portugal and Isles + South China Sea

 Angola Anuários (10 stations) 1937 -1974 already imaged, digitised for 1947-1974, undergoing QC and final formatting

 Mozambique Anuários (9 stations) 1909-1960 imaged; 1909-1914,1947-1960 digitised, undergoing QC and final formatting

2 - Digitisation of early Spanish upper air data (6 stations)

Pilot balloon data Spain 1912-1916 Ebro 1930-1961

Las Cañadas del Teide

Izaña

Broennimann et al, (2017)

3 - Recovery of Chilean surface and maritime data

Existing Records

Surface Stations
43 stations

Ship Logs 58 ships

From 1950 to 1958

Records of 41 stations in .*jpg* format from UPAC

From 1959 to 1999

Records of 25 stations in *.xls* format from METEOCHILE (DMC)

From 1861 to 1884

Records of 6 ships with 50 logbooks: 7136 images

From National Maritime Museum of Chile From 1955 to 1957

Records of 52 ships, 64 logbooks: 10242 images

Not all stations have data in this period;

Frequently miss some variables like Td, MSL Pressure and Relative Humidity Frequently miss some variables Inventory completed Digitisation priority given to 1955 to 1957 Typing

3 - Recovery of Chilean surface data (1950-1958)

Digitisation of 1950-1958 is progressing (62%). 1950 to 1956 completed. 1957 undergoing digitisation - Typing. Pressure sent to ISPD. 1956 – year without Chilean data in ISD.

1950	1951	1952	1953	1954	1955	1956	1957	1958	Provid		
						Alla Palena	Alla Palena		- Zgeara areie		ined
					Assad	Annal	Annal	Annad	Agrees seeie .	Se Pro	-
						Antofaganta	AntoFaganta	Antofaganta	Agrees and	Section	ilined
						Ariss	Arias	Ariss	Agence are in	Se be	S.o
								Baja Palena	A generation of		
						Palmaneda	Palmaneda	Balmaneda	Agence and		
<u>Pellala</u>	Pellala	Pellala	Pellala	Pellala	Pellala	Pellala	Pellala	Pellala	Agearance in		
					Castro	Castro	Canten		Agreen areie.		
						Chailanal	Chañaral	Chailanal	Second sector		
						Chile China	Chile China	Chile China	A generation in the		
			Chilling.			Chilling.	Chillis.	Chills.	14 generation		
Calina	Collina	Collina	Calina	Calina	Calina	Colina	Calina	Calina	Agreen areir.		
			Casarpaiés		Casarpaille	Casarpaila	Concepción		4.5 generation		
						Сарізрб	Capiapá	Сарізрб	Access and		
						Caghaigae	Caghaigae	Canbaigar	Second reside		
Crista Brdrata	- Crisla Brdrala	e Crista Brdrata	- Crista Brdrata	- Crista Brdrata	- Crisla Redealar	Crista Bedrata	Crisla Redeala	e Crisla Brdralas	Anners annin		
Cariati	Cariat	Cariat	Cariati	Cariat	Carial	Cariat	Cariat	Carias	2.5 accessories		
				Inta de Panna	Inta de Ranna	Inta de Panna	Internet Panna	Inta de Panna	Same and a	 	
El D	EIP	EIP	EIP	EIP	EID	EID	El Passar	EIP	Incompanie	 	
					Palilanta	Palilantia	Pal dan Sa	Palulanta	discussion in the	 	
					Inning - Canan	Inning - Canan	laning - Canan	a Inniana - Canan	Annua anti-		
					laning of the Co	1			for an ender	 	
			1.5	1.5	1.5	1.5	1.5	1.5	E an ann an ta	 	_
			1			1:	1:	1:		 	
					1		1			 	
			Les Asselse				Lee Accelee	Les Asselse	A.L. and an and a	 	
		Les Cassilles		les Cassilles	Les Casalles			Las Casallas		 	
	See Services	KAN SPECIAL			A CONTRACTOR	A	600 SPPP1100	A		 	
A 11		A 11	A 11	A 11			0 U			 	
Vealle	_ veater	Vesile	Vealle	Vealle	Vealle					 	
	1					Forrio Hysto R. 1 Maria	Forelo Myoto	Forris Highta		 	
						Farris Edba		Parris Edta	1:1 gevenues e	 	_
					Farris Fisali	Farris Maail	Forela Maall	Farris Maall A 112	A generative	 	+
				A 1 1	Maelika A. S. J	Unellin .	<u>Uarlika</u> 		Agenes areir	 	
<u>Valairea</u>	Veielere	Massiers	Veielere	Valairea	Nevelere Le .	Vatalera	<u>Valairea</u>	Vatalera	Agrees areir	 	
Kannúgma	Kannägna	Kannägna	Kannágna	Kannägna	Kannägna	Kannûgna Ale al	Kannágna Az az	Kannágna a	Agearanceie	 	
			_		_	Ria Cisara	Ria Ciaara	<u> Ris Cissra</u>	Agreen series	 	
			Trass		Tress	Tress	Tress		14 generation	 	
				Tabalaha	Tabalaha	Tabalaba	Tabalaba	Tabalaba	Square serie	 	_
					Valdinia	Valdinia	Valdinia	<u> Valdinia</u>	Agenerate .	 	
						Yallenar	Yallenar	Yallenar	Agreen areie	 	
			Vistant.		N:_1_:	1 11- 1 -	1 11 2 1 2	1	And an end of the		

3 - Recovery of Chilean maritime data

SERIES of 64 SHIP LOGS: 1955 - 1957

Robinson Projection

Voyage of the military ship

Ship and Route: Lientur - From Bahía Margarita to Isla Decepción (Antarctica)

Day: 7th February 1956

<u>Records/Variables</u>: Hours, Ship Directions, Ship Velocities, Wind Direction, Wind Intensity [Beaufort scale], Cloud Cover [type and oktas], Atmospheric Pressure [mbar], Air Temperature [°] and Wet Bulb Temperature [°].

<u>Missing records</u>: Sea Surface Temperature, Adjunct Thermometer Temperature and Relative Humidity.

<u>Records to calculate ships positions</u>: We have the Direction of the ship relative to True North or Compass Bearing [°] (*Rumbo verdadero*) and the Distance Sailed [nautical miles] (*Millas que indica la corredera* .B / E.), per hour. In a simplified way, with those records and the coordinates of the last port where the ship stayed (initial point), it is possible to estimate successive displacements and positions.

Home page of the Portal lodging the ERA-CLIM2 FFCUL/FCiências.ID digitized data, for the countries and regions indicated. Available at http://eraclim2.rd.ciencias.ulisboa.pt/

🔁 🖅 🗖 ERACLIM Database Hon X 🕂 🗸			-	٥	×
\leftrightarrow \rightarrow O \otimes eraclimitint ciencies utilision pt		□ ★	= L.	ß	
	ERACLIM Meteorological Database				
Europea	n Reanalysis of Global Climate Observations - ERACLIM Meteorologic Data				
This website holds the archive information.	for surface meteorologic data recovered in ERACLIM projects. Everyone who needs it can acess freely to this				
	Angola				
1947 1948 1949 1950 1951 1952 19	53 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1971 1972 1973 1974				
	Chile				
	Mozambique				
	South China sea				
					- 11

4 - QC tests for surface data CHECK 1: Gross Error Limit (GEL) – detecting outliers

A set of checks was applied to surface pressure, mslp, wind speed and direction, temperature, cloud cover. relative humidity and precipitation.

Flags used do codify the observations: $0 - Correct$ $1 - Erroneous$ $9 - Suspect$ $M - Missing QC$ MSLPRESSURE : (units=hPa)A suspected error was flagged when $p \le 870.0$ or $p \ge 1100.0$	WIND DIRECTION (dd) and FORCE (ff) The values were considered correct when $dd \ge 0^{\circ}$ and $dd \le 360^{\circ}$ $ff \le 100 \text{ (ms}^{-1}) = 360 \text{ (km/h)}$ and the values were flagged as wrong when $dd < 0^{\circ}$ and $dd > 360^{\circ}$ $ff < 0 \text{ (ms}^{-1}) = 0 \text{ (km/h)}$ an ff value above 100 ms ⁻¹ earned a suspicious value flag.				
TEMPERATURE (T) Values were considered correct when $T \ge -50^{\circ}C$ and $T \le 50^{\circ}C$ outside this interval, they are considered suspect until more checks are applied	PRECIPITATION (RRR) If RRR < 0 value is incorrect RRR ≥ 0 value is correct Threshold for maximum?				
RELATIVE HUMIDITY (RH) Values are considered correct if RH > 0% and HR \leq 100% If RH >100% the value is reset to RH = 100% ???	$\begin{array}{c} \text{CLOUD COVER (N)} \\ \text{Values are considered correct when} \\ N \geq 0 \text{ and } N \leq 8 \text{if cloud cover is in oktas} \\ \text{N=9 clouds are not visible, ex. in the case of fog} \\ \text{Or } N \geq 0 \text{ and } N \leq 10 \text{if cloud cover is in tenths} \end{array}$				

CHECK 2: Gross Error Limit (GEL)

Based on the application of more stric	t limits to the meteorologica	al fields according to the	latitude
and time of year of the observation,	Suspect (flag=9)	Error (flag=1)	point
temperature (Td), Pressure at station	Max1 < FF < Max2	FF > Max2	sure
trend (ppp).	Min2 ≤ ECV < Min1	ECV < Min2	
Latitudes : 45°S to 45°N	$Max1 < ECV \le Max2$	ECV > Max2	

		W - V	Vinter			S - Summer				Y - Year			
	Min2	Min1	Max1	Max2	Min2	Min1	Max1	Max2	Min2	Min1	Max1	Max2	
FF (ms ⁻¹)	-	-	60	125	-	-	90	150	-	-	-	-	
T (00)	40	20	50	55	20	20	50	()					
Latitude	s : sout	th of 45	⁰S and	north o	f 45⁰N								
	-45	-15	35	4()	-35	-25	35	4()	-	_	_	_	
		W - V	Vinter		S – Summer					Y -	- Year		
	Min2	Min1	Max1	Max2	Min2	Min1	Max1	Max2	Min2	Min1	Max1	Max2	
FF (ms ⁻¹)	-	-	50	100	-	-	40	75	-	-	-	-	
T (°C)	-90	-80	35	40	-40	-30	40	50	-	-	-	-	
Td (°C)	-99	-85	30	35	-45	-35	35	40	-	-	-	-	
Pstation (hPa)	_	_	_	_	_	_	-	-	300	400	1080	1100	
Pmsl (hPa)	910	940	1080	1100	920	950	1080	1100	-	-	-	-	
Pres. trend ppp (hPa)	-	-	-	-	-	-	-	-	-	-	40	50	

CHECK 3: Internal Consistency (IC)

Internal consistency was checked simultaneously on wind speed and direction; Tmax, Tmin,T and Tdew; precipitation (RRR) and number of hours of precipitation (RRRhr); and on T, Tdew and RH.

1. WIND (dd and ff)		2. TEMPERATURES (T, Tmax, Tmin, Tdew)
Error (flag=1) if: 1) $dd = 0^{\circ}$ and ff $\neq 0 \text{ ms}^{-1}$ 2) $dd \neq 0^{\circ}$ and ff = 0 ms^{-1} 3) $dd = -99.9$ and ff = 0 or ff $\leq 5 \text{ ms}^{-1}$		Error (flag=1) if: Tmax < T or T < Tmin or Tmax < Tmin
with dd=-99.9 being the default value		Suspicious (flag=9) if Tdew > T
3. PRECIPITATION (RRR) AND NUMBER OF PRECIPITATION HOURS (RRRhr)	4.	SURFACE TEMPERATURE (T), DEW POINT (TDEW) AND RELATIVE HUMIDITY (RH)
In case both precipitation and number of hours of precipitation exist:	S	uspicious (flag=9) if
Error (flag=1) or Suspect (flag=9) if: RRR ≠ 0mm and RRRhr = 0 hours (and vice- versa)		T=Tdew and RH ≠ 100% T ≠ Tdew and RH = 100% T – Tdew < 0.6°C and RH < 90%

CHECK 4: Time Consistency (TC)

Time consistency checks were implemented for temperatures and pressure.

1.TEMPERATURES T and Tdew

The difference between values separated by a time dt are considered suspicious (flag=9) if

| T(t) - T(t-dt) | > Ttol(dt)(1) | Tdew(t) - Tdew(t-dt) | > Tdewtol(dt) (2) where Ttol(dt) and Tdewtol(dt) are given by

Donomotors	dt				
Parameters	1h	2h	3h	6h	12h
Ttol (°C)	4	7	9	15	25
Tdewtol (°C)	4	6	8	12	20
ppptol (hPa)	3	6	9	18	36

2. Pressure Trend (ppp) and Pressure (P)

Pressure trends are considered suspicious (flag=9), with ppptol(dt) given by the previous table if | ppp(t) – ppp(t-dt) | > ppptol(dt)

Moreover pressure values are suspicious (flag=9) if: • | p(t) - p(t-dt) - ppp(t) | > Dtol (for dt = 3h) • | p(t) - p(t-dt) - 0.5*ppp(t-dt) - 1.5*ppp(t) | > Dtol

Dtol (hPa)	For	mslp	For	station
	(mean	sea	level pre	ssure
	level)			
a)	1.5		0.5	
b)	2.5		1.5	

(for dt = 6h)

Formatting for ISPD

pressure_Aparri_____1940_ncdc.dat - Bloco de notas

– 0 ×	(
-------	---

Ficheiro	Editar	Formatar	Ver	Aiuda								
Aparri		1218119	4001	01060099999999	005	18.37121.63999910	017.25	M9999.99M	763.00	mmHg999999999999999999999999	18.37	121.639 ^
Aparri		1218119	4001	02060099999999	005	18.37121.63999910	014.58	M9999.99M	761.00	mmHg999999999999999999999999	18.37	121.639
Aparri		1218119	4001	03060099999999	005	18.37121.63999910	014.58	M9999.99M	761.00	mmHg999999999999999999999999	18.37	121.639
Aparri		1218119	4001	04060099999999	005	18.37121.63999910	014.58	M9999.99M	761.00	mmHg999999999999999999999999	18.37	121.639
Aparri		1218119	4001	05060099999999	005	18.37121.63999910	911.92	M9999.99M	759.00	mmHg999999999999999999999999	18.37	121.639
Aparri		1218119	4001	.06060099999999	005	18.37121.63999910	010.58	M9999.99M	758.00	mmHg999999999999999999999999	18.37	121.639
Aparri		1218119	4001	07060099999999	005	18.37121.63999910	911.92	M9999.99M	759.00	mmHg999999999999999999999999	18.37	121.639
Aparri		1218119	4001	08060099999999	005	18.37121.63999910	010.58	M9999.99M	758.00	mmHg999999999999999999999999	18.37	121.639
Aparri		1218119	4001	09060099999999	005	18.37121.63999910	010.58	M9999.99M	758.00	mmHg999999999999999999999999	18.37	121.639
Aparri			4001	10060099999999	005	18.37121.63999910	014.58	M9999.99M	761.00	mmHg999999999999999999999999	18.37	121.639
Aparri		1218119	4001	11060099999999	005	18.37121.63999910	014.58	M9999.99M	761.00	mmHg999999999999999999999999	18.37	121.639
Aparri		1218119	4001	12060099999999	005	18.37121.63999910	010.58	M9999.99M	758.00	mmHg99999999999999999999999	18.37	121.639
Aparri_		1218119	4001	13060099999999	005	18.37121.63999910	009.25	M9999.99M	757.00	mmHg99999999999999999999999	18.37	121.639
Aparri_		_1218119	4001	14060099999999	005	18.37121.63999910	010.58	M9999.99M	758.00	mmHg99999999999999999999999	18.37	121.639
Aparri_		_1218119	4001	15060099999999	005	18.37121.63999910	07.92	M9999.99M	756.00	mmHg99999999999999999999999	18.37	121.639
Aparri_		_1218119	4001	16060099999999	005	18.37121.63999910	07.92	M9999.99M	756.00	mmHg99999999999999999999999	18.37	121.639
Aparri_		_1218119	4001	17060099999999	005	18.37121.63999910	911.92	M9999.99M	759.00	mmHg9999999999999999999999	18.37	121.639
Aparri_		_1218119	4001	18060099999999	005	18.37121.63999910	013.25	M9999.99M	760.00	mmHg99999999999999999999999	18.37	121.639
Aparri_		_1218119	4001	19060099999999	005	18.37121.63999910	013.25	M9999.99M	760.00	mmHg99999999999999999999999	18.37	121.639
Aparri_		_1218119	4001	20060099999999	005	18.37121.63999910	013.25	M9999.99M	760.00	mmHg99999999999999999999999	18.37	121.639
Aparri_		_1218119	4001	21060099999999	005	18.37121.63999910	911.92	M9999.99M	759.00	mmHg99999999999999999999999	18.37	121.639
Aparri_		_1218119	4001	22060099999999	005	18.37121.63999910	010.58	M9999.99M	758.00	mmHg99999999999999999999999	18.37	121.639
Aparri_		_1218119	4001	23060099999999	005	18.37121.63999910	013.25	M9999.99M	760.00	mmHg99999999999999999999999	18.37	121.639
Aparri_		_1218119	4001	24060099999999	005	18.37121.63999910	015.92	M9999.99M	762.00	mmHg99999999999999999999999	18.37	121.639
Aparri_		_1218119	4001	25060099999999	005	18.37121.63999910	015.92	M9999.99M	762.00	mmHg99999999999999999999999	18.37	121.639
Aparri_		_1218119	4001	26060099999999	005	18.37121.63999910	915.92	M9999.99M	762.00	mmHg99999999999999999999999	18.37	121.639
Aparri_		_1218119	4001	27060099999999	005	18.37121.63999910	015.92	M9999.99M	762.00	mmHg99999999999999999999999	18.37	121.639

Formatting for "Sort of ASCII ODB" (agreed with Hans Hersbach in ERA-CLIM)

🗾 0063_sample.txt - Bloco de notas												
Ficheiro	Editar For	matar Ver	Ajuda									
UR_ID	Lon	Lat	Alt	Year	Month	Day	Hour	Tflag	VarN	Var_val	Varflag	
63	145.58	43.33	26	1902	6	4	2017	0	6	1002.707118	м	
63	145.58	43.33	26	1902	6	5	417	0	6	1002.707118	м	
63	145.58	43.33	26	1902	6	5	2017	0	6	1004.06167	м	
63	145.58	43.33	26	1902	6	6	417	0	6	1007.786688	м	
63	145.58	43.33	26	1902	6	7	2017	0	6	1002.707118	м	
63	145.58	43.33	26	1902	6	8	2017	0	6	1010.495792	м	
63	145.58	43.33	26	1902	6	9	417	0	6	1005.416222	м	
63	145.58	43.33	26	1902	6	9	2017	0	6	1006.432136	м	
63	145.58	43.33	26	1902	6	10	417	0	6	1007.786688	м	
63	145.58	43.33	26	1902	6	10	2017	0	6	1009.14124	м	
63	145.58	43.33	26	1902	6	11	417	0	6	1009.14124	м	
63	145.58	43.33	26	1902	6	11	2017	0	6	1010.495792	м	
63	145.58	43.33	26	1902	6	12	417	0	6	1010.495792	м	
63	145.58	43.33	26	1902	6	12	2017	0	6	1011.850344	м	
63	145.58	43.33	26	1902	6	13	417	0	6	1011.850344	м	
63	145.58	43.33	26	1902	6	13	2017	0	6	1010.495792	M	
63	145.58	43.33	26	1902	6	14	417	0	6	1011.850344	м	
63	145.58	43.33	26	1902	6	14	2017	0	6	1011.850344	м	
63	145.58	43.33	26	1902	6	15	417	0	6	1010.495792	м	
63	145.58	43.33	26	1902	6	15	2017	0	6	1011.850344	м	
63	145.58	43.33	26	1902	6	16	417	0	6	1013.204896	м	
63	145.58	43.33	26	1902	6	17	417	0	6	1014.559448	м	
63	145.58	43.33	26	1902	6	17	2017	0	6	1014.559448	м	
63	145.58	43.33	26	1902	6	18	417	0	6	1011.850344	м	
63	145.58	43.33	26	1902	6	18	2017	0	6	1007.786688	м	
63	145.58	43.33	26	1902	6	19	417	0	6	1007.786688	м	

5 – ERA-CLIM2 Global Registry

Development of a global registry (Metadata base) that can list sources of historical meteorological observations useful for Reanalyses, including surface, upper air, maritime and other relevant data

Contains the ERA-CLIM2 inventories with detailed metadata

Fciências.ID produced a source code in html, php and JavaScript, using php.MySQL for data management. Much of the previous ERA-CLIM Metadata base information was retained and the inventories were adapted and uploaded to the new software.

The metadatabase includes the ISPD inventory (version 4 at the moment).

Open Access (No more anonymous login)

It's a searcheable and plotable database

Global Climate Data Registry

Surface Data

Upper Air Data

🖸 Sign Up

Login

Moving Upper Air Data

Portuquês

Maritime Data

Meteo Database

Data base with meteorological information.

Click Here!

Related Links

I-DARE MEDARE

European Reanalysis of Global Climate Observations 2 - ERACLIM2

Global Inventory of Historical Climate Data

This website holds the archive for the inventory of historicallysourced data from meteorological surface-station observations, upper-air observations and from maritime sources for the ERA-CLIM2 project. The purpose of this website is twofold:

 To enable researchers who are actively digitising historical weather records to update the online inventory with their progress. The database is instantly backed up, and multiple authors may edit it. As such, the inventory provides a global overview of data to be rescued/imaged and digitised.

To allow anyone with an interest in the raw and/or homogenised data to be able to use this inventory to analyse the source of historical climate data sources, and find the link/contact source for the data.

🟫 Home	About	🗏 Map site	Disclaimer	🔀 Contact us
	CRA		100	

Data Submission Guidelines

Need some guidance on how to send us metadata information?

```
Click Here!
```

Applications

Go!

phpMyAdmin is the tool used for building the MySQL database, very flexible, allows for insertion of columns

		google M	TOL DE FOUR J	(instructo de	i i i i i i i i i i i i i i i i i i i	- so orange		urube - proa	ocase	HTMLS 11 IM		i intalità	
phpMyAdmin 企图 9 1 0 9	M Structure	SQL	Search	Query	🕮 Ехрог	t 📾 la	nport	🤌 Operat	ions =	Privileges	8 Routines	S Events	24 1
Recent Favorites	Table .	Action						Rows @	Туре	Collation	Size	Overhead	
New	maritime	🏫 🔝 Bro	owse 🛛 Structur	e 🔍 Search	s insert	Empty	Drop	114	MyISAM	utt8_unicode_c	26.9 KiB	-	
era_clim_db	movupairst	a 🚖 📋 Bro	wee 🦗 Structur	e 💘 Search	He Insert	Empty	😂 Drop	101	MyISAM	utfil_unicode_c	34.5 X10	-	
Hills maritime	surface	🏫 🔝 Bro	owee 🦗 Structur	e 🔍 Search	-	👷 Empty	Drop	84,020	MyISAM	utf8_unicode_c	13.6 MiB	-	
novupairsta	upairsta	😭 🛅 Ber	wse 🙀 Structur	e 🦂 Search	i insert	R Empty	Corp	1,764	MyISAM	utf8_unicode_c	605.7 XiB	-	
surface	🖂 user_id	🚖 🗐 Bro	owse 🕞 Structur	e 🔍 Search	linsert	👷 Empty	Drop	1	MyISAM	utf8_unicode_c	i 2.1 K18	~	
(+).) user_id	5 tables	Sum						86,000	MyISAM	utf8_unicode_	ci 14.3 MIB	0 13	
information_schema	1_ Cho	ck all	With selected:	~									
el	🚔 Print 👼 Data	dictionary											
8⊥⊜ sys	Create 1	table											
g-(3) teste													
	Name:			Number of	columns:	4							

ERA-CLIM Metadata-Base (surface stations)

	Search	n (only o	n table s	howed)																									
	Record ID	Station ID	Archive		Na	me			Coun	itry		Lon	g	La	t	Alt	R	ec S	tart	Rec E	nd	т	R	ES	D	Ws	Wd	Ps	psT	Si
	1	85110	IDL	Ang	ra do	Hero	oismo)	Portu	ıgal	-	27.2	30	38.6	50	45	01	/01/	1902	31/12/1	1952		5	186	28	•			•	•
	2	85490	IDL		Coir	mbra			Portu	igal		8.42	20	40.2	210	140	01	/01/	1864	31/12/2	2007	1	2	525	96	•	•			•
	3	-9999	IDL		Cab	oinda			Ang	ola	1	12.18	30	-5.5	50	30	01	/01/	1953	31/12/1	1974		3	694	10	1	•	1		•
	4	66152	IDL		Du	ndo			Ang	ola	2	20.83	30	-7.3	70	745	5 01	/01/	1953	31/12/1	1974		3	694	10	•		1		6
lee	c Start	Rec End	TR	ESD	Ws	Wd	Ps	psT	saT	Tg	Ts	rH	sH	Тd	Tw	CL	Sun	PR	Con	nments	LO	L1	L2	L3	L4	L5	Data Link	a c P	ositio	n
1/0	01/1902	31/12/1952	2 5	18628	1		1		-			1			-	1					1						C		0	
1/0	01/1864	31/12/2007	7 12	52596	•	1	1		-	1		1			1	1					•						C		0	
1/0	01/1953	31/12/1974	13	6940	1	1	1		-			1				1		1			•						C		0	
/0)1/1953	31/12/1974	4 3	6940	1	1	1		1			1				1					1						e		0	

Description of each column in the Land surface metadata base

🕑 Notes

Global Map Surface Stations

in Google Earth here

🕇 Go to top

Surface Guide

Column 1: ERACLIM Inventory ID

Column 2: Original Archive - The institution or person who holds/provided the data/record.

Column 3: Provided Station ID - The provided station ID if the record has one (if it is a WMO station, use the WMO code). If no original ID, use -9999.

Column 4: Station - Station Name.

Column 5: Country

Column 6-7: Lon(E) & Lat(N) - Longitude in degrees east and Latitude in degrees north, use decimals rather than minutes/seconds

Column 8: Altitude - Altitude in metres above sea level.

Column 9-10: Start & End - Start and end day of the record with format YYYY-MM-DD, enter the very first and last day, do not worry about gaps. Information regarding gaps can be input into the comment box (Column 26).

Column 11: Time Resolution - Number of Observations per day. For example, "24, 5, 3", would indicate hourly observations and 5 and 3 times-daily observations. If the number varies, enter the highest frequency value.

Column 12: Estimated Station Days - Approximate number of days with data for this record.

Column 13-26: Climate Variables - Indicates with a 1/0 (1 = True, 0 = False) whether the record contains information for a particular climate variable.

- · Ws wind speed
- Wd wind direction
- Ps air pressure
- · psT temperature of the thermometer next to the barometer
- saT surface air temperature (includes max/min)
- Tg grass temperature
- Ts soil temperature
- rH relative humidity
- sH specific humidity
- Td dew point temperature
- Tw wet bulb temperature
- CL cloud cover
- · Sun sunshine duration
- PR precipitation

Column 27-32: Level - The stage of rescue/digitisation. Formatting is six digits, 1 or 0 for true/false.

- Stage 0 Physical copy of the data found, no imaging or digitisation done.
- Stage 1 Data have been imaged.
- Stage 2 Data have been digitised
- Stage 3 Data have undergone initial/basic quality control to check that values make physical sense.
- Stage 4 Rigourous quality control done, e.g. do newly digitised daily data = existing published monthly values?
- Stage 5 Data has been subjected to homogeneity tests and has been adjusted if neccessary.

The surface (orange dots) and upper air moving platforms (green dots) metadata base plotted on GoogleEarth. In red are also seen some of the first 2000 ISPD entries.

Fig.·14·--·The·surface·(orange·dots)·and·upper·air·moving·platforms·(green·dots)· metadata·base·plotted·on·GoogleEarth.·In·red·are·also·seen·some·of·the·first·2000· ISPD·entries.¶

The location on Google Maps of the upper air fixed platforms with data recovered on ERA-CLIM/ERA-CLIM2

It's now possible to make crossed searches by station name, country and variable (e.g. Name=Bern, Country=Switzerland, field=air pressure – 9 records)

		Map Loc	Table Info:	Default	▼ 50	1(5(1)		on 1
			Search	ning on				
Sear			Stat	ion Info				E
Reco		Name		Country			v	
ID		Bern	End/Máx	switzerland		End/Máx		sition
5464								0
5465		Variable Info			Re	cover Data	Level	۲
5466	Air Press	sure	•	N	o field		•	۲
5467								Ø
5683			Search	Reset Close				0

Zooming on Switzerland, upper air fixed platforms

All stations included in ISPD version4

We have received their inventory, and have atributed a country to every point (metadata QC tool for lat,lon), so that the listing by country can be performed. Eraclim-global-registry.fc.ul.pt cannot produce this plot with 83K points

Some mistakes of stations location found in the ISPD inventory:

Same name, but different country due to wrong latitude or longitude:

Lon=0°; lack of minus (-) sign in long; number missing on lat or lon; decimal point mistake

Errors detected so far come from ISD stations, correction leads to including previously rejected data

-98.0500	29.7100	United States	29.71	261.95	NEW BRAUNFELS MUNI	41515		
0.0000	29.7100	Algeria	29.71	0	NEW BRAUNFELS MUNI	41516	Wrong Zero I	ongitude!
-98.0400	29.7100	United States	29.71	261.96	NEW BRAUNFELS MUNI	41517		
-94.7500	31.2400	United States	31.24	265.25	ANGELINA CO	41582		
0.0000	31.2400	Algeria	31.24	0	ANGELINA CO	41583	Wrong Zero I	ongitude!
-94.7500	31.2300	United States	31.23	265.25	ANGELINA CO	41584		
-94.7100	32.3900	United States	32.39	265.29	LONGVIEW	41613		
0.0000	32.3800	Algeria	32.38	0	LONGVIEW	41614	Wrong Zero I	ongitude!
-94.7100	32.3800	United States	32.38	265.29	LONGVIEW	41615		
-97.4300	32.7700	United States	32.77	262.57	FORT WORTH NAS JRB	41916		
-97.4300	2.7700	North Pacific	2.77	262.57	FORT WORTH NAS	41917	wrong latitud	de, should be 32.7
-97.4300	32.7800	United States	32.78	262.57	FORT WORTH NAS	41918		
97.0300	32.9000	China	32.9	97.03	DALLAS/ADDISON ARPT	41937	wrong longit	ude conversion
-96.8300	32.9700	United States	32.97	263.17	DALLAS/ADDISON ARPT	41938		
-96.8700	32.6800	United States	32.68	263.13	DALLAS/REDBIRD ARPT	41939		
-108.5300	39.1200	United States	39.12	251.47	GRAND JUNCTION/WALK	44807		
-10.8500	39.1300	Portugal	39.13	349.15	GRAND JUNCTION/WALK	44808	wrong longit	ude
							decimal poin	t in the wrong pla
After findi	ng a USA s	tation in Portu	gal my fellowshipper v	was incapable	e to continue the visual se	arch	should be lor	n=251.5

6 - Conclusions

A comprehensive work of historical data recovery, QC and formatting has been developed for land surface and upper air data, for Portugal and former territories, Chile, Spain and South China Sea regions (UKMO collaboration). Many datasets have been supplied to Global Databases (ISPD), CHUAN and ERA-CLIM2.

DARE activities are to be continued at a lower pace for an extra year to finish some of the datasets initially planned for recovery.

The ERA-CLIM2 global metadatabase has been made publicly accessible through the Registry Portal eraclim-global-registry.fc.ul.pt

The Registry will be maintained during an extra year until the C3S Data Registry Service is fully operational.

Several tools developed during the ERA-CLIM2 DARE activities will be passed to the C3S Data Rescue service (data and metadata QC, formatting for ISPD, IMMA).