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Modeling framework

Modeling framework

* NEMO-ORCAO5L75 global configuration +
CheapAML atmospheric boundary layer model (Deremble et al., 2013):

0 (T o) 10t=ADVIU,(T,,,,Ap)] + DIFF [(T,,,95)] + THDY [SST,U,(T,,,,0om), Hagy ]

* Wind is not prognostic and imposed externally (ERA-Interim)

ADVANTAGEsS:
* No atmospheric DA system (not available at CMCC)
« It allows augmenting the ocean state control parameters to include T,,, and

Q. NOW prognostic, in both model and 3DVAR, i.e. allow to use 1 DA
software, extended to atmospheric variables (ideal strategy)

DISADVANTAGES:
* Care must be taken to extend results to real-world NWP systems
* Rely on T2M/Q2M observing network over oceans only




A simplified air-sea balance operator

To couple the sea-surface variables with 2m atmospheric variables,
balances might be thought either purely statistical, or purely analytical, or
mixed (balanced + unbalanced components)

We introduce a balance operator that maps the increments of SST onto
those of (T,,,, Q,,) and uses tangent-linear version of CORE bulk formulas

(Large & Yeager, 2007)

* 6T,,= At [6 Qyy (6SST) + 6 Qgey (6SST)]/ [ppCPAH g, ]

(no condensation in ABL) TL model

of air-sea
thermodynamics

* 80y, = At [§ E (8SST)]/ [pyHpg,]

Where the transfer coefficients (Ce, Ch for Evaporation and Sensible heat,
respectively) are assumed not to depend on SST and taken from the fully
non-linear model. (Might be relaxed with simple parametric formulations)

Control
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Motivation: initialization shocks
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Motivation: initialization shocks
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Motivation: initialization shocks
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Motivation: initialization shocks
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Motivation: initialization shocks
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Results: assimilation of marine, impact on air
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Results: assimilation of marine, impact on air
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Results: assimilation of marine, impact on air
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Assimilating EBAF-TOA Earth’s Energy Imbalance

Introducing Constraint on Monthly Global Ocean Heat Content Tendencies (OHCT)
for use in global ocean reanalyses

J(dx) = dx™ B2 dx + (Hdx - d)T R (Hdx - d) + (dEEI — dERES)T R -1 (dEEI — dCERES)

Use of CERES (EBAF-TOA Ed4) Earth
Energy Imbalance’s data to constrain
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Storto & al, 2017, GRL, Constraining the global ocean heat content through assimilation of CERES-derived TOA energy imbaiance



Sampling-aware validation of reanalyses

Temperature (top 100m) Global RMSE as a function of time
C-GLORS ocean reanalyses
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Abrupt RMSE decrease corresponding to Argo deployment period questions
the reliability of common verification methods, given

the limited sampling of verifying observations in early periods

Storto & Masina, 2017, Met. App. Objectively estimating the temporal evolution of accuracy and skill in a global ocean reanalysis



Sampling-aware validation of reanalyses

Temperature (top 100m) Global RMSE as a function of time
C-GLORS ocean reanalyses
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More sophisticated approaches should be considered for accuracy assessment
during observation poor periods: here, a randomization of the choice of verifying
observations to preserve homogeneous sampling with time shows
a rather constant rate of accuracy increase

Storto & Masina, 2017, Met. App. Objectively estimating the temporal evolution of accuracy and skill in a global ocean reanalysis



Sensitivity of GOHC to atmospheric forcing
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Storto et al., 2016, GRL, Sensitivity of global ocean heat content from reanalyses to the atmospheric reanalysis forcing



Comparing advanced DA methods in the ocean

OceanVar has been extended to allow hybrid ensemble-variational four-
dimensional variational data assimilation through the implementation of a light
TL/AD model and the use of augmented control vector to mix climatological
(static) and ensemble-derived (flow-dependent covariances).

The hybrid can be conceived in a more general way, i.e. to mix two or more sets
of background-error covariances (e.g. different scales, etc.)

For potential use in both reanalyses and operational oceanography

Simplified TL/AD Model That Evolves only T/S (advection, diffusion, air-sea fluxes
considered). SL and currents through static balances at every TL timestep

| t=K \

J(Vc, Ve) 25 Z (HMO—>t (Bcvcvc + BeVeVe) — dt)T R«t_1 (HMO—>t (ﬂcvcvc + ,BeVeVe) — dt)

t=1
L1 1 7
T5Ve Vet 5Ve Ve Hybrid weight that determines the relative

f f importance of flow-dependent BECs

Hybrid scheme through augmented control vector, formed by two parts,
Corresponding respectively to climatological and ensemble covariances @




Comparing advanced DA methods in the ocean
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