

Assimilation using large scale EOF error covariances

Daniel Lea and Matthew Martin

ERA CLIM2, University of Bern, Bern Dec 2017

www.metoffice.gov.uk

Motivation for using large scale covariances

Ocean data is often sparse and inhomogeneous particularly historically

The key thing which gives data assimilation its power is the background error covariance which allows us to spread information from the observation locations. Generally done with simple Gaussian like structures

Can we improve the error covariance structures to allow us to correctly spread sparse observation information over greater distances in order to fill in the gaps?

Applications:

Historical reanalyses

Decadal prediction which requires calibration to a historical reanalyses.

Modern day subsurface data assimilation

Ocean data assimilation system: NEMOVAR

- Ocean data assimilation system for NEMO (3D/4D variational)
- It's the result of a collaboration between CERFACS, ECMWF, INRIA and the Met Office
- At the Met Office this is used (3D var) in FOAM (deep and shelf ocean), Coupled DA (ocean component) and OSTIA (demo)
- Main benefits: Compatible with NEMO. It works with the ORCA grids natively. Efficient. There's an effective balance operator.
- Diffusion modelled background error covariances with multiple length scales (in 2D/3D)

EOFs (Empirical Orthogonal Functions)

Change of variables.

Take a time series of field data X (columns are each time slice of a field x). Separate into normalised orthogonal modes (Principal Components) with an associated variance and time series. Each mode maximises the variance explained.

i.e $\mathbf{X} = \mathbf{E} \mathbf{\Lambda} \mathbf{P}^{\mathrm{T}}$

Single time

ne i
$$x_i = E \Lambda a_i$$

EOF 000: sn at 97.0 m

-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 le-4 E = matrix of EOFs (columns are each EOF pattern)

 Λ = diagonal matrix of eigenvalues associated with each EOF pattern

P = Matrix of time series for each pattern

a= vector of coefficients/weights for each EOF (x = $E\Lambda a$)

EOF 1 - 24.2% of the total variance

Testing EOF DA: One year objective analysis

One year of monthly analyses

• Each month the assimilation background is from the GloSea5 climatology (for that month).

• EOFs calculated from the equivalent month of the GloSea5 reanalysis. Total of 20 EOFs for each month (excluding 2010 the test year)

• Assimilating subsampled modern day data (2010 data subsampled to 1953)

• Independent assessment of performance using statistics calculated from the set of modern day data not assimilated.

Bkg	No assim.
EOF	100% EOF
STD	100% standard
HYB1	10% EOF
HYB2	50% EOF
HYB3	90% EOF

Observing system experiments

Subsample modern day observations to look like historical data Met Office (data from HadIOD)

Jan 1953

In-situ SST

sstfb_fdbk_195301SST:obs

sstfb_fdbk_201001*SST:obs

Jan 2010

2010 data subsampled

sst_dupdataSST:obs

Profile T

28 32 24

profb_fdbk_201001POTM:obs

20

24

28

pro_dupdataPOTM:obs

24

28

20

32

One year objective analysis

Expts assimilating subsampled SST & profile data

Results for the whole year compared to unassimilated data

	SST RMS	T prof RMS	S prof RMS
bkg	1.036	1.158	0.233
EOF	0.955	1.132	0.216
Std	0.938	1.114	0.226
Hyb1 10% EOF	0.921	1.084	0.209
Hyb2 50% EOF	0.915	1.084	0.209
Hyb3 90% EOF	0.910	1.089	0.210

% reduction in SST error compared to background

STD

Test in FOAM - a cycling system

EOFs from a coupled climate run (Met Office GC3.1) using 100 years of simulation

Gives 99 EOFs for each month - using top 80 EOFs (explains 90% of the variance).

System adapted the FOAM reanalysis system which cycles daily.

Assimilates 2015 data subsampled to 1953 distribution

Expts	
STD	Standard FOAM system
EOF02	Hybrid 1% EOF
EOF03	Hybrid 5% EOF

Jan 2015 increments mean std dev

Std

Hyb EOF 1% (EOF02)

Hyb EOF 5% (EOF03)

Summary/plans for EOF DA

Met Office

- Developed a method for EOF DA in NEMOVAR
- A hybrid of EOF DA and standard DA gives good results overall perhaps better than either EOF only or standard assimilation
- Preliminary tests of EOF DA in a reanalysis system (FOAM like) is mostly promising
- The correct setting of the hybrid weights looks important
- Plan to further explore the hybrid EOF DA including understanding aspects where it is not working so well
- EOF DA may be particularly unsuited to correcting biases in the model
- Plan to test EOF DA in combination with a T-S bias correction scheme
- Compare EOF DA and hybrid DA to the Met Office decadal prediction system (DePreSys) (initial work looks promising)

Thank you

Assimilation cost function

Met Office

Working in model space (Std) $J(\delta \mathbf{x}) = \frac{1}{2} \delta \mathbf{x}^{\mathrm{T}} \mathbf{B}^{-1} \delta \mathbf{x}$ $+ \frac{1}{2} (\mathbf{y} - \mathbf{H}(\mathbf{x}_{\mathrm{b}} + \delta \mathbf{x}))^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{y} - \mathbf{H}(\mathbf{x}_{\mathrm{b}} + \delta \mathbf{x}))$

Working in EOF space $\delta \mathbf{x} = \mathbf{E} \mathbf{\Lambda} \boldsymbol{\delta} \mathbf{a}$

 $\mathbf{J}(\boldsymbol{\delta}\mathbf{a}) = \frac{1}{2} \,\, \boldsymbol{\delta}\mathbf{a}^{\mathrm{T}} \,\, (\boldsymbol{\Lambda}^2)^{-1} \,\, \boldsymbol{\delta}\mathbf{a}$

+ $\frac{1}{2}$ (y-H(x_b+EA\delta a))^T R⁻¹ (y-H(x_b+EA\delta a))

Hybrid

 $\delta \mathbf{x} = w_1 \mathbf{E} \mathbf{a} + w_2 \,\delta \mathbf{x}_{\text{residual}}$ $J = w_1 \frac{1}{2} \,\delta \mathbf{a}^{\mathrm{T}} \,(\mathbf{\Lambda}^2)^{-1} \,\delta \mathbf{a} + w_2 \frac{1}{2} \,\delta \mathbf{x}_{\text{res.}} \,^{\mathrm{T}} \mathbf{B}^{-1} \,\delta \mathbf{x}_{\text{res.}} + \text{[obs cost]}$

a= vector of coefficients/weights for each EOF (model field anomaly = EAa)

E= EOF patterns matrix

 Λ = diagonal matrix of eigenvalues associated with each EOF pattern

Ocean surface temperature increments /°C (profile data only assimilated)

EOF

DA

ard

DA

Ocean surface temperature increments /°C (SST & profile data assimilated)

Subsampled 2010 data

-4.0 -3.2 -2.4 -1.6 -0.8 0.0 0.8 1.6 2.4 3.2 4.0

Full 2010 data

Ocean surface temperature increments /°C (Subsampled SST & profiles assimilated)

Hybrid expt 1 (10% EOF)

hyb1_sub: bckint depth 0.5 sstprof

-4.0 -3.2 -2.4 -1.6 -0.8 0.0 0.8 1.6 2.4 3.2 4.0

eof_sub: bckint depth 0.5 sstprof

-4.0-3.2-2.4-1.6-0.8 0.0 0.8 1.6 2.4 3.2 4.0

Ocean surface temperature increments /°C (Subsampled profiles only assimilated)

One year objective analysis assimilating subsampled SST and profiles

RMS SST error / °C (vs. unassimilated data)

Bkg	No assim
EOF	100% EOF
STD	100% standard
HYB1	10% EOF
HYB2	50% EOF
HYB3	90% EOF
HYB4	99% EOF

One year run

Met Office Expts assimilating SST & profile data

% reduction in SST error compared to background

EOF

Hyb 99% EOF

_40 -30 -20 _10

Hyb 90% EOF

Hyb 50% EOF

Hyb 10% EOF

150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°F 120°E 150°E

Std

percentage sst other rms change std_sub expt mi-ao577_1953sstprof 150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°F 120°E 150°E 180

Jan 2015 mean innovations

Hyb EOF

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Change in mean T innovations

EOF - Ctl

i-au944_eof02_r_frld minus mi-au944_ctl_r_frld pro_POTM_z_lt_15 POTM:omb m

