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ABSTRACT

We present results from a global MHD simulation of solar convection in which the heat transported
by convective flows varies in-phase with the total magnetic energy. The purely random initial magnetic
field specified in this experiment develops into a well organized large-scale antisymmetric component
undergoing hemispherically synchronized polarity reversals on a 40yr period. A key feature of the
simulation is the use of a Newtonian cooling term in the entropy equation to maintain a convectively
unstable stratification and drive convection, as opposed to the specification of heating and cooling
terms at the bottom and top boundaries. When taken together, the solar-like magnetic cycle and
the convective heat flux signature suggest that a cyclic modulation of the large-scale heat-carrying
convective flows could be operating inside the real Sun. We carry out an analysis of the entropy and
momentum equations to uncover the physical mechanism responsible for the enhanced heat transport.
The analysis suggests that the modulation is caused by a magnetic tension imbalance inside upflows
and downflows, which perturbs their respective contributions to heat transport in such a way as to
enhance the total convective heat flux at cycle maximum. Potential consequences of the heat transport
modulation for solar irradiance variability are briefly discussed.
Subject headings: Solar convection, magnetohydrodynamics, solar irradiance

1. INTRODUCTION

The Sun’s magnetic field is at the origin of all phenom-
ena collectively known as ‘solar activity’, with the 11-yr
solar activity cycle being its most conspicuous manifes-
tation. The latter regulates the myriad of events driv-
ing space weather, such as flares and coronal mass ejec-
tions, as well as variations in the solar radiative output.
State-of-the-art numerical simulations of global MHD
convection are now capable of producing large-scale well-
organized magnetic fields undergoing polarity reversals
(Ghizaru et al. 2010; Käpylä et al. 2010; Racine et al.
2011; Brown et al. 2011; Käpylä et al. 2012; Masada et
al. 2013; Nelson et al. 2013; Fan & Fang 2014; August-
son et al. 2015; Duarte et al. 2016; Guerrero et al. 2016).
In addition to the insight they can offer on the mode
of operation of the solar dynamo, such simulations may
provide useful insights as to how cyclic magnetic activ-
ity impacts global thermodynamic structure and large-
scale heat carrying convective motions. In particular,
recent results from global MHD simulations of solar con-
vection produced with the EULAG-MHD model achieve
solar-like magnetic cycles in which the total enthalpy flux

varies in-phase with the total magnetic energy (Cossette
et al. 2013). Together, the solar-like magnetic cycle and
the enthalpy flux signature suggest that large-scale heat
carrying convective motions inside the real Sun could be
modulated in such a way as to enhance energy transport
at cycle maximum.
Possible observational signatures of cycle-driven sub-

photospheric alterations of the thermodynamical struc-
ture of the outer convective envelope have been sought
by a variety of means. Spectroscopic measurements of
line-depth ratios identifying surface temperature changes
that are expected to be free from the influence of faculae
and plage reveal that those variations are either small
or non-existent (Gray & Livingston 1997; Livingston
& Wallace 2003). Some solar limb intensity measure-
ments suggest a brightness enhancement at high lati-
tudes, which could be thermal in origin, and not due
to the presence of magnetic structures on the disk (e.g.
see Rast et al. (2008) and the references therein). How-
ever, it is unclear whether this polar enhancement cor-
relates with solar activity (Woodard & Libbrecht 2003).
Variations of the solar diameter are expected to be a di-
rect consequence of structural changes induced by mag-
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netic activity, and their possible contribution to long-
term variations of total solar irradiance (TSI) has been
suggested (Li et al. 2003; Rozelot et al. 2004; Sofia & Li
2006). Space-based helioseismic measurements (Emilio
et al. 2000; Antia 2003; Kuhn et al. 2004) set an upper
limit of a few km on the change in solar radius from cycle
minimum to cycle maximum, while ground-based obser-
vations yield conflicting results about the magnitude and
phase of the change with the cycle (Thuillier et al. 2005).
So far, the best observational evidence for potential

global structural changes related to solar activity remains
the positive phase relationship between low l angular de-
gree p mode oscillations frequency splittings and indi-
cators of magnetic activity, including the 11-year TSI
component, as inferred from helioseismology (Woodard
& Noyes 1985; Woodard 1987; Bhatnagar et al. 1999). p-
modes are acoustic waves confined to cavities with sizes
determined by lower and upper turning points at which
pressure wave fronts are refracted back into the cavity.
Low l modes have a lower turning point located deep
within the interior, and could reflect the impact of the
deep seated dynamo on the thermodynamic structure.
However, the strong increase of the observed frequency
modulation’s amplitude with the mode’s frequency in-
stead suggests an origin close to the surface. This is
due to the fact that low frequency modes have their up-
per turning point located deeper inside the interior (Lib-
brecht & Woodard 1990; Chaplin et al. 2001). Notewor-
thy, Fletcher et al. (2010) have reported the existence of
a quasi-biennial signal located significantly deeper than
the source of the 11 yr signal, which could be dynamo
related (see, e.g., Beaudoin et al. 2016).
Despite the inherent difficulties associated with their

direct measurement, deep-seated, magnetically-driven
structural changes continue to be invoked as possible con-
tributors to the observed variability in TSI, especially
with regards to possible secular changes unfolding on
timescales much longer than the primary magnetic cy-
cle. An analogy based on the assumption that turbulent
fluid motions behave as diffusion implies that a deep-
seated decadal modulation of convective heat transport
is unlikely to affect the energy output at the solar sur-
face as a result of the convection zone’s huge thermal
relaxation time of O(105) yr (Foukal 1987; Spruit 2000;
Foukal et al. 2006). On the other hand, such a diffusive
approximation may be ill-suited to the highly turbulent
regime characterizing the solar interior. In particular,
convective plumes generated at the model boundaries
can transport their thermal energy content non-locally
over several pressure scale heights before releasing it into
the surrounding fluid (e.g. Stein & Nordlund 1989; Nord-
lund et al. 2009). The local heat flux is then no longer
set by the local temperature gradient, which restricts the
applicability of a purely diffusive approach substantially
complicate the following discussion (e.g. Spruit 1997).
Global MHD convection simulations generating regu-

lar cycles represent an avenue towards quantifying such
effects. While none of the aforecited simulations oper-
ate in a dissipative regime close to solar interior condi-
tions, there is some experimental (numerical) evidence
that simulation results are scalable at least to some ex-
tent (Yadav et al. 2013). Moreover, with the magnetic
energy density of the large-scale cycling magnetic field
reaching many percents of equipartition with the tur-

bulent convective motions in some of these simulations,
magnetically-driven alteration of convection and/or tem-
perature gradients is expected, and has indeed been de-
tected in some experiments (Cossette et al. 2013; Käpylä
et al. 2013; Augustson et al. 2015; Beaudoin et al. 2016).
In this paper we conduct a detailed analysis of the con-

vective dynamo simulation reported in (Cossette et al.
2013) to uncover the physical mechanism at the origin
of the measured convective flux modulation. The pa-
per is organized as follows: The model formulation and
computational setup of our experiment are described in
section 2. In section 3 we explore the flow morphology
and thermodynamic structure in relationship to the con-
vective heat flux modulation with cyclic magnetic field.
The role of the thermal forcings of the system is assessed
in section 4 and the impact of dynamical drivers on heat
transport is addressed in section 5. Estimates of the total
irradiance change induced by the cyclic modulation are
computed in section 6 based on the diffusion approxima-
tion. Remarks and a discussion are included in section
7, which concludes the paper.

2. MODEL

We simulate solar magneto-convection by solving the
Lipps & Hemler (Lipps & Hemler 1982) version of the
anelastic MHD Navier-Stokes equations governing the
evolution of momentum, entropy perturbations and mag-
netic induction for an electrically-conducting fluid inside
a thick, gravitationally-stratified rotating spherical shell
ranging from rb = 0.61R⊙ to rt = 0.962R⊙ in solar ra-
dius:

Du

Dt
=−∇ϕ′ − g

Θ′

Θo
+ 2u×Ω+

1

µρo
B · ∇B

+Du , (1)

DΘ′

Dt
=−u · ∇Θa − αΘ′ +DΘ , (2)

DB

Dt
=B · ∇u−B∇ · u+DB , (3)

∇ · (ρou) = 0 , (4)

∇ · B = 0 . (5)

Here, u and B represent, respectively, the flow velocity
and magnetic field vectors, Θ is the potential temper-
ature. The latter is equivalent to the specific entropy
since ds = cpd lnΘ, with cp the specific heat at constant
pressure. The operators D/Dt and ∇ have their usual
meaning, so that D/Dt := ∂/∂t+ u · ∇. Likewise, sym-
bols Ω and µ stand for, respectively, the angular velocity
of the rotating reference frame and the magnetic perme-
ability. On the right-hand-side (rhs) of the momentum
equation (1), ϕ′ ≡ p′/ρo is a density-normalized pressure
perturbation, in which magnetic pressure and centrifugal
forces have been subsumed. Subscripts ‘o’ and ‘a’ corre-
spond, respectively, to the reference state and ambient
state, defined in sections 2.1 and 2.2, respectively. Oper-
ators D appearing on the rhs of each prognostic equa-
tion represent either vector or scalar Laplacians used
for explicit viscous/magnetic dissipation and radiative
heat diffusion/conduction. Primes on the right-hand-side
(rhs) of the momentum (1) and entropy equations (2) de-
note perturbations Φ′ ≡ {u′,Θ′, ϕ′,B′} ≡ Φ −Φa with
respect to the ambient state Φa ≡ {ua,Θa, ϕa,Ba}. In
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the potential temperature equation (2) α is the inverse
time scale of the Newtonian cooling, and

DΘ = H(Θ′) ≡
Θo

ρoTo

[
∇·

(
κrρo∇T

′

)
+∇·

(
κ
ρoTo
Θo

∇Θ′

)]
,

(6)
where T ′ ≡ Θ′To/Θo, while κr and κ denote coefficients
of radiative and thermal conductivity (cf. §1.2.5 in Char-
bonneau 2013). Notably, (6) excludes the heating due to
viscous and Ohmic dissipation, as it is of minor impor-
tance for the scope of this paper (Charbonneau 2013,
ibid.) but can substantially complicate the following dis-
cussion.

2.1. Reference state

Reference states are inherent in anelastic approxima-
tions, as they enable complexity reduction of the com-
pressible Euler equations under gravity—by analytically
filtering acoustic modes energetically insignificant for the
problems addressed—while retaining the relevant physics
(cf. footnote 3 in Christensen-Dalsgaard et al. 1996). A
key role of the reference state is to uncouple a dominating
hydrostatic balance, to justify linearizations required to
achieve a physically-relevant complexity reduction. Oth-
erwise, the reference state does not have to be unique
nor represent the actual mean state of the system. The
primary strength of established reference states is their
generally recognized theoretical and practical validity.
The reference state used in our simulations is stan-

dard. It assumes an unmagnetized, rigidly rotating and
isentropic plasma (i.e. Θo =cnst.) obeying the ideal gas
law po = ρoRTo and hydrostatic balance dpo/dr = −ρog,
whereby

dTo
dr

≡
dT

dr

∣∣∣∣
ad

= −
g

cp
, (7)

where R = k/(µ̄mH), k is the Boltzmann constant, mH

is the mass of a proton, µ̄ is the mean molecular weight,
and the gravitational acceleration g(r) ≡ gb(rb/r)

2. The
reference state profiles To(r) and ρo(r) are constructed
by integrating (7) using values for the temperature Tb,
potential temperature Θo = Tb, density ρb and gravita-
tional acceleration gb at the base of the domain obtained
from a solar structure model (Christensen-Dalsgaard et
al. 1996).

2.2. Ambient state

The notion of ambient states is distinct. The utiliza-
tion of an ambient state is justified by expediency and
optional for any system of the governing equations. The
role of ambient states is to enhance the efficacy of numer-
ical simulation—e.g. by simplifying the design of the ini-
tial and boundary conditions—without resorting to lin-
earization of the system. The key underlying assumption
is that the ambient state is a particular solution of the
governing problem, so that subtracting its own minimal
set of PDEs from the governing equations can form a
useful perturbational form of the governing system. In
general, ambient states can be spatially and temporally
variable to represent, e.g., thermally balanced large-scale
steady flows in atmospheric models (Smolarkiewicz et al.
2001; Smolarkiewicz et al. 2014) or prescribe oceanic
tidal motions (Warn-Varnas et al. 2007).

To derive a useful perturbational form of the gov-
erning equations (1) and (2), we consider a zonally
and meridionally averaged temporal mean state Φ⋆ ≡
{u⋆,Θ⋆, ϕ⋆,B⋆}, hereafter referred to as the mean solar-
state—a particular solution to the generic anelastic MHD
equations

Du

Dt
=−∇

(
p− po
ρo

)
− g

Θ−Θo

Θo
+ 2u×Ω

+
1

µρo
B · ∇B+Du , (8)

DΘ

Dt
=

Θo

ρoTo

[
∇ ·

(
κrρo∇T

)
+∇ ·

(
κ
ρoTo
Θo

∇Θ

)]
(9)

together with (3)-(5), which are already in the generic

form. Because we are interested in fluctuations Φ̃ ≡
{ũ, Θ̃, ϕ̃, B̃} ≡ Φ−Φ⋆ about Φ⋆ arising from flow turbu-
lence and magnetism, the temporal mean is assumed over
a period t⋆ much longer than the 11 yr solar cycle and
much shorter than the Kelvin-Helmholtz time scale. This
mean solar-state is built-up over the course of stellar evo-
lution, during which nuclear burning and mixing change
the composition and structure of the star, and reflects the
hydrostatic and thermodynamic equilibrium characteriz-
ing the Sun. Although Φ⋆ cannot be directly observed,
it may be approximated as a global anelastic hydrostatic
thermodynamic equilibrium consistent with helioseismi-
cally calibrated solar structural models. Given such a hy-
pothetical state, we derive (1) and (2) by subtracting the
spatially and temporally averaged momentum and en-
tropy equations from their generic counterparts (8) and
(9). Below we summarize the result of this procedure,
while referring to Appendix A for details.
Performing the spatial and temporal average of (9)

yields
0 = H(Θ⋆) +H⋆ , (10)

where H⋆ denotes the second term on the rhs of (44)
in Appendix A that represents the divergence of the
Reynolds heat flux formed from the product of radial

velocity ũr and entropy Θ̃ perturbations about the mean
solar-state, averaged spatially over longitude and latitude
and temporally over t⋆ as defined by (41). The H(Θ⋆)
term on the rhs of (10) incorporates radiative heating at
the base of the convection zone and cooling at the model
top, while H⋆ reflects the balancing action of Reynolds
fluxes implied by the thermodynamic equilibrium. Sub-
tracting (10) from the conservative form of the generic
entropy equation (9) leads to the perturbational form

DΘ̃

Dt
= −u · ∇Θ⋆ +H(Θ̃)−H⋆ . (11)

Similarly, performing the spatial and temporal average
of (1) leads to the conservative perturbational form (49)
and, thus, its Lagrangian equivalent

Du

Dt
=−∇

(
p− (p⋆ + ψ⋆)

ρo

)
− ρog

Θ̃

Θo

+2u×Ω+
1

µρo
∇ · (BB) +Du , (12)

where ψ⋆, defined in (47), accounts for Reynolds and
Maxwell fluxes due to the correlations of fluctuating ra-
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dial velocity and radial magnetic field components asso-
ciated with the mean-solar-state equilibrium.
The equations (10)-(12) are instructive for the inter-

pretation and design of the ambient state. Given the
availability of Θ⋆, (12) can be straightforwardly inte-
grated, because p′ = p − (p⋆ + ψ⋆) is determined from
the elliptic boundary value problem implied by (4) and
suitable boundary conditions (Smolarkiewicz & Char-
bonneau 2013). Consequently, we identify the ambient
state as

Φa = {ua,Θa, pa,Ba} ≡ {0,Θ⋆, p⋆ + ψ⋆,0} , (13)

upon which, u′ ≡ u and B′ ≡ B, while Θ′ = Θ̃ and
ϕ′ = (p − pa)/ρo. Although pa is not required to solve
for the perturbations, when needed it can be evaluated
from the hydrostatic relation (48). Similarly, H⋆ can be
diagnosed from (10). The equilibrium assumption un-
derlying (10)-(13) provides global constraints (10) and
(48) on the eddy heat and momentum transfer. These
constraints are consistent with the governing PDEs and
the mean entropy profile. While deriving (10) we con-
sidered actual coefficients of molecular viscosity and ra-
diative/thermal conductivity, envisioning a hypothetical
direct numerical simulation. However, this same proce-
dure could be applied to the generic anelastic equations
(8) and (9) supplied with an explicit subgrid-scale tur-
bulence model for large-eddy simulations (LES). Then,
the global constraint implied by the mean equilibrium
would also include fluctuations due to the intermittent
eddy viscosity and diffusion.
The importance of modeling unresolved eddy fluxes

is widely recognized. Standardly, numerical models of
solar magneto-convection rely on scale-selective Fickian
fluxes with eddy viscosity and diffusion. The compu-
tational (nonlinear) stability of EULAG simulations re-
lies on the non-oscillatory numerics (Smolarkiewicz &
Charbonneau 2013) that implies an implicit subgrid-scale
model with a proven property of scale selective dissipa-
tion in the spirit of LES turbulence closures (Domaradzki
et al. 2003; Waite & Smolarkiewicz 2008; Strugarek et al.
2016). Similarly to explicit turbulence models, it regu-
larizes spectral energy transfer in small scales, while re-
sorting to minimized implicit diffusion (cf. Fig. 5 in Stru-
garek et al. 2016). Such diffusion does not necessarily as-
sure the control of mean equilibria, hence the role of the
Newtonian cooling on the rhs of (2) is to do so, without
compromising the low diffusivity of the implicit model.
The Newtonian cooling is a natural choice (Farhat et
al. 2015, 2016) for basic time-continuous data assimila-
tion, and it forms an elementary case of the Kalman-
Bucy filter (Krener 1980). The adopted approach is com-
mon in atmospheric and oceanic models addressing evo-
lutionary fluctuations about large scale equilibria (Held
& Suarez 1994; Smolarkiewicz et al. 2001; Grabowski
& Smolarkiewicz 2002; Warn-Varnas et al. 2007) and
has proven effective in previous global/Cartesian solar
HD/MHD convection simulations (Ghizaru et al. 2010;
Racine et al. 2011; Cossette et al. 2013; Guerrero et al.
2013, 2016; Strugarek et al. 2016; Cossette & Rast 2016).
Nevertheless, the true mean-solar state assumed in

(10)-(13) is unavailable. Based on the phenomenology
of the Sun, we approximate Θa using a piecewise linear
polytrope, which allows the specification of subadiabatic

and superadiabatic stratifications in the regions corre-
sponding to the radiative interior (r ≤ ri) and convec-
tion zone (r > ri), with ri = 0.718 the position of the
interface; see Appendix B for details. For the time scale
τ = α−1 of the Newtonian cooling, here τ ∼ O(108) s is
assumed. This scale is much longer than the typical turn-
over time of the largest convective cells, gives the most
solar-like convective dynamo for the specified Θa, and
corresponds to the e-folding scale implied by the explicit
eddy viscosity O(108) m2s−1—representative of compa-
rable solar simulations, (Strugarek et al. 2016)—for the
Fourier modes with wavelengths λ ≈ R⊙.

2.3. Numerical approximations and boundary conditions

To carry out the integration of (1)-(3) in time and
space, we use the MHD-extended version of the EU-
LAG model predominantly used in atmospheric and cli-
mate research (Prusa et al. 2008). The extended ver-
sion is a general-purpose, high-performance HD/MHD
code for simulating flows from micro to planetary and
stellar scales. At the core of EULAG-MHD are semi-
implicit, non-oscillatory forward-in-time (NFT) integra-
tors, powered with the multidimensional positive-definite
advection transport algorithm, MPDATA—a widely doc-
umented class of flux-form Eulerian NFT advection op-
erators (see Smolarkiewicz 2006, for a review). It is
this non-oscillatory property of MPDATA that allows
to dispense with the explicit dissipative terms D in
(1)-(3) (Smolarkiewicz & Prusa 2002). The MPDATA-
based NFT schemes adapt diffusion to extreme gradi-
ents of the advected quantity, thereby minimizing the
effect of numerical dissipation at any given resolution
(Piotrowski et al. 2009). Experiments carried out with
EULAG can use any combination of explicit and im-
plicit dissipative treatments. In particular, they can
be run entirely as explicitly-inviscid implicit large-eddy-
simulations (ILES), whereby all dissipation is delegated
to the truncation terms of MPDATA (Margolin et al.
2006). On the strong scale dependence of the effective
dissipation in these simulations, see the spectral-energy-
budget analysis of Strugarek et al. (2016). A relevant
signature of the EULAG integrators is the trapezoidal-
rule representation of the essential forcings on the rhs of
(1)-(3), which in the context of (2) prevents dilution of
Θa by the diffusivity of advection (Smolarkiewicz et al.
2001). In Appendix C we highlight the aspects of the
NFT integrators for (1)-(3) that are important for the
analysis presented in the remainder of this paper. For a
detailed exposition of the numerical techniques used in
EULAG-MHD, the interested reader is referred to Smo-
larkiewicz & Charbonneau (2013).
Boundary conditions at the bottom and top boundaries

are stress-free and impermeable for the velocity, the mag-
netic field is forced to be radial, whereas the radial flux
of potential temperature is set to zero. Discrete differ-
entiation extends across the poles for all variables, with
a flipping of sign for both longitudinal and meridional
components of the differentiated vector fields.

3. MAGNETICALLY-MODULATED CONVECTION

The simulation that we consider is an extended version
of the low resolution simulation reported in (Cossette et
al. 2013) where only radiative diffusion is present (κ = 0),
and Nφ ×Nθ ×Nr = 128× 64 × 47, where Nφ, Nθ and
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Fig. 1.— Reference state density profile (panel A) and profiles of the reference (dashed lines) and ambient (continuous lines) temperature

and potential temperature (panel B). Panel (C) shows the variations of Θa−Θa(ri) (black line) and Θ−Θa(ri) (black triangles) inside the
bulk of the convection zone. Red and blue diamond symbols correspond to instantaneous values of the Θ−Θa(ri) variation, respectively,
in upflows and downflows. In each plot, a vertical straight line marks the location of the interface between the stable and unstable layers
at ri = 0.718R⊙.

Nr are the numbers of grid points in the azimuthal, lat-
itudinal and radial directions. In (1) we set Du = 0,
whereby all dissipation is treated implicity (cf. section
2.3); whereas in (3) DB ≡ η∇2B, with η = 106m2 · s−1

everywhere inside the domain. Figure 1 shows the rele-
vant reference and ambient state profiles associated with
polytropic indices ms = 2.6 and mu = 1.4999945; here
Ta ≈ To(Θa/Θo) is assumed. This choice of the param-
eters sets strongly subadiabatic and weakly superadia-
batic ambient stratifications in the stable and unstable
layers, respectively (cf. Appendix B). Specifically, this
corresponds to a superadiabaticity parameter

ǫa ≡
dTa/dr − dTo/dr

dTo/dr
= −

HT

Θo

dΘa

dr
≈ 10−6 , (14)

in the bulk of the convection zone, which is consistent
with the estimates inferred from solar structural models
ǫ . 10−4, with HT ≡ −(d lnTo/dr)

−1 the temperature
scale height (Miesch 2005). The simulation is initialized
by adding a small random perturbation to the ambient
state Θ = Θa + Θ′ and by specifying a low-amplitude
random magnetic field subject to (5). Mixing by flow
motions homogenizes entropy perturbations and tends
to produce an adiabatic temperature profile. This effect
is opposed by Newtonian cooling, which damps entropy
perturbations Θ′ toward zero on the timescale τ (defined
by the end of §2.2). The mean potential temperature

profile Θ resulting from these two competing effects is
slightly less superadiabatic than the ambient state, with
ǫ ≡ −HT /Θo∂Θ/∂r ≈ 1 − 5 × 10−7 in the bulk of the

unstable layer; see panel (C) in Fig. 1. Here, (..) denotes
the spatial average over a spherical surface and over the
full temporal extent of the simulation, hereafter referred
to as the simulation mean.
At mid/high latitudes inside the unstable layer the con-

vection pattern is dominated by a network of broad up-
flows and cooler narrow downflow lanes (Fig. 2). This ar-
rangement is typical of convection in a density-stratified
environment and has been well documented by numerical
simulations (Cattaneo et al. 1991; Brummell et al. 1996;
Porter & Woodward 2000). Regions near the equator
are marked by a pattern of north-south aligned convec-
tive cells (also known as ‘banana cells’), which are a fea-
ture of rotationally constrained convection (Miesch et al.
2000; Brun & Toomre 2002; Miesch et al. 2008). The ve-
locity field is also characterized by a solar-like differential
rotation with a fast equator and slow poles, as shown by
previous analyses of similar simulations; e.g. see Fig. 2
of Beaudoin et al. (2013). This pattern is marked by
isocontours of the angular velocity nearly parallel to the
rotation axis, as opposed to those inferred from helioseis-
mology (Thompson et al. 2003). The cylindrical shape
of the angular velocity isocontours is a consequence of
the Taylor-Proudman constraint on the rotating system,
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Fig. 2.— Mollweide projections of the radial velocity and tem-
perature perturbation with respect to the simulation mean T at
r/R⊙ = 0.90.

and is a characteristic that is common to this type of
simulations (Miesch et al. 2000; Elliott & Smolarkiewicz
2002; Brun et al. 2004; Miesch et al. 2006; Guerrero et
al. 2013).
The simulation is characterized by the build-up of

a well-organized large-scale magnetic field undergoing
cyclic hemispheric polarity reversals on a regular 40 yr
cadence. Figure 3 shows the evolution over the course
of a half magnetic cycle of the toroidal magnetic field
component and its zonal average

〈Bφ〉(θ, r, t) ≡
1

2π

∫ 2π

0

Bφ(φ, θ, r, t)dφ . (15)

At cycle maximum the field is antisymmetric with
respect to the equator (i.e. of the opposite sign in
each hemisphere), is concentrated at mid/high latitudes
and near the core-envelope interface (here denoted by
the dashed line), whereas at minimum the average field
intensity drops significantly and field polarity in each
hemisphere reverses, with the large-scale field component
building-up again at maximum. Magnetic field lines re-
veal the presence of a well-organized toroidal flux system
(Fig. 4) having the intensity of a few Kilogauss (denoted
blue), which correspond to the high-latitude toroidal field
concentrations identified in figure 3.
The evolution of the longitudinally-averaged toroidal

and radial magnetic field components is shown in Fig. 5.
Panels (A) and (B) show that the mean toroidal field
strength peaks at mid/high latitudes (≈ θ = 50o) and
immediately beneath the core-envelope interface (panel
C), where the zonally-aligned antisymmetric wreaths are
found to be concentrated (cf. Fig. 3). Each wreath un-
dergoes hemispheric polarity reversals at an average rate
of 0.025 yr−1 (Passos & Charbonneau 2014). These prop-
erties turn out to be essential ingredients of the interface
dynamo, in which the build-up and storage of magnetic
flux tubes inside the stable layer, and their subsequent
destabilization and buoyant rise up to the surface leads
to the formation of bipolar active regions obeying Hale’s

Fig. 3.— Toroidal magnetic field evolution over the course of a
half cycle. The upper row shows projections of the toroidal com-
ponent at the core-envelope interface in the northern hemisphere,
with the thick solid and dashed lines denoting the equator and the
30o latitude circle, respectively. Panels (A) and (C) correspond
to cycle maxima, and panel (B) to a minimum. The lower row
shows meridional cross-sections of the zonally averaged toroidal
component 〈Bφ〉 at the instants corresponding to the panels of the
upper row. A dashed line marks the location of the core-envelope
interface.

Fig. 4.— Magnetic field line tracings inside the region located
above the 30o latitude circle; compare with Fig. 3.

polarity laws. Notably, the high-latitude flank of each
wreath also exhibits a weak equatorward migration over
the course of each cycle, although they appear at too
high latitudes compared to the activity belts that are in-
ferred from solar magnetograms. The evolution of the
radial magnetic field component at the surface is charac-
terized by a strong dipole moment well aligned with the
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Fig. 5.— Evolution of the zonally averaged toroidal magnetic field
component 〈Bφ〉 as a function of latitude and time at the core-
envelope interface for the full temporal extent of the simulation
(panel A) and for the time interval [1420, 1580]yr (panel B) — the
latter is denoted by the two vertical dashed lines in panel (A). Panel
(C) shows 〈Bφ〉 as a function of radius at high latitude and panel
(D) displays the evolution of the zonally averaged radial magnetic
field component 〈Br〉 near the surface for the same time interval.

rotation axis (panel D), the polarity of which oscillates
in-phase with that of the mean toroidal field component,
in contrast to the π/2 phase lag observed on the Sun.
The generation and destruction of the large-scale cyclic

magnetic field taking place in our experiment implies
the conversion of kinetic energy into magnetic energy
and of magnetic energy into kinetic energy via the work
done by the induction and Lorentz forces (Racine et al.
2011). The Lorentz force modulates the velocity field
and the heat transport by convective motions, which are
sustained by the input of thermal energy into the sys-
tem. In Cossette et al. (2013) the authors reported on
the in-phase variation of the net enthalpy flux with total
magnetic energy Em ≡ (2µ)−1

∫
B2dV of the simulation.

The enthalpy flux can be written in terms of the pertur-
bations with respect to the reference state of the anelastic
approximation

Fe ≡

(
cp
ρoTo
Θo

(Θ −Θo) + p− po

)
u = ρocp(T − To)u ;

(16)
e.g. see Miesch (2005). The net enthalpy flux across a
spherical surface ∂Ω at a given radius is

Le(r)≡

∫

∂Ω

(
cp
ρoTo
Θo

(Θ−Θo) + (p− po)

)
urdσ

+

∫

∂Ω

(
cp
ρoTo
Θo

(Θo −Θ) + (po − p)

)
urdσ ,

= cp
ρoTo
Θo

∫

∂Ω

ur∆Θdσ +

∫

∂Ω

ur∆pdσ . (17)

where dσ ≡ r2 cos θdθdφ. In (17) we have expressed the
net enthalpy flux in terms of the perturbations ∆Θ ≡
Θ − Θ and ∆p = p − p with respect to the simula-
tion mean, using the fact that both the reference state
and simulation mean are spherically symmetric, and that∫
∂Ω ρourdσ = 0 given (4) and impermeable bottom and
top boundaries (cf. Appendix A). The first term on the
rhs of (17) is a net internal energy flux (or heat flux) and
the second is the net amount of work done by pressure
forces. Inspection of Fig. 1C shows that most upflows
and downflows carry, respectively, positive and negative
perturbations ∆Θ. A smaller fraction carry perturba-
tions of the opposite sign as a result of fluid entrain-
ment, thereby contributing to a net positive heat flux;
see Fig. 1 in Cossette et al. (2013). The pressure work
term is smaller than the net heat flux by more than one
order of magnitude, and therefore we focus solely on as-
sessing the heat-flux contribution to the enthalpy flux
modulation.

4. MODULATED HEAT TRANSPORT

Entropy redistribution is governed by the potential
temperature equation (2). Using (4), it may be written
as

∂Θ′

∂t
= −

1

ρo
∇ · (FΘ)− αΘ′ +H(Θ′) , (18)

where the first term on the rhs combines the advective
terms −u · ∇Θ′ and −u · ∇Θa on the left and right-
hand-sides of (2), with FΘ ≡ ρouΘ. Analyzing (2) in
terms of its discrete counterpart inside the model algo-
rithm shows that the first and second terms on the rhs
of (2) constitute the dominant contributions, with H(Θ′)
being smaller by more than two orders of magnitude (cf.
section 10.1 in Appendix C).
To understand the physical mechanism causing the

convective flux modulation we examine the role of each
contribution on the rhs of (18). First, we consider the
total entropy rate-of-change that is associated with an
infinitesimal spherical shell [r, r+dr] at a given radius r.
Multiplying (18) by cpρo/Θo while neglecting radiative
diffusion, using the definition of potential temperature
(cf. section 2) and integrating over a spherical surface
gives
∫

∂Ω

ρo
∂s

∂t
dσ =

∫

∂Ω

cp
ρo
Θo

∂Θ′

∂t
dσ = SΘ(r)+Sα(r) , (19)

where s denotes specific entropy, SΘ ≡ Su
Θ + Sd

Θ, Sα ≡
Su
α + Sd

α, and

Su
Θ(r)≡−

cp
Θo

∫

∂Ω(u)

∇ ·FΘdσ , (20)

Sd
Θ(r)≡−

cp
Θo

∫

∂Ω(d)

∇ ·FΘdσ , (21)

Su
α(r)≡−α

cp
Θo

∫

∂Ω(u)

ρoΘ
′dσ , (22)

Sd
α(r)≡−α

cp
Θo

∫

∂Ω(d)

ρoΘ
′dσ . (23)

where
∫
∂Ω(u) and

∫
∂Ω(d) denote, respectively, integrals

over portions of a spherical surface where ur ≥ 0 and
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Fig. 6.— Radial profiles of contributions appearing on the rhs of (19) at an instant in time (left) and profiles of the same contributions
separated for upflows and downflows (right), as described by (20)-(23).

ur < 0. The SΘ term is negative near the base of
the convectively unstable layer and positive near its top,
whereas the opposite is true of Sα — see Fig. 6. The
former therefore decreases the superadiabaticity of the
mean potential temperature profile (cf. Fig. 1), whereas
the later does the exact opposite by increasing it. Thus,
convective motions tend to homogenize the entropy field
by bringing it closer to an isentropic state, whereas the
Newtonian cooling opposes this effect by relaxing the en-
tropy of fluid parcels toward the superadiabatic ambient
state. Contributions from both processes nearly cancel
each other out to produce a quasi-stationary state

SΘ(r) + Sα(r) ≈ 0. (24)

An interesting parallel may be drawn between (10)
and (24), since they reflect the thermodynamic equi-
libria achieved inside the Sun and in the numerical ex-
periment, respectively. Here, Newtonian cooling (repre-
sented by Sα) balances the action of the mean resolved
heat transfer (represented by SΘ), thus taking the role
of −H⋆ = H(Θ⋆), which is positive near the base of the
convection zone and negative near the top as a result
of radiative heating and cooling. The negative SΘ near
the base of the convection zone therefore represents the
transfer of the energy deposited by radiative heating into
convective motions, while the positive SΘ near the top
represents the deposition of the energy carried by the
fluid, which is then radiated into space.
Furthermore, to gain insight into the role of upflows

and downflows in transporting the heat of the fluid we
examine the FΘ divergence on the rhs of (18) in terms of

their contributions. Using (4), we show in Appendix D
that

∫

∂Ω

∇·(ρouΘ) dσ =

∫

∂Ω

ρour
∂Θ′

∂r
dσ+

∫

∂Ω

Θ′ ∂ρour
∂r

dσ .

(25)
The first and second terms on the rhs of (25) correspond,
respectively, to the advection of the entropy perturba-
tions in the radial direction and to local entropy accu-
mulation/depletion due to a change of radial momentum
with depth. The former is expected to dominate in the
bulk of the unstable layer where the convective velocities
are large; whereas the latter should become important
near the boundaries where ur must vanish. In particu-
lar, since ∂Θ′/∂r > 0 inside the bulk of the convection
zone (cf. Fig. 1C), the integral in the first term will re-
ceive a positive contribution from regions where ur > 0
(i.e. Su

Θ < 0) and a negative one from regions where
ur < 0 (i.e. Sd

Θ > 0). This picture is consistent with
Fig. 6, which shows that Su

Θ < 0 and Sd
Θ > 0 within the

bulk of the convection zone.
Further insight into the nature of the heat transport

may be gained by considering the integrals of each forc-
ing over a portion of the convection zone. Defining
Tr ≡

∫
Ωr

ToρodV/
∫
Ωr

ρodV to be the average reference

state temperature associated with a spherical shell Ωr

extending from the base of the domain (r = rb) up to an
arbitrary radius r, using the second law of thermodynam-
ics and integrating (19) from rb to r yields an expression
for the total internal energy rate-of-change corresponding
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Fig. 7.— Instantaneous radial profiles of contributions to the rhs of (26) — panels (A) & (B), and their evolution with time (C). Shaded
areas correspond to 20yr intervals centered about total magnetic energy maxima. In panel (C), the temporal mean of each quantity has
been subtracted for clarity.

to that shell

∂Qr

∂t
= Tr

∂Sr

∂t
= QΘ(r) +Qα(r) , (26)

where QΘ ≡ Qu
Θ +Qd

Θ, Qα ≡ Qu
α +Qd

α, and

Qu
Θ(r)≡Tr

∫ r

rb

Su
Θdr (27)

Qd
Θ(r)≡Tr

∫ r

rb

Sd
Θdr (28)

Qu
α(r)≡Tr

∫ r

rb

Su
αdr , (29)

Qd
α(r)≡Tr

∫ r

rb

Sd
αdr . (30)



10 Cossette et al.

r/R⊙ Mean(−QΘ) σ(−QΘ) Corr(−QΘ, Em)

0.92 0.0063 0.0009 0.6681
0.90 0.0114 0.0009 0.6879
0.88 0.0203 0.0009 0.7138
0.86 0.0287 0.0010 0.7324
0.84 0.0341 0.0010 0.7425
0.82 0.0397 0.0010 0.7501
0.80 0.0411 0.0010 0.7423
0.79 0.0414 0.0010 0.7461
0.76 0.0361 0.0010 0.7436
0.75 0.0284 0.0010 0.7344
0.73 0.0180 0.0011 0.7078
0.72 0.0089 0.0011 0.6690

TABLE 1
Statistical properties of the convective heat luminosity
modulation at various depths. Second and third columns

show, respectively, the temporal mean and standard
deviation of −QΘ, while the fourth column displays the
linear correlation coefficient computed for the 5-year
running averages of −QΘ and the total magnetic energy

timeseries Em.

The sum QΘ ≡ Qu
Θ + Qd

Θ is everywhere negative inside
the unstable layer (Fig. 7A) and therefore corresponds
to an energy sink. By contrast, the Newtonian-cooling
contribution Qα ≡ Qu

α +Qd
α acts everywhere as a source

(Qα > 0) and nearly cancels out QΘ to produce a quasi-
stationary state ∂Qr/∂t ≈ 0 (red curve). Moreover, since
ur(rb, θ, φ) = 0 at the lower boundary, we have

QΘ=−
cpTr
Θo

∫ r

rb

∫

∂Ω

∇ ·FΘdV

=−
cpTr
Θo

(∫

∂Ω

(ρo(r)ur(r, θ, φ)Θ
′(r, θ, φ)

−ρo(rb)ur(rb, θ, φ)Θ
′(rb, θ, φ)

)
dσ

=−
cpρo(r)Tr

Θo

∫

∂Ω

ur(r, θ, φ)Θ
′(r, θ, φ)dσ , (31)

whereby −QΘ has the interpretation of a net convective
heat flux. The latter is everywhere positive inside the
unstable layer, remains positive over a short distance be-
low the interface with the stable layer, and subsequently
changes sign (Fig. 7). The persistence of the convective
heat flux below the convection zone and into the sta-
bly stratified interior and its subsequent change of sign
is a consequence of penetrative convection, and is also
present in other simulations of solar convection (e.g. Mi-
esch et al. (2000); Pal et al. (2007)).
The signature of the magnetic cycle is present in both

QΘ and Qα (Fig. 7, panel C), which are anti-correlated
and correlated with the total magnetic energy, respec-
tively. Most importantly, the out-of-phase modulation
of QΘ corresponds to an in-phase variation of the net
convective heat flux (−QΘ) with total magnetic energy
(red curve in panel C), which results from corresponding
modulations of upflow and downflow contributions −Qu

Θ

and −Qd
Θ. Table 1 shows that the standard deviation of

the −QΘ modulation reaches a significant fraction of its
temporal average, and that it correlates very well with
the total magnetic energy at every depth in the unstable
layer. Interestingly, the standard deviation is largest near
the core-envelope interface where the large-scale toroidal

magnetic field wreaths are located (cf. Fig. 5).
The imbalance between upflow and downflow contri-

butions Qd
Θ and Qu

Θ is therefore responsible for produc-
ing an enhanced net convective heat flux at cycle max-
imum, and must result from modulating upflows and
downflows differently. According to (25), this implies
an upflow/downflow modulation that is asymmetric with
respect to their associated (i) convective velocity ampli-
tudes, (ii) vertical momentum gradient, (iii) entropy per-
turbation amplitudes and/or (iv) entropy gradient.

5. DYNAMICAL DRIVERS OF THE FLOW MODULATION

Ultimately, the heat transport modulation documented
in the previous section must take place as a result of
the Lorentz force’s action on the flow field. Which as-
pect of the Lorentz force leads to an asymmetric up-
flow/downflow modulation must therefore be determined
through careful inspection of the balance of forces on the
rhs of (1) and the flow response that they induce. The
equation governing the evolution of radial momentum
can be written as

∂ρour
∂t

= Fa + Fϕ + Fg + Fc + Ft (32)

where Fa, Fϕ, Fg, Fc and Ft correspond, respectively,
to minus the radial momentum flux divergence, minus
the pressure gradient’s radial component, the buoyancy
force, Coriolis force and magnetic tension; see Appendix
C for the definition of each term on the rhs of (32). To
develop an intuition for the nature of each forcing term
FX , we compute their mean value inside a given radial
velocity and temperature deviation range I ≡ [ur, ur +
δur] × [∆T ′,∆T ′ + δ(∆T ′)] on a spherical surface at a
given depth, namely

δFX(ur,∆T
′, r) ≡

1

NI

∑

i∈I

FX(φ, θ, r)i , (33)

where i denotes a grid point and NI is the number of
grid points contained in I.
Figure (8) shows each term’s associated mean force dis-

tribution δFX close to the bottom of the unstable layer
at r = 0.76R⊙. Here, δFs is the distribution associ-
ated with Fs ≡ Fϕ + Fg + Fc, namely the sum of pres-
sure gradient, buoyancy and Coriolis forces (panel A).
The near cancellation of Fϕ and Fg (not shown) leads
to predominantly positive and negative Fs where ur > 0
and ur < 0, which means that buoyancy and pressure
forces act together to impart upward and downward ac-
celerations to the upflows and downflows. Consequently,
in a statistically-steady state (∂ur/∂t ≈ 0) upflows and
downflows are characterized by Dur/Dt > 0 (δFa < 0)
and Dur/Dt < 0 (δFa > 0); see panel B. Magnetic ten-
sion is predominantly negative and positive inside up-
flows and downflows, respectively (panel C); it therefore
opposes the work done by buoyancy and pressure forces
(panel A).
To understand how each force impacts the radial mo-

mentum’s rate-of-change, we compute the total force as-
sociated with a given term FX that is acting on up-
flows and downflows inside the infinitesimal spherical
shell [r, r + dr] at depth r

Fu
X(r) ≡ dr

∫

∂Ω(u)

FXdσ ,
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Fig. 8.— Mean force density distributions averaged 1.7 yr about
an instant taken half-way through the rising phase of a magnetic
cycle at r/R⊙ = 0.76. Panels (A), (B) and (C) show, respectively,
δFs, δFa and δFt.

Fd
X(r) ≡ dr

∫

∂Ω(d)

FXdσ . (34)

Integrating (32) over the surface of a given shell therefore
yields

∂V

∂t
=
∂Vu

∂t
+
∂Vd

∂t
, (35)

where Vu = Vu(r) ≡ dr
∫
∂Ω(u)

ρourdσ and Vd = Vd(r) ≡

dr
∫
∂Ω(d)

ρourdσ, with V ≡ Vu + Vd. Consequently, we

have the following equations governing the evolution of
total upflow and downflow momentum

∂Vu

∂t
=Fu

a + Fu
s + Fu

t , (36)

∂Vd

∂t
=Fd

a + Fd
s + Fd

t . (37)

Most importantly, the anelastic mass continuity equation
(4) requires that V(r) = 0 for every depth (cf. Appendix
A), whereby ∂V/∂t = 0 and

∂Vu/∂t = −∂Vd/∂t (38)

at every depth.
Radial profiles of each force (Fig. 9A) show that the

total magnetic tension that is exerted on the upflows is
everywhere negative (Fu

t < 0) inside the convection zone,
whereas it is everywhere positive inside downflows (Fd

t >
0) except near the top of the domain (r > 0.85R⊙). Like-
wise, we have Fu

s > 0 and Fd
s < 0 inside the bulk of the

unstable layer. The net force Fu
s + Fu

t > 0 acting on
upflows produces a net radial momentum loss through
each shell (Fu

a < 0). Similarly for downflows, we have
Fd

s + Fd
t < 0 and Fd

a > 0. This produces an upflow mo-
mentum rate-of-change ∂Vu/∂t < 0, which is equal and
opposite to the net momentum rate-of-change associated
with downflows ∂Vd/∂t > 0 at every depth, as per the
mass continuity constraint (38).
Each term FX is strongly modulated by the magnetic

cycle near the base of the convection zone where the
large-scale field is concentrated (Fig. 9B). One very strik-
ing feature is the asymmetry characterizing the evolu-
tions of the total magnetic tensions Fu

t and Fd
t inside

upflows and downflows. In particular, the amplitude of
the Ft modulation is larger in upflows than in down-
flows. To satisfy (38), the system responds to the in-
creased magnetic tension in upflows with a simultaneous
increase of both Fu

s and Fd
s ’s magnitudes.

The Fs term is the sum of buoyancy Fg, Coriolis Fc,
and pressure gradient Fϕ, which develop their own re-
sponses to the increased magnetic tension at cycle max-
imum (Fig. 9C). While the forces acting on upflows and
downflows maintain similar amplitudes, this is not the
case for the buoyancy force, which appears to be more
strongly modulated inside the downflows compared to
upflows. This is substantiated by probability density
functions (PDFs) of the radial velocity ur and deviations
∆Θ ≡ Θ−Θ with respect to the mean potential temper-
ature (Fig. 10). Comparing the potential temperature
perturbations PDFs at cycle minimum and maximum at
r = 0.76R⊙ (panel D) shows that the change in the per-
turbations’ magnitude at cycle maximum with respect
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Fig. 9.— Radial profiles of total forces that are exerted on upflows (solid lines) and downflows (dashed lines) at an instant taken half-way
through the rising phase of a magnetic cycle (panel A). Timeseries (5 yr running averages) of total forces exerted on upflows and downflows
at r = 0.76R⊙ (panels B and C).

to cycle minimum is greater in downflows than in up-
flows, which is consistent with the larger buoyancy force
modulation inside downflows observed in Fig. 9B.
Consequently, the upflow/downflow asymmetry char-

acterizing the evolutions of magnetic tensions Fu
t and

Fd
t induces corresponding asymmetries in the evolution

of buoyancy forces Fu
g and Fd

g as part of the flow’s re-
sponse to fulfill the mass continuity constraint. These
buoyancy forces develop through the modulation of Θu

and Θd, which determine the character of the enthalpy
flux and convective heat flux (cf. Fig. 7). This sug-
gests that the imbalance between upflow and downflow
contributions to heat transport Qu and Qd and the re-
sulting net convective heat flux modulation result from
the magnetic tension imbalance inside upflows and down-
flows that takes place as the level of magnetism changes
with the cycle.

6. IMPACT ON IRRADIANCE VARIATIONS

The heat transported by convection is redistributed in-
side the domain by the Newtonian cooling (Fig. 7) so
that the total heat flux at the top boundary is zero.
However, we may assess the temperature and heat flux
modulations induced by cyclic activity at the surface if
we assume that the propagation of thermodynamic per-
turbations generated inside the interior is well approx-
imated by turbulent diffusion (Spruit 1977; Stix 1981).
The problem amounts to solving the steady-state heat
diffusion equation

∇ · (δF) = 0 , (39)

where δF(n, x, y, z) ≡ K∇δT is a normalized flux dis-
turbance associated with a temperature perturbation

δT (n, x, y, z) of the form ≈ f(n, z) exp(ikxx+ ikyy), and
K = Ko(z+z1)

2 is a depth-dependent turbulent diffusion
coefficient, with Ko = 2.94×10−9m−1 ·K−1 and z1 = 127
km a reference depth. Here, n ≡ πR⊙(k

2
x+ k2y)

1/2/2 cor-
responds to the number of waves on half a solar circum-
ference. Solving (39) subject to the radiative (Stefan-
Boltzmann) boundary condition δF ≡ 4δT/Ts at z = 0
(Ts = 6540K) yields analytical expressions for δT and
δF , from which amplitude response functions for temper-
ature and heat flux disturbances induced at the surface
may be derived

RT (n, z)≡ f(n, 0)/f(n, z) ,
RF (n, z)≡K(0)f ′(n, 0)/K(z)f ′(n, z) , (40)

where f ′(n, z) ≡ df/dz; see equations (3) and (4) from
Stix (1981). Perturbations with higher harmonics decay
faster, as expected (Fig. 11).
The azimuthally-averaged temperature perturbations

are all characterized by strong latitudinal dependencies
(n ∼ 1 − 2) having typical amplitudes ∼ 0.10K. Ac-
cording to Fig. 11, perturbations with n ∼ 1 − 2 every-
where in the convection zone are attenuated by a fac-
tor ∼ 1/4 once they reach the surface. The associated
change in the heat flux given by the radiative boundary
condition is δF ∼ 4δT/Ts = 1.7 × 10−5, which is ap-
proximately 100 times smaller than the observed 0.1%
decadal change in TSI. By comparison, perturbations to
the heat flux are attenuated by orders of magnitude more
than the associated temperature disturbances (Fig. 11).
Fig. 2 of Cossette et al. (2013) shows the cyclic vari-
ation of the longitudinally averaged enthalpy flux as a
function of latitude at r = 0.87R⊙. The flux varia-
tion is characterized by a n = 2 oscillation in latitude
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Fig. 10.— PDFs of radial velocity amplitudes (top row) and potential temperature perturbations (bottom) averaged over all minima
(black curves) and maxima (red curves) at r = 0.76R⊙ (right), r = 0.82R⊙ (center), and r = 0.88R⊙ (left).

with typical amplitude ∼ 106W · m−2 from cycle min-
ima to maxima in each hemisphere. Therefore, accord-
ing to Fig. 11 the flux perturbation is damped by a fac-
tor ∼ 100, which gives a flux variation at the surface
δF ∼ 104W ·m−2/(L⊙/4πR

2
⊙) ∼ 10−4.

7. DISCUSSION

We have investigated the physical mechanism respon-
sible for the convective heat flux modulation produced in
a global MHD simulation of solar convection. The initial
random magnetic field that is specified in the simulation
develops into a well-organized large scale magnetic com-
ponent undergoing hemispheric polarity reversals at a 40
yr cadence. The interaction of the cycling magnetic field
with the flow produces an in-phase variation of the con-
vective heat flux with the total magnetic energy of the
simulation.
We find that this variation is related to differences

in the way upflow and downflow contributions to heat
transport are modulated by the cycle. This so-called
upflow/downflow asymmetry can be traced back to cor-
responding asymmetries in the magnetic tension forces
acting on upflows and downflows. Magnetic tension
works against buoyancy and pressure gradient forces to

suppress flow motion. In particular, upflows are more
strongly modulated by the magnetic tension compared
to downflows. To satisfy the mass continuity constraint,
the flow responds to the increased magnetic tension with
a change in the pressure gradient and buoyancy force.
The consequent modulation of the entropy perturbations
is what leads to the upflow/downflow asymmetry and the
in-phase variation of the convective heat flux with total
magnetic energy.
A modulation of convective heat transport by the

large-scale magnetic cycle has also been observed in a
cycling convective dynamo solution produced using the
ASH code (Augustson et al. 2015). The enthalpy flux
in this simulation decreases at cycle maximum, whereas
we find the opposite behavior in ours. The origin of the
discrepancy with the ASH result could be related to dif-
ferences in the thermodynamic constraints that are im-
posed in each simulation. The model of Augustson et al.
(2015) drives convection by maintaining a constant so-
lar luminosity via the specification of flux-transmitting
conditions at the upper and lower boundaries, whereas
our model maintains a convectively unstable stratifica-
tion over a time scale long compared to the cycle’s pe-
riod by relaxing the entropy of fluid parcels to that of the
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Fig. 11.— Temperature and heat flux amplitude response func-
tions RT (n, z) and RF (n, z) corresponding to various depths z.

superadiabatic ambient state Θa. Thus, in the ASH sim-
ulation the external energy reservoir is accessed via the
boundary fluxes, whereas in our simulation it is accessed
locally via the Newtonian cooling term.
It is important to note that global MHD experiments

of solar convection are currently unable to resolve the
small-scale flows present in the subphotospheric layers,
which account for the transport of energy between the
deep convection zone and the photosphere where the en-
ergy generated in the core is released by photons. In
global simulations that rely on heating and cooling terms
at the upper and lower boundaries to drive convection,
the transport of energy near the top boundary is often
modeled via a flux proportional to the entropy gradi-
ent (e.g. Miesch et al. (2008); Augustson et al. (2015);
Featherstone & Hindman (2016)). The simulation pre-
sented in this paper does not rely on heating or cooling
at the boundaries, but instead drives convection inter-
nally by maintaining a mean superadiabatic stratification
throughout the domain. Because solutions are sought in
terms of fluctuations about a superadiabatic Θa profile
in the convection zone, the solution’s dependence on dis-
sipation/diffusion is greatly reduced. This enables dy-
namic equilibria that might have been unreachable on
dissipative paths of integrations starting with Θa ≡ Θo

and a large amplitude heating/cooling forcing applied at
the model lower/upper boundaries.
Determining the potential effect that the cycling large-

scale magnetic field has on the heat transport and the
irradiance output at the Sun’s surface is important for
assessing the impact of solar variability on the Earth’s
climate. Using a model based on the approximation of
turbulence as diffusion, we estimated that the change in
the irradiance at the surface in response to thermody-
namic perturbations generated by the magnetic cycle is
on the order of 0.01% or smaller. As expected, the strong

attenuation of temperature and heat flux disturbances
by turbulent diffusion effectively screens the deep-seated
flux modulation from the surface (Stix 1981). This result
seems to be consistent with the very small amplitudes of
the variations of the photospheric temperature and so-
lar radius that have been inferred from observations so
far (c.f. section 1). Such small variations are likely to
be insignificant for climate change on decadal or even
multi-decadal time scales (Foukal et al. 2006).
Alternately, it may be that the approximation of con-

vection by turbulent diffusion is fundamentally inade-
quate to represent the highly non-local heat transport
in stellar interiors, where upflows and downflows tend
to remain coherent over several pressure scale heights
(e.g. Rieutord & Zahn (1995); Spruit (1997); Nordlund
et al. (2009)). In this case, the relevant time scale for the
change in the irradiance induced by a deep-seated mod-
ulation of the large-scale magnetic field is the plumes’
transit time across the convecting layer (Cossette & Rast
2016). Higher resolution global simulations and obser-
vations that are able to capture such non-local effects
while coupling the deep convection zone to the radia-
tive boundary layer of the star may be required to assess
their contribution to the variations of the irradiance in
the presence of a large-scale cyclic magnetic field.
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8. APPENDIX A: PERTURBATIONAL FORM OF THE
GOVERNING EQUATIONS

To minimize mathematical complexity and focus on
physics, the governing equations are written in Cartesian
framework (x, y, r), thus bypassing (temporarily) metric
factors of the spherical domain. While the spherical form
of the governing equations is discussed in the body of the
paper, here we only assume periodic boundary conditions
in x and y, to mimic one key aspect of the global solar
case. Defining Φ ≡ {u,Θ, ϕ,B}, and the space and time
averaged state

Φ⋆ ≡ Φ
⋆
≡

1

t⋆XY

∫ t⋆/2

−t⋆/2

∫ X

0

∫ Y

0

Φ dxdydt , (41)

such that a stationary state ∂Φ⋆/∂t ≈ 0 can be assumed,
yields the following decomposition of each variable into

a mean and a perturbation Φ̃ ≡ {ũ, Θ̃, ϕ̃, B̃} ≡ Φ−Φ⋆.

8.1. Entropy equation
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To derive the perturbation form of the entropy equa-
tion (2), consider first its generic form in the anelastic
approximation (9). The equation (9) can be obtained
from the generic thermodynamic principle Tds/dt = SQ

— relating the evolution of specific entropy to the heat
source SQ (per unit of mass) due to radiation diffusion
and heat diffusion — using the definition of the poten-
tial temperature ds = cpd lnΘ together with the Lipps
& Hemler (1982) anelastic approximation T ′ ≡ Θ′To/Θo.
Combining (9) with the anelastic mass continuity equa-
tion (4) leads to the conservative form

∂ρoΘ

∂t
+∇ · (ρouΘ)

=
Θo

To

[
∇ ·

(
κrρo∇Θ

To
Θo

)
+∇ ·

(
κ
ρoTo
Θo

∇Θ

)]
.(42)

Substituting Θ = Θ⋆ + Θ̃ and u = u⋆ + ũ into (42) and
applying the horizontal-time average to (42) gives

d

dr
ρour

⋆Θ⋆ +
d

dr
ρoũrΘ̃

⋆

=

Θo

To

[
d

dr

(
κrρo

d

dr

To
Θo

Θ⋆

)
+

d

dr

(
κ
ρoTo
Θo

d

dr
Θ⋆

)]
.(43)

Importantly, the first term on the lhs of (43) vanishes,
because applying the same averaging procedure to the
mass continuity equation (4) yields d/drρour

⋆ = 0, thus
implying ρour

⋆|r−ρour
⋆|rb = 0 (also ρour

⋆|rt−ρour
⋆|r =

0) and therefore ur
⋆ = 0 ∀ r, given mean impermeable

boundaries at r = rb or r = rt (cf. section 2.3). In
consequence,

0 =
Θo

ρoTo

[
d

dr

(
κrρo

d

dr

To
Θo

Θ⋆

)
+

d

dr

(
κ
ρoTo
Θo

d

dr
Θ⋆

)]

−ρ−1
o

d

dr
(ρoũrΘ̃

⋆

) ≡ H(Θ⋆) +H⋆ , (44)

or equivalently eq. (10) in section 2.2. Subtracting (44)
from (9), while moving the convective derivative u ·∇Θ⋆

to the rhs, results in (11).

8.2. Momentum equation

Using (4)-(5) to rewrite the material derivative and
Lorentz force term in (8) in conservative form we obtain

∂ρou

∂t
+∇ · (ρouu) = −ρo∇

(
p− po
ρo

)
− ρog

Θ−Θo

Θo

+2ρou×Ω+
1

µ
∇ · (BB) + ρoDu (45)

where p includes magnetic and gas pressure. Substituting

Φ = Φ⋆+ Φ̃ into (45), and applying the horizontal time-
average to (45) leads to

0=−ρo
d

dr

(
p⋆ − po
ρo

)
+ ρog

Θ⋆ −Θo

Θo
−

d

dr
(ρoũrũr

⋆
)

+
1

µ

d

dr
(B̃rB̃r

⋆

) , (46)

where we used the fact that the average of a perturbation

vanishes, and that u⋆r = 0 ∀r to set Du

⋆
≡ 0. Defining

an auxiliary variable

ψ⋆

ρo
≡ −

r∫

rb

1

ρo

[
d

dr
(ρoũrũr

⋆
)− µ−1 d

dr
(B̃rB̃r

⋆

)

]
dr′ ,

(47)
allows to rewrite (46) as

0 = −ρo
d

dr

(
p⋆ + ψ⋆ − po

ρo

)
+ ρog

Θ⋆ −Θo

Θo
, (48)

thus exposing a compact hydrostatic relation that ac-
counts for Reynolds and Maxwell fluxes, respectively,
due to the correlations of fluctuating radial velocity
and radial magnetic components associated with the
mean solar-state equilibrium. Subtracting (48) from the
generic momentum equation (45) gives then

∂ρou

∂t
+∇ · (ρouu) =

−ρo∇

(
p− p⋆ − ψ⋆

ρo

)
− ρog

Θ−Θ⋆

Θo

+2ρou×Ω+
1

µ
∇ · (BB) +Du , (49)

which upon dividing by ρo and using (4)-(5) gives the
Lagrangian form (12).

9. APPENDIX B: PIECEWISE POLYTROPE

We construct Θa using a piecewise-linear polytrope,

pm = Kρ
1+ 1

m

m , pm = ρmRTm ,
dpm
dr

= −ρmg (50)

where m = m(r) is a variable polytropic index and R =
cp − cv. Each polytrope satisfies the equation

dTm
dr

= −
g

(1 +m)R
, (51)

which yields the following expressions for temperature,
density and pressure when integrated from r to r +∆r

Tm(r +∆r)=Tm(r)f(r) , (52)

ρm(r +∆r)=ρm(r)f(r)m , (53)

pm(r +∆r)=pm(r)f(r)m+1 , (54)

where

f(r) ≡ 1−
rg(r)

(m+ 1)RTm(r)

(
1−

r

r +∆r

)
.

and ∆r is the radial grid spacing. Equations (52)-
(54) are solved recursively to give the desired ambi-
ent profiles Tm(r), pm(r) and ρm(r) for specified values
Ta(rb) = Tb, ρ(rb) = ρb and p(rb) = pb at r = rb. The in-
dexm is used to enforce, respectively, convectively stable
(subadiabatic) and unstable (superadiabatic) stratifica-
tions in regions corresponding to the radiative interior
(r ≤ ri) and convection zone (r > ri). Inside the stable
layer, m decreases linearly up to r = ri

m(r) = ms − (ms −mad)
r − rb
ri − rb

, (55)

where mad = 1/(γ − 1), with γ = cp/cv = 5/3 the ra-
tio of specific heats. Transitions from subadiabatic to
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superadiabatic stratifications at the interface and from
superadiabatic to adiabatic near the surface are modeled
using a combination of hyperbolic functions

m(r) = mad+
1

2
(mad −mu)

(
tanh

[
ζ −

r − ri
δ

]

+tanh

[
r − rt
δ

+ ζ

])
, (56)

where mu < mad, and δ and ζ are parameters control-
ling the width of the transition. The ambient potential
temperature is obtained via its definition,

Θa(r) ≡ Tm(r)

(
ρbTb

ρm(r)Tm(r)

)1−1/γ

. (57)

10. APPENDIX C: NUMERICAL APPROXIMATIONS

The system of prognostic equations (1)-(3) may be
written compactly in Lagrangian formulation

dΨ

dt
= R , (58)

where Ψ = {u,Θ′,B} denotes the vector of prognosed
dependent variables and R = {Ru, RΘ′ ,RB} represents
the associate forcings on the right-hand-side of (1)-(3).
Equations (58), or their conservative counterparts, are
integrated in time and space using the non-oscillatory
forward-in-time algorithm

Ψn
i = LEi(Ψ̂) + δhtR

n
i , (59)

where Ψ̂ = Ψn−1 + δhtR
n−1, LE symbolizes a two-

time-level, optionally semi-Lagrangian or flux-form Eu-
lerian advection operator, respectively, with δht = 0.5δt.
Here, Ψn

i
denotes the solution sought at the mesh point

(tn,xi), and tn = tn−1 + δt. In the context of global
MHD experiments of solar convection the MPDATA ad-
vection algorithm is used for LE (Ghizaru et al. 2010).
While the geometric factors arising from the spherical
geometry are taken into account in the analysis of sec-
tions 4 and 5, for simplicity here we discuss the Cartesian
form of the entropy and momentum equations solved by
EULAG-MHD; we refer the reader to Smolarkiewicz &
Charbonneau (2013) for a detailed exposition of the co-
ordinate dependent form of the model algorithm, and for
a description of the geometric factors arising from the
use of spherical coordinates.

10.1. Entropy equation

The solution to (2) may now be expressed as

Θ′n
i

= LEi(Θ̂) + δhtR
n
Θ,i , (60)

with Θ̂ = Θ′n−1 + δhtR
n−1
Θ . The first term on the rhs of

(2) is treated to second-order accuracy, whereas radiative
diffusion and Newtonian cooling are treated explicitly to
the first order by reproducing the Euler forward structure
in the argument of LE, which leads to

Rn−1
Θ ≡ −un−1 · ∇Θa + 2H(Θ′)n−1 − 2αΘ′n−1 , (61)

and
Rn

Θ ≡ −un · ∇Θa . (62)

Equivalently, since

LEi(Θ̂)− (Θ′n−1
i

+ δhtR
n−1
i

)

≡−δtρ−1
o ∇ · (ρouΘ̂)

i

≈−ρ−1
o

∫ tn

tn−1

∇ · (ρouΘ̂)d t , (63)

where (..) represents an effective time average over time-
step δt. Equation (60) may be rewritten as

Θ′n
i

= Θ′n−1
i

+δhtR
n−1
i

−δt
1

ρo
∇ · (ρouΘ̂)

i
+δhtR

n
i
. (64)

whereupon substitution of (61) and (62) into (64) gives

Θ′n −Θ′n−1=−δt
1

ρo
∇ · (ρouΘ̂) (65)

−δht(u
n · ∇Θa + un−1 · ∇Θa)

+δtH(Θ′)n−1 − δtαΘ′n−1 , (66)

where we have omitted the subscript i for clarity. It is
convenient to label each term in (66) according to

Sa≡ δt
−1(Θ′n −Θ′n−1) (67)

Sb≡−
1

ρo
∇ · (ρouΘ̂) , (68)

Sc≡−
1

2
(un · ∇Θa + un−1 · ∇Θa) , (69)

Sd≡H(Θ′)n−1 (70)

Se≡−αΘ′n−1 . (71)

The analysis of each term reveals that advection and
Newtonian cooling constitute the dominant contributions
to the right-hand-side of (66), with radiative diffusion
being smaller by at least two orders of magnitude com-
pared to those two. Terms (68) and (69) may therefore
be combined to express the first term on the rhs of (18)
as

−
1

ρo
∇ · (FΘ) ≡ Sb + Sc , (72)

where FΘ stands as a full potential temperature flux rep-
resenting the contributions from perturbations (Sb) and
the ambient state (Sc).

10.2. Momentum equation

The solution to the momentum equation (1) takes the
form

un
i
= LEi(û) + δhtR

n
u,i (73)

where û = un−1 + δhtR
n−1
u

and

Rn
u,i =

(
1

µρo
B · ∇B

)n

i

−

[
g
Θ′

Θo
− 2u×Ω

]n

i

− (∇ϕ′)ni .

(74)
The total forcing (74) can be decomposed into contri-
butions from buoyancy, Coriolis and pressure gradient
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forces and magnetic tension according to

Rn
g ≡−

[
g
Θ′

Θo

]n

i

, (75)

Rn
c ≡

[
2u×Ω

]n

i

, (76)

Rn
ϕ≡−(∇ϕ′)ni , (77)

Rn
t ≡

(
1

µρo
B · ∇B

)n

i

. (78)

Furthermore, we have

LEi(û)− ûi = −δt

[
1

ρo
∇ · ρouû

]

i

, (79)

whereupon (73) may be written as

un
i − un−1

i
=−δt

[
1

ρo
∇ · ρouû

]

i

+ δht(R
n
ϕ +Rn−1

ϕ )i
+ δht(R

n
g +Rn−1

g )i
+ δht(R

n
c +Rn−1

c )i
+ δht(R

n
t +Rn−1

t )i . (80)

We shall adopt the following notation

Fa≡−∇ · ρouû , (81)

Fg ≡
1

2
ρo(R

n
g +Rn−1

g ) , (82)

Fϕ≡
1

2
ρo(R

n
ϕ +Rn−1

ϕ ) , (83)

Fc≡
1

2
ρo(R

n
c +Rn−1

c ) , (84)

Ft≡
1

2
ρo(R

n
t +Rn−1

t ) , (85)

whereby we may express (80) as

∂ρou

∂t
= Fa + Fϕ + Fg + Fc + Ft . (86)

11. APPENDIX D

Using the anelastic mass continuity equation (4) and
decomposing Θ ≡ Θa+Θ′ into the ambient state and its
perturbation to rewrite the flux divergence in (20) and
(21) gives

∫

∂Ω

∇ · (ρouΘ) dσ=

∫

∂Ω

ρo

(
u · ∇Θ′ + ur

∂Θa

∂r

)
dσ

=

∫

∂Ω

ρou · ∇Θ′ dσ

+
∂Θa

∂r

∫

∂Ω

ρour dσ , (87)

where we have used the fact Θa is spherically symmetric
when going from the first to the second equality. Since
the surface average of the radial mass flux must vanish
in the presence of impermeable boundaries (cf. appendix
A), the second term on the rhs of the second equality in
(87) disappears and we have
∫

∂Ω

∇ · (ρouΘ)=

∫

∂Ω

ρou · ∇Θ′ dσ

=

∫

∂Ω

(
ρouH · ∇HΘ′ + ρour

∂Θ′

∂r

)
dσ

=

∫

∂Ω

(
∇H · (ρouHΘ′)−Θ′∇H · (ρouH)

+ρour
∂Θ′

∂r

)
dσ

=

∫

∂Ω

ρour
∂Θ′

∂r
+

∫

∂Ω

Θ′∂ρour
∂r

dσ . (88)

where uH and ∇H denote the horizontal components of
the velocity and gradient operator, respectively. In going
from the third to the fourth equality in (88), we used the
fact that the surface integral of a horizontal divergence
vanishes and (4) to express the divergence of horizontal
momentum as a function of radial momentum.
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Käpylä, P. J., Mantere, M. J., Cole, E., Warnecke, J., &

Brandenburg, A. 2013, ApJ, 778, 41
Krener, A. J., 1980, IEEE Trans. Automat. Contr., 25, 291
Kuhn, J. R., Bush, R. I., Emilio, M., & Scherrer, P. H. 2004, ApJ,

613, 1241
Li, L. H., Basu, S., Sofia, S., et al. 2003, ApJ, 591, 1267
Libbrecht, K. G., & Woodard, M. F. 1990, Nature, 345, 779
Lipps, F. B., & Hemler, R. S. 1982, Journal of Atmospheric

Sciences, 39, 2192
Livingston, W., & Wallace, L. 2003, Sol. Phys., 212, 227
Margolin, L. G., Smolarkiewicz, P. K. & Wyszogradzki, A. A.

2006, J. Appl. Mech., 73, 469.
Masada, Y., Yamada, K., & Kageyama, A. 2013, ApJ, 778, 11
Miesch, M. S., Brun, A. S., De Rosa, M. L., & Toomre, J. 2008,

ApJ, 673, 557
Miesch, M. S. 2005, Living Reviews in Solar Physics, 2, 1
Miesch, M. S., Elliott, J. R., Toomre, J., et al. 2000, ApJ, 532, 593
Miesch, M. S., Brun, A. S., & Toomre, J. 2006, ApJ, 641, 618
Nelson, N. J., Brown, B. P., Brun, A. S., Miesch, M. S., &

Toomre, J. 2013, ApJ, 762, 73
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