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Abstract

An advancement of the unstructured-mesh finite-volume MPDATA (Multidimensional Positive Definite
Advection Transport Algorithm) is presented that formulates the error-compensative pseudo-velocity of the
scheme to rely only on face-normal advective fluxes to the dual cells, in contrast to the full vector employed
in previous implementations. This is essentially achieved by expressing the temporal truncation error un-
derlying the pseudo-velocity in a form consistent with the flux-divergence of the governing conservation law.
The development is especially important for integrating fluid dynamics equations on non-rectilinear meshes
whenever face-normal advective mass fluxes are employed for transport compatible with mass continuity—
the latter being essential for flux-form schemes. In particular, the proposed formulation enables large-time-
step semi-implicit finite-volume integration of the compressible Euler equations using MPDATA on arbitrary
hybrid computational meshes. Furthermore, it facilitates multiple error-compensative iterations of the finite-
volume MPDATA and improved overall accuracy. The advancement combines straightforwardly with earlier
developments, such as the nonoscillatory option, the infinite-gauge variant, and moving curvilinear meshes.
A comprehensive description of the scheme is provided for a hybrid horizontally-unstructured vertically-
structured computational mesh for efficient global atmospheric flow modelling. The proposed finite-volume
MPDATA is verified using selected 3D global atmospheric benchmark simulations, representative of hydro-
static and non-hydrostatic flow regimes. Besides the added capabilities, the scheme retains fully the efficacy
of established finite-volume MPDATA formulations.

Keywords: finite-volume scheme, unstructured mesh, nonoscillatory scheme, semi-implicit, compressible
Euler equations, atmospheric flows

1. Introduction

Simulation of atmospheric flows is challenging due to the multifaceted nonlinear processes and tremen-
dous range of scales involved. Notwithstanding the achievements made over the last decades [1], weather
and climate prediction still face the formidable task to resolve important circulations and multi-scale in-
teractions, most notably those associated with convective clouds and orography. Generally, weather and
climate prediction are confronted with high-Reynolds low-Mach number rotating stably-stratified flows that
are described on all scales by the compressible Euler equations. Efficiently integrating the Euler equations
despite the omnipresence of fast acoustic and buoyant modes, while accurately predicting the perturbations
about fundamental large-scale balances, guides the design of atmospheric models.

Unstructured computational meshes offer great flexibility for implementing variable, adaptive resolu-
tion in numerical models. The technique facilitates locally finer mesh spacings in sensitive regions, such as
along coastlines, in mountainous areas, or the tropics, and relatively coarser spacings elsewhere. Unstruc-
tured meshes are also highly relevant for efficient integration of the governing equations in the spherical
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domains underlying global prediction systems. For the global configurations the technique provides ample
freedom for implementing various quasi-uniform resolution meshes that circumvent the stiffness from the
converging meridians towards the poles of the classical regular longitude-latitude grids. The combination of
efficient quasi-uniform global meshes and possible adaptivity represents a powerful approach for modelling
atmospheric flows. Finite-volume (FV) discretisation methods can be effectively applied with arbitrary
unstructured meshes, and also offer the intrinsic advantages of fully conservative transport and local compu-
tations on compact stencils. Towards more realistic high-resolution applications in weather and climate, FV
methods permit fairly straightforward coupling to existing sub-grid scale physics parametrisations developed
for traditional grid-point methods.

MPDATA refers to a class of nonoscillatory forward-in-time (NFT) high-resolution numerical schemes for
the advective terms in flux-form formulations of fluid equations. MPDATA originated in the 1980’s as a finite-
difference (FD) scheme for simulation of atmospheric clouds [2]. The basic principle of MPDATA is most
suitably described as an iterated upwind (alias donor cell) scheme: The initial iteration represents the first-
order accurate upwind scheme with the advective velocity given by the physical flow. Subsequent iterations
are also based on the upwind scheme, but the updated field is advected with a properly defined pseudo-
velocity designed to compensate to selected order (typically second) the spatial and temporal truncation
errors of the previous iteration. The resulting scheme is at least second-order accurate in time and space,
fully multidimensional and conservative. Due to the consistent application of the upwind differencing,
MPDATA retains the characteristic features of a relatively small phase error and strict sign preservation of
the transported field. Sign preservation (i.e. positivity) is imperative and conservation is highly desirable for
the transport of moisture and chemistry variables in atmospheric models. In addition, positivity of flux-form
schemes is sufficient for the nonlinear stability [3].

Over the subsequent decades MPDATA evolved into a family of integration schemes for systems of gener-
alised transport equations while targeting conservation laws of atmospheric dynamics on co-located meshes.
Consistently expanding the realm of the second-order MPDATA for advection to general conservation laws
relies on a rigorous extension of the underlying forward-in-time (FT) truncation error analysis to arbitrary
right-hand-sides [4, 5, 6]. Concomitantly, numerous advancements for advective transport increased the
range of application of MPDATA. One example is the nonoscillatory option [7, 3] to ensure solution mono-
tonicity away from zero values where the sign-preserving mechanism is not effective. Another example is the
infinite-gauge variant [8, 5, 6] that represents an asymptotic form of MPDATA (in the limit of an infinite
constant background) which is not sign-preserving but maintains the solution slope at sign transitions for
variable-sign fields. The latter property and favourable efficacy [8] make the infinite-gauge a useful option for
the transport of general fields such as velocity components or temperature perturbations in flow solvers—the
infinite-gauge is standardly applied with the nonoscillatory option. Finally, when employed in the context
of flow solvers, the nonoscillatory MPDATA becomes highly effective as it qualifies for implicit large-eddy
simulation (ILES) of high-Reynolds number atmospheric flows [9, 10, 11, 12, 13]. An ILES option is of
significant practical interest, and this applies particularly to simulations with complex meshes where the
flow regularisation by means of explicit sub-grid scale turbulence models can be involving [14].

Originally, MPDATA was formulated using FD methods on structured rectilinear grids [2, 5]. The FD-
MPDATA can be combined with generalised curvilinear coordinates to accommodate complex boundaries
such as orography [8, 15, 16] or to implement adaptive moving meshes [17, 18]. Given the success of the
FD-MPDATA (see [19] for a comprehensive list of references), a significant later advancement is an edge-
based FV formulation of MPDATA for fully unstructured meshes [20, 3]. In contrast to the FD-MPDATA,
the FV-MPDATA enables arbitrary meshes consisting of various cell shapes, yielding greater flexibility and
added capabilities for complex domains and mesh adaptivity [21, 22, 12, 13]. The FD- and FV-MPDATA
feature applicability for a broad variety of geophysical/astrophysical [23, 24, 25] and engineering [21, 26]
problems.

MPDATA-based flow solvers come in various flavours depending on the focus of application. Histori-
cally, MPDATA grew out of the area of small- and meso-scale nonhydrostatic atmospheric dynamics, and
was primarily employed to solve soundproof (incompressible Boussinesq, anelastic, pseudo-incompressible)
equations on structured grids [5, 27, 19], with later generalisation to unstructured meshes [28, 29]. The un-
derlying soundproof integration schemes have a number of favourable features. Besides advantages of large
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time steps due to the absence of acoustic modes, solving directly for primitive variables (e.g. physical veloc-
ity components) while satisfying their conservation laws (i.e. momentum) enables the Lagrangian-Eulerian
congruence [4] and facilitates design of semi-implicit time stepping [30, 19]. This contrasts with solving
for conserved, density-type, variables standard in high-Mach number gas dynamics [26] or free-surface in-
compressible flows [31]. Solving for conserved variables impedes design of semi-implicit schemes due to
nonlinearities arising from weighting of the primitive variables with density.

Recently, the MPDATA-based integration schemes for soundproof equations were extended to the com-
pressible Euler equations for low-Mach number flows [25]. One particular feature of the developed integration
schemes is the 3D implicit temporal treatment of buoyant and acoustic modes—resulting in unconditional
stability, and hence large time steps (equivalent to soundproof models), with respect to these fast processes.
The reduced soundproof (anelastic, pseudo-incompressible) equations were shown to be significantly less
accurate for planetary scales (see Section 4.1 in [25]), which favours the compressible Euler equations for
global all-scale atmospheric modelling. While [25] focused on structured rectilinear grids, the present work
extends the earlier developments to arbitrary hybrid computational meshes. The key aspect is to reformulate
the established FV-MPDATA [32, 3] such that it operates only on face-normal vector components to the
dual cells of the unstructured mesh. The advanced FV-MPDATA straightforwardly achieves full compati-
bility with mass continuity, i.e. replicates the discrete compressible mass continuity equation wherever the
transported field is locally constant. This compatibility is crucial for the solution monotonicity and prevents
obscuring time tendencies of variables’ perturbations by the associated residual errors amplified with large
constant backgrounds [18]. Moreover, the advancement facilitates multiple error-compensative iterations of
the finite-volume MPDATA. The presented scheme is the basis of a novel finite-volume module (FVM) for
global all-scale atmospheric flows [33].

The paper is organised as follows. Section 2 summarises the established FV-MPDATA for the integration
of a homogeneous advective conservation law on unstructured meshes. Section 3 presents a truncation error
analysis for the FT discretisation of a generalised transport equation of fluid dynamics. This discussion
reveals alternative formulations of the FV-MPDATA for compressible atmospheric dynamics. The discrete
implementation of this scheme is then presented in Section 4. Section 5 outlines the low-Mach number
integration procedures for the compressible Euler equations developed in [25] and clarifies the importance of
the proposed formulation for arbitrary unstructured meshes. Global atmospheric flow simulations are then
utilised in Section 6 to compare the advanced FV-MPDATA to the established reference formulations for
mesoscale mountain wave and baroclinic instability benchmarks. Section 7 concludes the paper.

2. Basic finite-volume MPDATA

We begin by summarising the basic FV-MPDATA for solution of the homogenous conservation law

∂Gψ

∂t
+∇ · (Vψ) = 0 , (1)

where ψ = ψ(x, t) is a (non-diffusive) scalar field assumed nonnegative at time t = 0. The field V = Gẋ
represents the advector, where ẋ is the contravariant velocity in the underlying coordinate system. The
symbol G typically incorporates geometric and physical aspects by means of the Jacobian of coordinate
transformations and the fluid density, respectively. We assume G(x) to be time-independent in the present
section; a more general case is considered in the subsequent sections.

Employing the Gauss divergence theorem
∫

Ω
∇ · (Vψ) =

∫
∂Ω
ψV ·n, the discrete FT integral of (1) over

an arbitrary computational cell is written as [20, 3]

ψn+1
i = ψni −

δt

Gi Vi

l(i)∑
j=1

F⊥j Sj , (2)

where the index i refers to the node representing the cell with dual volume Vi, and this cell i is connected
via l(i) edges to its immediate neighbouring cells represented by nodes j; Sj describes both the face of the
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dual volume and its surface area; see the schematic provided in Fig. 1. The n and n+ 1 indices denote the
time levels, and δt = tn+1 − tn the time step increment. The symbol F⊥j represents the mean normal flux
of ψ through the surface Sj .

i jSj

Fig. 1: Schematic of the median-dual mesh in 2D. The edge connecting nodes i and j of the primary polygonal mesh pierces,
precisely in the edge centre, the face Sj shared by computational dual cells surrounding nodes i and j. Open circles represent
geometrical barycentres of the primary mesh, solid black lines mark the primary mesh and grey lines indicate dual cells with
control volumes Vi and Vj , respectively.

The first step in MPDATA represents the first-order accurate upwind scheme, which in case of (2) results
in the flux F⊥j approximated as

F⊥j
(
ψi, ψj , V

⊥
j

)
= [V ⊥j ]+ψi + [V ⊥j ]−ψj (3)

with the normal velocity V ⊥ ≡ n ·V evaluated at the surface Sj , and its positive and negative parts defined
as [

V ⊥
]+ ≡ max

[
0, V ⊥

]
,
[
V ⊥
]− ≡ min

[
0, V ⊥

]
. (4)

A modified equation analysis of the scheme for the solution ψ about the time level tn+1/2 and a point sj
along the edge connecting nodes i and j where the edge intersects the cell face Sj , shows the following form
of the truncation error [3]

Error = −1

2
|V ⊥j |

(
∂ψ

∂r

)∗
sj

(rj − ri) +
1

2
V ⊥j

(
∂ψ

∂r

)∗
sj

(ri − 2rsj − rj)

+
1

2
δt
V ⊥j
Gj
{V · ∇ψ}∗sj +

1

2
δt
V ⊥j
Gj
{ψ (∇ ·V)}∗sj +O(δr2, δt2, δrδt) , (5)

with the parametric description of the edge r(λ) = ri + λ(rj − ri), λ ∈ [0, 1]. The asterisk in lieu of the
time level in the error (5) symbolises either n, n + 1/2, or n + 1, as any of these temporal positions can
be considered without affecting the form or the order of the error [3]. The two O(δr) terms in (5) result
from the spatial upwind differencing. The second of these describes a ’mesh-skewness’ error that vanishes
with an appropriate discretisation [3]; the edge-based median-dual approach illustrated in Fig. 1 represents
one example assumed in the present work. The two O(δt) terms in the second line of (5) originate from
the temporal decentering of the upwind scheme. In the derivation of these O(δt) terms a time derivative
in the truncation error was expressed by spatial derivatives—a Cauchy-Kowalevski procedure [34] rooted

in the PDE (1) [3]. Given (5), MPDATA employs a pseudo-velocity Ṽ ⊥ := −ψ−1 × Error(δr, δt) in an
error-compensative upwind step using the preceding upwind solution. One corrective iteration suffices for
O(δr2, δt2) accuracy of the overall scheme 1. A detailed description of the implementation of (5) is provided
in [3], together with a discussion of the consistency, stability and accuracy of the FV-MPDATA.

1For example, convergence along constant Courant numbers warrants the O(δr2, δt2) accuracy of the scheme, where δr is a
spatial increment.
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3. MPDATA for conservation laws

The subsequent presentation discusses the MPDATA scheme for a generalised transport equation with
arbitrary rhs RΨ

∂GΨ

∂t
+∇ · (VΨ) = GRΨ , (6)

which accommodates typical conservation laws of many fluid dynamics problems [26, 25]; a particular ex-
ample is given by the low-Mach-number integration scheme for the compressible Euler equations described
in Section 5.

We follow earlier works (see [6] and references therein) and derive a two-time-level second-order-accurate
MPDATA integration scheme for the generalised transport equation (6) given V(x, t), G(x, t) and RΨ(x, t)
are known functions to at least O(δt2). The derivation assumes the temporal discretisation

Gn+1Ψn+1 −GnΨn

δt
+∇ ·

(
Vn+1/2Ψn

)
=
(
GRΨ

)n+1/2
. (7)

Expanding all fields in a second-order Taylor-series about the time level tn results in

∂GΨ

∂t
+∇ · (VΨ) = GRΨ − ∂2GΨ

∂t2
δt

2
−∇ ·

(
Ψ
∂V

∂t

δt

2

)
+
∂GRΨ

∂t

δt

2
+O(δt2) , (8)

or

∂GΨ

∂t
+∇ · (VΨ) = GRΨ +O(δt) . (9)

Differentiating (9) with respect to time gives

∂2GΨ

∂t2
+∇ ·

(
∂V

∂t
Ψ

)
+∇ ·

(
V
∂Ψ

∂t

)
=
∂GRΨ

∂t
+O(δt) , (10)

which upon insertion into (8) leads to the following modified equation of the discretisation (7)

∂GΨ

∂t
+∇ · (VΨ) = GRΨ +∇ ·

(
V
∂Ψ

∂t

δt

2

)
+O(δt2) . (11)

Interpretation and evaluation of theO(δt) truncation error term in (11) is typically performed by representing
the temporal derivative with (9) written as

∂Ψ

∂t
= −Ψ

G

∂G

∂t
− 1

G
V · ∇Ψ− Ψ

G
∇ ·V +RΨ +O(δt) , (12)

which leads to the modified equation

∂GΨ

∂t
+∇ · (VΨ) = GRΨ −∇ ·

{
δt

2
V

[
1

G
(V · ∇Ψ) +

Ψ

G

(
∂G

∂t
+∇ ·V

)]}
+∇ ·

(
VRΨ δt

2

)
+O(δt2) , (13)

where the O(δt) error is expressed in terms of spatial derivatives of Ψ—the aforementioned Cauchy-
Kowalevski procedure. Hence, a fully second-order-accurate two-time-level integration scheme can be at-
tained by compensating in (7), to at least O(δt2), for the error on the rhs of (13). Two distinct components
of the O(δt) errors occur on the rhs of (13). The terms in the curly brackets result from the uncentred
temporal differencing of the homogeneous version of (7), i.e. with RΨ ≡ 0. Consequently, these terms are as-
sociated solely with advection and represent the basis for designing advanced MPDATA advective transport
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schemes below. The error term ∼ 0.5 VRΨδt couples advection and forcing. An effective way of compensat-
ing the O(δt) error associated with the forcing RΨ is by assuming RΨ|n+1/2 = 0.5 (RΨ|n +RΨ|n+1), where

RΨ|n+1 is known to at least O(δt2), and advecting the auxiliary field Ψ̃n ≡ Ψn + 0.5 δtRΨ|n (instead of

Ψn alone) [4]. Moreover, the procedure of advecting Ψ̃n makes this Eulerian solution approach congruent
to two-time-level semi-Lagrangian schemes [4, 5].

Common to all MPDATA formulations so far is the basic form of the modified equation given in (13),
i.e. the temporal truncation error associated with advection composed in a term containing the advective
derivative ∼V · ∇Ψ and the flow divergence ∼∇ ·V. This form is particularly beneficial when the second
term in the square brackets on the rhs of (13) vanishes identically, such as in soundproof systems [25]. In
the present work, we consider alternative forms to (13) for designing MPDATA. Simply rewriting (12) as

∂Ψ

∂t
= −Ψ

G

∂G

∂t
− 1

G
∇ · (VΨ) +RΨ +O(δt) , (14)

upon insertion into (11), gives

∂GΨ

∂t
+∇ · (VΨ) = GRΨ −∇ ·

{
δt

2
V

[
1

G
∇ · (VΨ) +

Ψ

G

∂G

∂t

]}
+∇ ·

(
VRΨ δt

2

)
+O(δt2) . (15)

The modified equation (15) is mathematically equivalent to (13) but inspires a different numerical approxi-
mation. The term ∼ 0.5 VRΨδt is identical, and the O(δt) error terms related solely to advection are again
given in the curly brackets, but here composed into a term containing the generic flux divergence ∼∇·(VΨ)
and ∼ ∂G/∂t.

As explained in Section 2, the pseudo-velocity in the error-compensative steps of MPDATA is normal
to the dual cell face Ṽ ⊥ := −Ψ−1 × Error(δr, δt). The Error(δr, δt) is composed of the spatial O(δr) and
temporal O(δt) truncation errors of the upwind scheme. While (13) and (15) expose the temporal truncation
errors, the respective spatial truncation errors associated with the upstream differencing always assume the
form as given by the first two terms on the rhs of (5). The form of the O(δt) error with respect to advection
in (15) turns out to be advantageous for unstructured meshes. When constructing MPDATA based on (15),
the resulting pseudo-velocity operates only with normal components to the dual cell face V ⊥, as all vectors
V in (15) appear in connection with divergence operators. In addition, the O(δr) error terms from spatial
upwind differencing also contain only face-normal components; see (5) and the discrete implementations
provided in Section 4. In contrast, the MPDATA pseudo-velocity based on (13) additionally requires the
full vector V in order to evaluate the scalar product of the advective derivative ∼V · ∇Ψ. In particular, for
applications with ∂G/∂t ≡ 0 and significant flow divergence ∇ ·V, such as in gas dynamics [26], the form
(15) also results in a more compact pseudo-velocity expression than (13).

The FV-MPDATA operating only on face-normal velocity components becomes especially useful in the
context of the low-Mach-number semi-implicit integration scheme for the compressible Euler equations of
[25], which is outlined in Section 5. An essential procedure in this integration scheme is that the MPDATA
solution of the mass continuity equation, besides updating ρ, accumulates the normal mass fluxes V ⊥ρ
through the dual cell face used in the computation of the mass flux divergence. Subsequently, these normal
mass fluxes are employed in the advective transport of all primitive variables. Consequently, FV advective
transport of these primitive variables is fully compatible with the (discrete) mass continuity. Due to the
nature of the FV approach—i.e. relying on the Gauss divergence theorem—no information is available for
the face-tangential mass flux. Therefore, unless rectilinear grids are employed as in [25], these tangential
components are missing for evaluation of the pseudo-velocity in the established FV-MPDATA formulations
based on (13). Although the missing face-tangential components could in principle be estimated from normal
components of surrounding cells, such an elaborate approach might significantly degrade the efficacy of the
scheme. These issues are absent if the FV-MPDATA can be based on (15), because the provision of the
accumulated face-normal mass fluxes from mass continuity alone is sufficient to achieve fully compatible
δt O(δr2, δt2) accurate solutions for arbitrary meshes.

Another virtue of (15) is that it facilitates multiple error-compensative iterations of MPDATA on arbi-
trary meshes. Basically, one corrective step suffices for O(δr2, δt2) accuracy of MPDATA and this is what is
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most often used in practice. However, multiple corrective iterations can significantly increase solution qual-
ity for certain applications with rectilinear computational grids [5], which also makes this a desirable option
for arbitrary meshes. As can be seen from discrete implementations provided in Section 4, any iterations
subsequent to the first corrective step involve the pseudo-velocity of the previous iteration [5]. Again, the
pseudo-velocity is always normal to the dual cell face, and thus lack face-tangential components needed with
(13) for non-rectilinear meshes. Therefore, the MPDATA operating solely with face-normal components is
self-contained for multiple error-compensative iterations, and circumvents the problematic construction of
the face-tangential components from face-normal components for each corrective iteration.

4. Implementation

Here we present the discrete implementation of the advanced FV-MPDATA following our modified equa-
tion analysis of the previous section. We consider a hybrid computational mesh, unstructured in the hori-
zontal and structured in the vertical, which is of particular relevance to global atmospheric modelling [33].
While the unstructured horizontal mesh is an effective way to achieve quasi-uniform resolution over the sur-
face of the sphere and optionally local mesh adaptivity, the structured grid benefits direct preconditioning of
elliptic operators in the stiff vertical direction, important for efficient integration of the governing equations
with implicit time stepping. The subsequently presented discrete formulae of the hybrid mesh apply to a
fully unstructured mesh in 3D by simply neglecting the contributions pertaining to the structured vertical
grid.

The numerical integral of the homogeneous generalised transport equation (6) with RΨ ≡ 0 can be
written in the functional form as [33]

Ψn+1
i = Ai(Ψ

n,Vn+1/2, Gn, Gn+1) (16)

= χ
n+1/2
i Ãi(Ψ

n,Vn+1/2, Gn, Gn+1)

= χ
n+1/2
i Ψ

Nη
i ,

where i = (k, i) is the vector index marking the node positions k and i of the vertical and horizontal
computational mesh, respectively, and the factor

χn+1/2 ≡ Gn

Gn+1
(17)

results from the time-dependent G(x, t). Given (16), the operator Ãi iterates for η = 1,Nη the discrete form

Ψ
(η)
k,i = Ψ

(η−1)
k,i − δt

Gnk,i Vi

l(i)∑
j=1

F⊥k,j

(
Ψ

(η−1)
k,i ,Ψ

(η−1)
k,j , V ⊥k,j

(η)
)
Sj (18)

− δt

Gnk,i δz

{
F zk+1/2,i

(
Ψ

(η−1)
k,i ,Ψ

(η−1)
k+1,i , V

z
k+1/2,i

(η)
)

−F zk−1/2,i

(
Ψ

(η−1)
k−1,i ,Ψ

(η−1)
k,i , V zk−1/2,i

(η)
)}

,

which formally combines a horizontal FV with a vertical flux-form FD approach [33, 35]. As in Section 2,
further parameters that enter (18) are the dual cell volume Vi, the dual cell face area Sj , the vertical mesh
spacing δz, and the time step δt. The second term on the rhs of (18) represents the horizontal divergence
of the advective upwind flux F⊥k,j normal to the Sj face of the dual cell surrounding node i as

F⊥k,j
(
Ψk,i,Ψk,j , V

⊥
k,j

)
=
[
V ⊥k,j

]+
Ψk,i +

[
V ⊥k,j

]−
Ψk,j , (19)

where positive
[
V ⊥
]+

and negative
[
V ⊥
]−

parts coincide with outflow and inflow from the ith dual cell.
The third term on the rhs of (18) represents the vertical divergence of the advective upwind flux F z through
the faces of the prismatic cells

F zk+1/2,i

(
Ψk,i,Ψk+1,i, V

z
k+1/2,i

)
=
[
V zk+1/2,i

]+
Ψk,i +

[
V zk+1/2,i

]−
Ψk+1,i , (20)
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where here [V z]
+

and [V z]
−

involve Ψ from the nodes below and above, respectively. A fixed bottom-to-top
orientation of the prismatic cells is assumed in the vertical, therefore positive/negative V z at the face k+1/2
above the node k correspond to outflow/inflow, and vice versa at the face k − 1/2 below node k.

For η = 1, the scheme (18) is then initialised as

Ψ(0) ≡ Ψn , V ⊥
(1) ≡ V ⊥, n+1/2 , V z(1) ≡ V z, n+1/2 , (21)

with V ⊥, n+1/2 and V z(1) ≡ V z, n+1/2 to be O(δt2) estimates at the intermediate time level tn+1/2; see the
subsequent Section 5. For the corrective iterations η > 1 the updated solution field Ψ is transported with
the error-compensative pseudo-velocities which are of the functional dependency

V ⊥
(η+1)

= V ⊥
(
V ⊥

(η)
, V z(η), Ψ̌(η), Gn

)
, (22)

V z(η+1) = V z
(
V ⊥

(η)
, V z(η), Ψ̌(η), Gn

)
, (23)

Ψ̌ ≡ Gn

Gn+1
Ψ . (24)

The weighted field Ψ̌ (24) in the pseudo-velocities (22) and (23) is crucial for the solution monotonicity under
the time-dependent G(x, t) [18]. For Nη = 1, the algorithm in (18)-(20) describes the first-order accurate
upwind advection scheme. MPDATA achieves second-order accurate solutions with the subsequent corrective
steps η > 1. Following the truncation error analysis above in Section 3, the novel error-compensative pseudo-
velocities employed for η > 1 are formulated in the horizontal (22) as

V ⊥k,j
(η+1)

=
1

2
|V ⊥k,j

(η)|

 |Ψ̌(η)
k,j | − |Ψ̌

(η)
k,i |

|Ψ̌(η)
k |

ij

+ ε

− δt

2
V ⊥k,j

(η) 1

Gnk
ij

[∇ · (V(η)|Ψ̌(η)|)
]
k〈

|Ψ̌(η)|
〉
k

+ ε

ij

+
∂Gk
∂t

ij
 , (25)

and in the vertical (23) as

V zk+1/2,i
(η+1) =

1

2
|V zk+1/2,i

(η)|

 |Ψ̌(η)
k+1,i| − |Ψ̌

(η)
k,i |

|Ψ̌(η)
i |

k+1/2

+ ε

 (26)

−δt
2
V zk+1/2,i

(η) 1

Gni
k+1/2

[∇ · (V(η)|Ψ̌(η)|)
]
i〈

|Ψ̌(η)|
〉
i
+ ε

k+1/2

+
∂Gi
∂t

k+1/2
 .

The horizontal pseudo-velocity expression (25) combinesO(δr) andO(δt) truncation error compensations
in the first and second term, respectively. The form of the O(δr) error is standard [3] and dispenses with
a contribution from ’mesh skewness’ that is zero for the considered median-dual discretisation; cf. Eq. (5).
The pseudo-velocity (25) is defined at the dual cell face, and the overline operator combines the values from

two neighbouring nodes i and j as φ
ij

= 0.5 (φi+φj) for any scalar quantity φ. The vertical pseudo-velocity
expression (26) similarly combines compensations for O(δz) and O(δt) truncation errors, and the values at

the cell face are given as φ
k+1/2

= 0.5 (φk + φk+1); the expression for V zk−1/2,i is defined analogously to
V zk+1/2,i .

The O(δt) error terms in (25) and (26) derive from the modified equation (15). Here, the dominant
contribution is from the generic flux divergence which we evaluate at node (k, i) as

[∇ · (VΨ)]k,i =
1

Vi

l(i)∑
j=1

C⊥k,j
(
Ψk,i,Ψk,j , V

⊥
k,j

)
Sj (27)

+
1

δz

{
Czk+1/2,i

(
Ψk+1,i,Ψk,i, V

z
k+1/2,i

)
−Czk−1/2,i

(
Ψk,i,Ψk−1,i, V

z
k−1/2,i

)}
,
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with centred fluxes in the horizontal

C⊥k,j
(
Ψk,i,Ψk,j , V

⊥
k,j

)
=

1

2
V ⊥k,j (Ψk,i + Ψk,j) (28)

and in the vertical direction

Czk+1/2,i

(
Ψk+1,i,Ψk,i, V

z
k+1/2,i

)
=

1

2
V zk+1/2,i (Ψk+1,i + Ψk,i) , (29)

again with Czk−1/2,i defined analogously. The second contribution to the O(δt) term is independent of Ψ
and can be precomputed at the nodes as

∂Gk,i
∂t

=
Gn+1
k,i −Gnk,i

δt
. (30)

As in previous FD and FV formulations of MPDATA [5, 3, 20], normalisation of the truncation error
expressions with ∼Ψ is implemented such as to assure the boundedness of the pseudo-velocities (25) and
(26), and hence the stability of the scheme. Given strictly nonnegative (or nonpositive) Ψ, this is achieved
by constructing the normalisation in the denominator as a compound of the same elements as involved in the
respective discrete operator of the numerator; it can be readily seen for the differencing Ψ−1∂Ψ along the
edges in the O(δr) error compensation terms of (25), respectively in the O(δz) terms of (26). Accordingly,
we define 〈Ψ〉 in the denominator of the temporal O(δt) error compensation terms as an average of all Ψ’s
involved in the discrete flux divergence operator ∇ · (VΨ). As the involved Vη from the previous iteration

is bounded, this ensures boundedness for the entire expression 〈Ψ〉−1∇ · (VΨ). Addition of the ε in the
denominators, which denotes a small constant such as 10−10, ensures validity of the formulae (25) and
(26) when the Ψ’s become zero. The use of absolute values |Ψ| in the pseudo-velocity expressions (25)
and (26) conveniently extends stability and applicability of the scheme to fields Ψ of variable sign [5, 3].
The advanced scheme (16)-(30) naturally permits any number of error-compensative iterations Nη > 1 on
arbitrary meshes, but Nη ≡ 2 in (18) suffices for second-order O(δr2, δt2) accuracy.

The described scheme is fully amenable to common MPDATA extensions addressed in Section 1. Most
notably, these extensions include the nonoscillatory option that limits the pseudo-velocities to ensure mono-
tone solutions [7, 3] and the infinite-gauge variant. The scheme (16)-(30) reduces to the two-pass (i.e.Nη ≡ 2)
infinite-gauge by replacing at the second iteration η = 2 the first two arguments of the upwind flux functions
in (18) with unity, and the pseudo-velocity expressions (25) and (26) with

V ⊥k,j
(η+1)

=
1

2
|V ⊥k,j

(η)|
(

Ψ̌
(η)
k,j − Ψ̌

(η)
k,i

)
− δt

2
V ⊥k,j

(η) 1

Gnk
ij

([
∇ · (V(η)Ψ̌(η))

]
k

ij
+ Ψ̌

(η)
k

ij ∂Gk
∂t

ij
)

(31)

and

V zk+1/2,i
(η+1) =

1

2
|V zk+1/2,i

(η)|
(

Ψ̌
(η)
k+1,i − Ψ̌

(η)
k,i

)
(32)

−δt
2
V zk+1/2,i

(η) 1

Gni
k+1/2

([
∇ · (V(η)Ψ̌(η))

]
i

k+1/2
+ Ψ̌

(η)
i

k+1/2 ∂Gi
∂t

k+1/2
)
.

5. Numerical integration of the compressible Euler equations for low Mach number flows

Following the formalism of [25, 33], the compressible Euler equations for inviscid, adiabatic, rotating
stratified atmospheric flows are written as

∂Gρ
∂t

+∇ · (vGρ) = 0 , (33a)

∂Gρθ′

∂t
+∇ · (vGρ θ′) = −Gρ G̃Tu · ∇θa , (33b)
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∂Gρu
∂t

+∇ · (vGρu) = Gρ
(
− θ

θ0
G̃∇ϕ− g

θ′

θa
− f ×

(
u− θ

θa
ua

)
+M′(u,ua, θ/θa)

)
, (33c)

which describe the conservation laws of mass, entropy and momentum, respectively. Dependent variables
in (33) are density ρ, potential temperature perturbation θ′, three-dimensional physical velocity vector
u, and ϕ := cpθ0π

′ where π′ is the Exner pressure perturbation. The perturbations (indicated by the
primes) are with respect to a balanced ambient state (denoted by subscript ”a”) [19, 25]. The subscript
”0” appearing with θ0 and the pressure p0 below in (34) refers to constant reference values, whereas cp is
the specific heat at constant pressure. On the rhs of the momentum equation (33c) is the gravity vector
g ≡ (0, 0,−g), the Coriolis parameter f , and M′ subsumes the metric forces due to the curvature of the
sphere; see Appendix A of [33] for the explicit expressions. Furthermore, the governing equations (33) are
formulated with respect to a geospherical coordinate system and a generalised terrain-following vertical
coordinate which may optionally be time-dependent. Associated symbols are the transformed curvilinear
coordinates x, the 3D nabla operator ∇ with respect to x, the Jacobian G of the coordinate transformations
(i.e. the square root of the determinant of the metric tensor), a matrix of metric coefficients G̃, its transpose

G̃T , and the contravariant velocity v = ẋ = G̃Tu + vg where vg ≡ ∂x/∂t is the mesh velocity; see [17, 18]
for discussion.

In [25], the authors described several two-time-level integration approaches for the compressible Euler
equations (33). These approaches include explicit acoustic integration where the thermodynamic pressure
is computed straightforwardly using the ideal gas law

ϕ = cpθ0

[(
Rd
p0
ρθ

)Rd/cv
− πa

]
, (34)

with Rd and cv symbolising the gas constant and the specific heat at constant volume, respectively. More
relevant though are the efficient large-time-step semi-implicit integrators that provide unconditional stability
with respect to fast buoyant and acoustic modes described further below. In either approach of [25], two-
time-level integration of the compressible Euler equations (33) commences with the mass continuity equation
(33a) as

ρn+1
i = Ai

(
ρn, (vG)

n+1/2
,Gn,Gn+1

)
, (35)

where the operator Ai symbolises the MPDATA advection scheme (16). Arguments of Ai in (35) are the

density ρn, the advector (vG)
n+1/2

, and the Jacobian G at tn and tn+1. Given the provision of a first-order

accurate estimate of the advector (vG)
n+1/2

at the intermediate time level tn+1/2, 2 Ai provides a second-
order accurate solution for ρn+1 at the spatial position xi. In addition to updating ρ, the scheme (35)
also accumulates the face-normal advective mass fluxes (v⊥Gρ)n+1/2 in 3D employed in the computation of
the discrete mass flux divergence in (18). These advective mass fluxes and the updated density ρn+1 are
subsequently applied in the integration of all other model conservation laws.

Denoting each of the other dependent variables as Ψ = θ′,u, v,w and subsuming the respective rhs forcing
terms as RΨ, each of the governing equations (33b)-(33c) can compactly be written as

∂GρΨ

∂t
+∇ · (vGρΨ) = GρRΨ . (36)

Referring to the modified equation analysis of Section 3, a two-time-level fully second-order-accurate semi-
implicit integration scheme for the generic conservation law (36) is given as

Ψn+1
i = Ai

(
Ψ̃n, (v⊥Gρ)n+1/2, (Gρ)n, (Gρ)n+1

)
+ 0.5 δtRΨ|n+1

i ≡ Ψ̂i + 0.5 δtRΨ|n+1
i (37)

2Standardly, to obtain (vG)n+1/2 we use linear extrapolation of vG from the tn−1 and tn time levels; see [18] for a description
that also accounts for time-dependent (i.e. moving) curvilinear coordinates.
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where advection of the auxiliary field Ψ̃n ≡ Ψn + 0.5 δtRΨ|n compensates for the O(δt) error proportional
to the rhs RΨ in (13) and (15) [4]. The operator A in (37) assumes the advector defined by the face-normal
mass fluxes (v⊥Gρ)n+1/2 accumulated in the integration of the mass continuity (35), along with (Gρ)n and
(Gρ)n+1, thereby ensuring full compatibility with mass continuity.

The integration of the compressible equations (33) proceeds by substituting the scheme (37) for θ′ into
the buoyancy term of the scheme (37) for u, and inverting the overall discrete system 3. This results in a
closed-form expression for the velocity update u on the rhs of which the pressure gradient term is retained.
Omitting spatial and temporal indices, the latter can compactly be written as

u = L−1

[̂̂u(û, θ̂′,u?, θ?
)
− 0.5δt

θ?

θ0
G̃∇ϕ

]
≡ ˇ̌u−C∇ϕ , (38)

where ̂̂u represents the explicit part depending on contributions from advection and the other nonlinear terms
which are lagged behind and executed in an outer iteration (the variables associated with the nonlinear terms
are denoted by the superscript ?), while L indicates the linear operator acting on u.

The large-time-step enhancement for low Mach number flows continues with formulation of a 3D im-
plicit boundary value problem for the pressure variable ϕ [25]. The employed constraint derives from the
evolutionary form of the equation of state (34), leading to

∂Gρϕ
∂t

+∇· (vGρϕ) = Gρ
(
−Rd
cv

φ

G
∇ · (G G̃Tu)− 1

Gρ
∇ · (Gρ G̃Tuφa) +

φa
Gρ
∇ · (Gρ G̃Tu)

)
≡ GρRϕ , (39)

where φa ≡ cpθ0πa and φ ≡ φa + ϕ. An O(δt2) integration of (39) with an Euler backward scheme in the
spirit of (37) is given as

ϕn+1
i = Ai

(
ϕn, (v⊥Gρ)n+1/2, (Gρ)n, (Gρ)n+1

)
+ δtRϕ|n+1

i ≡ ϕ̂i + δtRϕ|n+1
i , (40)

which upon elimination of (38) yields the elliptic Helmholtz equation [25, 33]

0 = −
3∑
`=1

(
A?`
ζ`
∇ · ζ` G̃T (ˇ̌u−C∇ϕ)

)
−B?(ϕ− ϕ̂) . (41)

The summation in (41) is over the three divergence operators of the implicit forcing Rϕ on the rhs of (39),
respectively (40), while the coefficients A?, B? and ζ` are defined accordingly. The 3D boundary value
problem (41) is solved iteratively using a bespoke preconditioned Generalised Conjugate Residual approach;
see [28] for a recent discussion and [36, 37] for tutorials. The dependence of the coefficients A? and B? on
ϕ in (41) is again lagged behind. The reader is referred to [25, 33] for further details about the integration
procedure.

The developments of [25] focused on atmospheric flow simulations with rectilinear computational grids.
If the mesh becomes non-rectilinear, MPDATA based on the modified equation (13) lacks the face-tangential
velocity required to specify the advective term ∼V · ∇Ψ, as only the face-normal vector components
(v⊥Gρ)n+1/2 are provided in (37) and (40) compatible with the discrete mass continuity (35). There-
fore, the alternative FV-MPDATA developed in the present work is important to extend the large-time-step
semi-implicit integration for the compressible Euler equations of [25] from rectilinear to arbitrary hybrid
meshes.

Notably, the current MPDATA advancement is not required with the semi-implicit integration schemes
for soundproof (anelastic, pseudo-incompressible) equations [3, 28, 12, 25, 13, 33]. Soundproof equations use

a reduced diagnostic form of the mass continuity ∇· (Gρ G̃Tu) = 0 where ρ is a prescribed time-independent
density. Consequently, this obviates the integration of the prognostic mass continuity equation and reduces
the computation of the MPDATA advector to a soundproof predictor, typically linear extrapolation of v
from tn−1 and tn to obtain (vGρ)n+1/2, which then enters in (37). As the extrapolated mass flux (vGρ)n+1/2

involves the full velocity vector v, in contrast to only the face-normal component v⊥, the FV-MPDATA
based on the classical form (13), also (5), is by itself completely specified for arbitrary meshes.

3Inversion is facilitated by the colocated arrangement of all variables and coefficients.
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X
Y

ZFig. 2: The employed primary mesh associated with the octahedral reduced Gaussian grid in computational (left) and physical
(right) space, illustrated here using 16 latitudes between pole and equator (’O16’).

6. Results of numerical simulations

We validate the advanced FV-MPDATA by means of comparison to reference solutions. First we compare
the scheme to the established FV-MPDATA formulation for the integration of soundproof equations common
in small- and mesoscale dynamics [28, 29]. This comparison is conducted in Section 6.1 for a mesoscale
mountain wave using the small planet configuration. Section 6.2 applies the semi-implicit scheme for the
compressible Euler equations using the advanced FV-MPDATA to reproduce reference solutions of a global
baroclinic instability benchmark on a real-sized planet.

All numerical simulations use the median-dual FV mesh developed about the nodes of the octahedral
reduced Gaussian grid [33]. The associated primary mesh is composed of triangular and quadrilateral
elements as illustrated in Fig. 2—the dual mesh associated with this primary mesh consists of general
polygons (not shown). The octahedral reduced Gaussian grid provides quasi-uniform resolution over the
spherical surface in physical space 4.

6.1. Mesoscale mountain waves

We consider the problem of orographically-forced internal gravity waves in an atmosphere with vertical
wind shear [38]. Because we are concerned with global atmospheric modelling, we use the small-planet
configuration where the radius of the spherical Earth is reduced in order to achieve nonhydrostatic resolutions
at relatively low computational cost [39]. In the specification of the setup we closely follow [33] but specify
the radius of the spherical planet to r0 = 40 km. A three-dimensional hill with a maximum height of
h0 = 500 m, an elliptical horizontal cross section and the classical ”witch of Agnesi” vertical profile is
centred at the equator. The associated surface height field as a function of latitude φ and longitude λ is
given as

h(φ, λ) = h0

(
1 + l2λ/L

2
λ + l2φ/L

2
φ

)−1
, (42)

with lλ = r0 cos−1[sin2(φc) + cos2(φc) cos(λ − λc)] and lφ = r0 cos−1[sinφc sinφ + cosφc cosφ], where
the mountain half-width is Lλ = 2.5 km, and the meridional extent of the ellipse is defined by Lφ =
|L2
λ − L2

f |1/2. The centre position of the mountain is (λc, φc) = (3π/2, 0), and the focus point distance is

Lf = r0 cos−1[sinφd sinφc + cosφd cosφc cos(λd − λc)] with (λd, φd) = (3π/2, π/3). Ambient flow con-
ditions describe a linearly sheared zonal wind profile (ua, va, wa) = (U0 (1 + Cz) cosφ, 0, 0) below the
tropopause located at a height of 10.5 km and a constant zonal wind (ua, va, wa) = (U0, 0, 0) above, where
U0 = 10 m s−1, C = 2.5× 10−4 m−1. An isothermal ambient state with T0 = g2/(cpN

2) and constant sta-
bility N = 0.01 m s−1 defines the thermodynamic structure of the atmosphere. For the applied small planet

4The octahedral reduced Gaussian grid is also suitable for spherical harmonics transforms applied in spectral numerical
weather prediction models, and using a common unified grid facilitates interoperability of the different numerical solution
approaches in future forecasting systems [33].
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Simulation Equations FV-MPDATA

PI-ADV pseudo-incompressible established form based on Eq. (13)
PI-DIV pseudo-incompressible advanced form based on Eq. (15)
CMP-DIV compressible Euler advanced form based on Eq. (15)

Table 1: Summary of the three different model configurations used to validate the proposed FV-MPDATA. Two different
governing equations—pseudo-incompressible (soundproof) equations or compressible Euler equations—solved by the respective
large-time-step integration schemes with either the established or advanced FV-MPDATA formulations.

PI-ADV PI-DIV CMP-DIV

L2 0.0 2.24 · 10−7 1.63 · 10−6

Linf 0.0 6.98 · 10−3 2.69 · 10−2

Table 2: Mountain-wave simulation after 2 h: Global L2 and Linf error norms in terms of the vertical velocity difference (m s−1)
between the reference PI-ADV and all other model configurations in Table 1.

configuration, the governing equations assume the shallow-atmosphere approximation and the planetary
rotation is set to zero.

The simulations were performed with the computational mesh developed about the nodes of the octahe-
dral reduced Gaussian grid of size O90, cf. Fig. 2, which results in a quasi-uniform horizontal mesh spacing
of about 700 m. This was combined with 60 model levels in the vertical, stretched from a minimum spacing
of 110 m near the ground to 2250 m to the model top located 59 km. The time step was continuously
adapted such that the maximum advective Courant number is 0.95—the average time step over the 2 h sim-
ulations was about 8.5 s. Three different model configurations summarised in Table 1 were used to validate
the advanced FV-MPDATA against the reference given by the established FV-MPDATA. All results were
obtained with the nonoscillatory infinite-gauge variant of MPDATA. No explicit diffusion or filtering was
employed.

Figure 3 shows horizontal and vertical cross sections of vertical velocity after 2 h of simulation. Results
produce the correct nonhydrostatic flow solution of a trapped, horizontally-propagating gravity wave with
wavelength ≈ 14 km (20◦ of longitude) in the lee of the hill—this trapped wave is characteristic of the
sheared ambient flow [38]. Some wave energy also propagates vertically through the tropopause, resulting
in a weaker stratospheric wave of a longer wavelength. Solutions for the two different model configurations
shown in Fig. 3, the reference PI-ADV and newly proposed CMP-DIV, are essentially indistinguishable. This
is corroborated by the complementary Fig. 4, which directly aligns the solutions of all model configurations
given in Table 1 by means of the vertical velocity along the centreline of the trapped lee wave. Together
with the difference norms to the reference shown in Table 2, the results demonstrate that the advanced
FV-MPDATA for both pseudo-incompressible (PI-DIV) and the compressible Euler equations (CMP-DIV)
maintains fully the accuracy of the established FV-MPDATA for pseudo-incompressible equations (PI-
ADV). The runtime difference between the PI-DIV and PI-ADV (i.e. both solving the pseudo-incompressible
equations) for the 2 h simulation was below 0.3 %, thus the cost of the established and advanced FV-
MPDATA can be considered identical.

6.2. Global baroclinic instability benchmark

We further verify our MPDATA advancement using a global baroclinic instability benchmark problem,
and follow the setup as described in the 2016 edition of DCMIP (Dynamical Core Model Intercomparison
Project) [40]. The baroclinic instability benchmark problem resembles the evolution of natural weather
systems in the mid-latitudes of the global atmosphere. As the emphasis in the present paper is on the basic
numerical advancements we focus on a dry adiabatic flow. The adopted setup defines two mid-latitude zonal
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(a) pseudo-incompressible equations with established FV-MPDATA (PI-ADV)

(b) compressible Euler equations with advanced FV-MPDATA (CMP-DIV)

Fig. 3: Mountain-wave simulation after 2 h: vertical velocity w (m s−1) in a horizontal cross section [60◦, 240◦] × [-90◦, 90◦] at
height 3.5 km (left panel) and in zonal-height cross section [60◦, 240◦] × [0, 25 km] along the equator (right panel) for model
configurations (a) PI-ADV and (b) CMP-DIV given in Table 1. The simulations were performed with the O90 mesh, cf. Fig. 2,
which corresponds to a grid spacing of 1◦ along the equator.

Fig. 4: Mountain-wave simulation after 2 h: vertical velocity w (m s−1) along the equatorial line [0◦, 360◦] at height 3.5 km,
proceeding through the centreline of the trapped lee wave depicted in Fig. 3. Results are for the three different model
configurations in Table 1.
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jets, in thermal wind balance with the meridional temperature distribution, which are symmetric about
the equator [41]. Here, the setup and model consistently assume the deep-atmosphere compressible Euler
equations. A local zonal velocity perturbation in the form of a simple exponential bell (tapered to zero in
the vertical) excites the instability, leading to eastward propagating Rossby modes. After about 15 days of
integration, the flow in the region of the northerly jet becomes turbulent. We show simulation results at
day 10, when the baroclinic wave has broken and formed sharp fronts in the lower troposphere. Furthermore,
we present kinetic energy spectra deep in the turbulent flow stage at day 30.

All simulations were performed with the large-time-step semi-implicit integration scheme for the com-
pressible Euler equations using the advanced FV-MPDATA—the corresponding model configuration in Ta-
ble 1 is CMP-DIV. Again, results were obtained with the nonoscillatory infinite-gauge variant of MPDATA.
Here, results are mainly discussed for the O180 octahedral reduced Gaussian grid, which corresponds to
quasi-uniform mesh spacing of about 55 km, but we also applied larger grid sizes of up to O720 for the
analysis of kinetic energy spectra. The vertical mesh consisted of 30 stretched levels, where the spacing
varied from a minimum of 120 m near the surface to 2250 m near the model top located at 30 km. The
variable time step targeted the maximum advective Courant number 0.95—the time step for the O180 grid
varied from 1200 s during the first 7 days to somewhat under 200 s towards the end of the 30 day simulation.
Again, no explicit diffusion or filtering was employed.

Figure 5 depicts the fields of surface pressure, as well as both temperature and relative vorticity on
the 850 hPa pressure surface 5. The vertical structure of the baroclinic wave is revealed by Fig. 6 that
displays the pressure perturbation from the initial pressure distribution at the same time as Fig. 5. Overall,
the simulation results depict the common structure of idealised cyclo- and frontogenesis. Figure 7 provides
instantaneous surface kinetic energy spectra after 30 days of simulation, for various octahedral grid sizes
from O90 to O720. The spectra indicate the effective resolution relative to the grid spacing, and highlight
the ILES property of MPDATA near the grid scale.

7. Conclusions

The proposed advancement of the finite-volume MPDATA enables large-time-step semi-implicit inte-
gration of the compressible Euler equations on arbitrary hybrid computational meshes. This scheme is
important for the prediction of high-Reynolds low-Mach number global atmospheric flows. The key aspect
of the MPDATA advancement is to use freedom in the underlying forward-in-time truncation error analysis
to formulate the error-compensative pseudo-velocity such that it operates solely on face-normal vector com-
ponents to the dual cells, consistent with the flux-divergence of the governing conservation law. This is in
contrast to previous MPDATA formulations which require the full velocity vector including face-tangential
components to specify the pseudo-velocity. The resulting finite-volume MPDATA achieves full compatibility
with the discrete finite-volume representation of the compressible mass continuity which is imperative for
high solution quality. Another virtue, independent of the integration of the compressible Euler equations,
is the straightforward option of multiple error-compensative iterations on arbitrary meshes.

Discrete implementations of the advanced finite-volume MPDATA were presented in a hybrid horizontally-
unstructured vertically-structured computational mesh formulation bespoke to 3D atmospheric dynamics in
thin spherical (or spheroidal) shells—the discrete formulae for fully unstructured meshes in 3D are obtained
simply by neglecting in the given expressions the index pertaining to the structured vertical discretisation.
In addition to the complexities associated with the horizontally-unstructured vertically-structured mesh for-
mulation, the presented finite-volume scheme rigorously accounts for (optionally time-dependent) curvilinear
coordinates.

Numerical simulations of 3D atmospheric flows in hydrostatic and nonhydrostatic regimes confirmed the
efficacy of the proposed finite-volume MPDATA on unstructured meshes. First, the scheme fully retains
the accuracy and efficiency of established finite-volume MPDATA formulations in the context of soundproof

5The relative vorticity on the 850 hPa pressure surface is obtained by computing the relative vorticity on model levels
(consistent with the model metrics [42]) followed by linear interpolation to the pressure level.
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(a) Surface pressure (hPa)

(b) 850 hPa Temperature (K)

(c) 850 hPa Relative Vorticity (s−1)

Fig. 5: Baroclinic instability benchmark at day 10: Horizontal cross sections [0◦, 240◦] × [0◦, 90◦] of surface pressure (hPa),
850 hPa temperature (K), and 850 hPa relative vorticity (s−1). Results are from the large-time-step semi-implicit integration
of the compressible Euler equations with the advanced FV-MPDATA on the O180 grid.

Fig. 6: Baroclinic instability benchmark at day 10 as in Fig. 5: pressure perturbation from the initial state (hPa) in a zonal-
height cross section [0◦, 360◦] × [0, 15 km] at 50◦ N.
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(a)

Fig. 7: Baroclinic instability benchmark: Surface kinetic energy spectra at day 30, simulated with various resolutions of the
median-dual FV mesh developed about the nodes of the octahedral reduced Gaussian grid. Vertical lines in the corresponding
colour indicate four grid intervals for the various resolutions. The -3 and -5/3 slopes are shown with solid and dashes lines,
respectively.

equations. Second, when extended to the semi-implicit integration of the compressible Euler equations the
scheme reproduces the reference results of soundproof equations and also compares favourably with global
atmospheric flow benchmark solutions. The presented scheme is used as a default for the semi-implicit
integration of soundproof and compressible Euler equations in the finite-volume module (FVM) for global
all-scale atmospheric flows [33].
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