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Abstract

The paper extends to moist-precipitating dynamics a recently documented high-
performance finite-volume module (FVM) for simulating global all-scale atmospheric
flows [Smolarkiewicz et al., J. Comput. Phys. (2016) doi:10.1016/j.jcp.2016.03.015].
The thrust of the paper is a seamless coupling of the conservation laws for moist vari-
ables engendered by cloud physics with the semi-implicit, non-oscillatory forward-in-
time integrators proven for dry dynamics of FVM. The representation of the water
substance and the associated processes in weather and climate models can vary
widely in formulation details and complexity levels. The representation adopted
for this paper assumes a canonical “warm-rain” bulk microphysics parametrisa-
tion, recognised for its minimal physical intricacy while accounting for the essen-
tial mathematical complexity of cloud-resolving models. A key feature of the pre-
sented numerical approach is global conservation of the water substance to machine
precision—implied by the local conservativeness and positivity preservation of the
numerics—for all water species including water vapour, cloud water, and precipita-
tion. The moist formulation assumes the compressible Euler equations as default,
but includes reduced anelastic equations as an option. The theoretical considera-
tions are illustrated with a benchmark simulation of a tornadic thunderstorm on a
reduced size planet, supported with a series of numerical experiments addressing
the accuracy of the associated water budget.
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1 INTRODUCTION

A recent article [62] documented the development of a global nonhydrostatic
finite-volume module (FVM) designed to enhance an established spectral-
transform based numerical weather prediction (NWP) model. FVM adheres
to NWP standards, with formulation of the governing equations based on
the classical meteorological latitude-longitude spherical framework (§7.2 in
[10]). From the perspective of numerical methods, the work [62] synthesised
finite-difference [37] and flexible finite-volume [66] discretisations of the com-
putational space. The computational space underlies a generalised curvilinear
coordinate representation of the nonhydrostatic PDEs [61] governing global
atmospheric dynamics in FVM. Flexible unstructured discretisation in the
horizontal circumvents the efficiency issues due to meridians’ convergence to-
wards the poles, by resolving the spherical surface with comparable-in-size
control volumes in the physical space [66]. The structured finite-difference dis-
cretisation in the vertical empowers direct preconditioning of complex elliptic
boundary value problems for thin spherical shells of the Earth’s atmosphere.
Benefits of continuous mappings include the analytic representation of spher-
ical shells with irregular lower boundary [74], mesh adaptivity [37,28], pliancy
of physical vertical coordinate [73,66], and minimal overhead of the paralleli-
sation.

Accounting for multiphase thermodynamics due to the ubiquity of water sub-
stance in the Earth atmosphere adds substantial complexity to the prognostic
equations of the dry dynamics. Generally, the way in which moist processes
are represented in atmospheric models depends on the focus of interest and
its associated spatio-temporal scale. Such interests can vary from representing
the evolution of individual hydrometeors or their particle-number distributions
[23,1] to scale-dependent parametrisations accounting only for bulk properties
of various phases of water on scales O(100) m and above [1,15,16]. Here we
aim at cloud-resolving simulation of global flows, and employ the bulk cloud
microphysics of [15] for parametrising moist-precipitating thermodynamics. It
provides a convenient vehicle for the discussion of numerics, while being ex-
tendible straightforwardly to more complex schemes; see [17] for a discussion.

The complexity of bulk microphysics is still substantial, even though greatly
reduced compared to capturing individual hydrometeors or their particle-
number distributions. The density of the moist air depends not only on the
pressure and temperature but also on the mass of water vapour carried by
the flow. Furthermore, while the water-substance phase transitions directly
affect the mass of water vapour, pressure and temperature also vary due to
the accompanying latent heating effects. In consequence, the mass continuity
equation for moist air includes contributions due to water substance, imply-
ing associated mathematical complexity for the resulting conservation laws of
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the moist dynamics [72]. To avoid such intricacies, the dry air density can be
used in formulating the moist model dependent variables and their governing
equations [3]. Then, the water vapour and condensed phase are represented
by the mixing ratios; that is, the density ratios of individual water species—
e.g., water vapour, cloud water, rain, snow—and dry air. The justification of
this continuum model for the condensed phase, as opposed to the multiphase
model, is that typical sizes of cloud and precipitation particles are compara-
ble to the Kolmogorov microscale O(10−3) m for the atmospheric turbulence.
Cloud, weather and climate models are typically run with grid lengths at
least five orders of magnitude larger than the Kolmogorov microscale and
under favourable conditions contain at least 106 cloud or precipitation parti-
cles per grid-box volume. At the same time, the water vapour and condensed
phase constitute only a small fraction of the mass of a moist cloudy volume,
usually less than 1%. It follows that the impact of moisture on the air heat
capacity and other thermodynamic properties — e.g., thermal conductivity,
air viscosity, and speed of sound — is then negligible so the relevant ther-
modynamic parameters (generally functions of state), such as specific heats
at constant pressure or volume, can be approximated with these for the dry
air; cf. §13.1 in [39]. Furthermore, water substance variables and latent heat-
ing due to phase changes enter the dynamics of moist air primarily through
the buoyancy term in the vertical momentum equation, in the spirit of the
Boussinesq approximation; cf. [32] for a discussion.

Time scales involved in moist atmospheric processes vary wildly. Formation
and growth of cloud droplets is practically instantaneous, with time scales
between fraction of a second to a few seconds; see [18] and references therein.
Warm clouds that feature temperatures above freezing are typically close to
water saturation, and this provides a powerful approach to model conden-
sation. Formation and growth of rain through collision/coalescence involves
time scales of O(103) s, much longer than typical time steps in cloud-resolving
models, and even longer time scales are involved with ice processes [18]. These
physical properties inspire a bespoke strategy to effectively solve the governing
equations as discussed in this paper. Depending on the mathematical repre-
sentation of moist processes, there are corresponding numerical issues to be
addressed. For bulk parametrisations common in cloud-resolving models such
issues include sign-preservation of water species mixing ratios or monotonicity
of relative humidity [49,13] as well as computational efficacy and conservation
[14,17].

There are other ways to represent moist thermodynamics, arguably more intu-
itive than the one discussed here [33]. They are based on the so-called invari-
ant variables such as the total water and the liquid-water potential tempera-
ture for the condensation/evaporation alone (cf. [13] and references therein),
or the total water and equivalent potential temperature for the condensa-
tion/evaporation and warm-rain precipitation (i.e., no ice)—to name a few.
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Their underlying methodologies also can be extended for modelling ice-bearing
precipitating clouds [71]. Technically, such methods transform the governing
equations to derive variables conserved along flow trajectories—in the spirit
of the Riemann invariants conserved along the characteristic curves of the
governing PDEs (§5.3.1 in [7]). When possible, advecting invariant variables
provides simple means for estimating the thermodynamic state of displaced
parcels. Because of this, however, the method is inherently explicit, and at
odds with the large-time-step semi-implicit time integration schemes at the
heart of the flexible all-scale approach documented herein.

The paper is organised as follows. Section 2 extends the governing equations
of FVM to moist-precipitating dynamics. The related numerical procedures
are spread over sections 3 and 4, from which §3 details the methods for
moist-precipitating thermodynamics in the context of an isolated fluid parcel,
whereas §4 focuses on coupling this parcel model (PCM) with global dynam-
ics. Section 5 substantiates technical developments of the preceding sections,
demonstrating the efficacy of the moist FVM with simulation of an idealised
supercell thunderstorm on a reduced size planet, a select moist benchmark at
cloud-resolving scales. Section 6 concludes the paper.

2 ANALYTIC FORMULATION

2.1 Physical contents

2.1.1 Governing equations

The generalised PDEs of FVM assume the compressible Euler equations un-
der gravity on a rotating sphere as default, but include reduced soundproof
equations [62] as an option. Here, we focus on the most general case of the
compressible Euler equations. 1 Because inclusion of moist processes substan-
tially increases the complexity of the FVM formulation, we proceed gradually
and start the presentation with the physically more intuitive advective form of
the governing equations formulated in a Cartesian reference frame, represen-
tative of cloud models, and introduce the corresponding conservation forms
implemented in FVM afterwards in Section 2.2. The advective form of the
equations for density of dry air ρ, velocity vector u, potential temperature θ,
and mixing ratios 2 of water vapour qv, cloud water qc, and precipitation qp

1 The reader interested in relative performance of soundproof and compressible
equations is referred to [61,31,32] for extended discussions.
2 The mixing ratio of a given phase of water substance is defined as a ratio of the
density of that phase to the density of dry air.
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are respectively written as

dρ

dt
= −ρ∇ · u , (1a)

du

dt
= − θ(1 + qv/ε)

θ0(1 + qv + qc + qp)
∇ϕ− g

θa

(
θ′ + θa(εq

′
v − qc − qp)

)
+ DDD , (1b)

dθ′

dt
= −u · ∇θa +

Lθ

cpT

(
Cd + Ep

)
+H , (1c)

dqv
dt

= −Cd − Ep +Dqv , (1d)

dqc
dt

= Cd − Ap − Cp +Dqc , (1e)

dqp
dt

= Ap + Cp + Ep +Dqp − 1

ρ
∇ · (ρu↓qp) . (1f)

On the rhs of (1b), g = (0, 0,−g) is the gravitational acceleration (with mag-
nitude g generally diminishing in radial direction as ∝ r−2 [59]), and DDD sym-
bolises momentum dissipation, typically expressed as a divergence of the eddy-
stress tensor; whereas H in (1c) symbolises a heat source/sink, including eddy
diffusion. The primes mark perturbations from an arbitrary stationary moist
ambient state, hereafter marked with the subscript a, assumed to be a known
equilibrium solution of the governing PDEs; while the subscript 0 denotes
constant reference values. The meaning of the symbols related to the water
substance will be explained shortly.

The prognostic equations (1) are supplied with a select form of the gas law

ϕ = cpθ0

(Rd

p0

ρθ(1 + qv/ε)

)Rd/cv

− πa

 , (2)

that relates pressure perturbations ϕ := cpθ0π
′, with π′ = π − πa denoting

the perturbation of Exner pressure π = (p/p0)Rd/cp = T/θ, to thermodynamic
constituents of moist air [3,31]. Here, T is the temperature, Rd = 3.5cp is the
gas constant of the dry air, ε := Rd/Rv ≈ 0.622 is a ratio of gas constants of
dry air and water vapour, ε = 1/ε− 1, and cp is the specific heat at constant
pressure. Noteworthy is the advective form of (2)

dϕ

dt
= ξφ∇ · u− u · ∇φa + ξφ

(
Rθ

θ
+
Rqv/ε

1 + qv/ε

)
, (3)

where ξ := Rd/cv, φ = ϕ + φa, φa = cpθ0πa(x), and Rθ ≡RHS(1c)+u · ∇θa
symbolises cumulative latent and sensible heat sinks/sources on the rhs of (1c)
while Rqv marks the rhs forcing in (1d).
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2.1.2 Significance of moist variables

Up to this point the presentation addressed the core fluid dynamics aspect
of the governing PDEs, with a brief mention of their apparent modifications
due to the presence of moisture. For the sake of clarity, here we continue the
discussion of the governing PDEs (1) with emphasis on the moist variables
in the frame of a single fluid parcel under prescribed ambient conditions—a
classical approach in cloud physics [4,33].

Noting that the total water mixing ratio qt—in the coefficient of the pressure
gradient term in (1b)—is defined as qt := qv + qc+ qp, it is easy to deduce that
qt satisfies

dqt
dt

= −1

ρ
∇ · (ρu↓qp) +Dqt , (4)

given, say, a common diffusivity Kq for all Dq... = (1/ρ)∇ · (ρKq∇q...) terms.
Furthermore, defining the liquid water mixing ratio as ql := qc + qp produces

dql
dt

= (Cd + Ep)−
1

ρ
∇ · (ρu↓qp) +Dql (5)

that upon combining with (1c) leads to

1

θ

dθ

dt
− L

cpT

dql
dt

=
H∗

θ
, (6)

whereH∗ subsumes all irreversible heat sink/sources in (1c) and (5). Assuming
non-precipitating reversible processes and constant L/cpT—justifiable for the
special case of shallow convection governed by the incompressible Boussinesq
equations [13]—(6) engenders two invariants θ̃ = θ exp[L ql/cpT ] and qt, a mere
advection of which suffices to determine thermodynamic state of a displaced
parcel in thermodynamic equilibrium with zero supersaturation [13]. This il-
lustrates the essentially explicit nature of the invariant variables approach; cf.
the penultimate paragraph of Introduction. Moreover, combining (4) and (1a)
into the conservation form,

∂ρqt
∂t

+∇ · (ρuqt) = −∇ · (ρu↓qp) +∇ · (ρKq∇qt) , (7)

shows that the system (1) conserves the total mass of water substance, sub-
ject to the boundary fluxes. 3 The first term on the rhs of (7) describes the
precipitation fallout, with a velocity u↓ = (0, 0,−ϑ) where the nonnegative
terminal velocity ϑ(ρ, qp) follows a phenomenological power law; see (72) in

3 A similar procedure could be applied to (6) leading to a compact entropy conser-
vation principle under the stated simplifying assumptions.
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Appendix A for an example. In principle, the sedimentation could be com-
bined with the advection of precipitation on the lhs. However, ϑ can reach
values sufficiently large (∼ 10 m s−1) to impair computational stability at ver-
tical resolutions typical of cloud-resolving models. Consequently, it is retained
as a forcing on the rhs, in anticipation of its bespoke time discretisation.

Setting qt ≡ 0 in (1b) recovers the familiar, advective form of the momentum
equation for dry air [62]. 4 This exposes the meaning of the coefficient in
front of the pressure gradient in (1b) as the density potential temperature θρ
normalised by a constant reference value θ0; i.e.,

θ(1 + qv/ε)

θ0(1 + qt)
=
θρ
θ0

:= Θρ (8)

This also reveals that, unlike in the dry case, the buoyancy term g(1− θρ/θρa)
has been simplified in (1b) by truncating the Taylor series 1/(1+qt) = 1−qt+
. . . at q2

t ∼ 10−4—a verifiably useful approximation; cf. §5b in [3]. Similarly,

θ′ := θ − θa while q′v = qv −
θ

θa
qva . (9)

The second term on the rhs of (1c) combines latent heat sink/sources. In par-
ticular, L denotes the latent heat of condensation, whereas Cd and Ep symbol-
ise, respectively, condensation rate of water vapour into cloud water and the
growth/evaporation rate of precipitation due to diffusion of water vapour in
supersaturated/subsaturated environment. These rates enter with the oppo-
site sign the evolution equation of water vapour (1d), whereas Cd appears as a
source on the rhs (1e), where Ap symbolises autoconversion of cloud water into
precipitation (e.g., the initial source of rain) and Cp denotes growth of precip-
itation due to accretion of cloud condensate. The latter two terms enter with
opposite sign the precipitation evolution on the rhs of (1f) accompanied by the
precipitation growth/evaporation rate Ep. All these sink/source terms vanish
in the absence of water substance, reducing (1d)-(1f) to “0 = 0” tautologies.
Furthermore, except for the condensation rate Cd, all sink/source terms due
to water substance phase changes are given by phenomenological formulae, ex-
pressed as power laws of the thermodynamic variables. For the purpose of this
paper their precise form is unimportant, although they are all briefly listed
in Appendix A for completeness; the reader interested in further details is
referred to [13–17], and references therein. However the condensation-rate—
Cd forcing term on the rhs of (1c), (1d) and (1e)—is distinct. It is defined
implicitly based on the assumptions that the water vapour is saturated in the
presence of cloud water,

qc > 0 =⇒ qv = qvs , (10)

4 Note, qt ≡ 0 =⇒ qv = qc = qp ≡ 0, due to the positivity of all water species.
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and that the cloud water evaporates instantaneously in subsaturated condi-
tions,

qv < qvs =⇒ qc = 0 , (11)

where qvs is the saturated mixing ratio of water vapour,

qvs =
εes

p− es
, (12)

with es denoting the saturated water vapour pressure,

es(T ) = eo exp
[
L

Rv

(
1

To
− 1

T

)]
, (13)

given T = θ (p/po)
Rd/cp , po = 105 Pa, eo = 611 Pa, To = 273.16 K and L(T ) ≈

2.53 · 106 J kg−1, which is an appropriate approximation for the warm-rain
microphysics parameterisation assumed in this paper; cf. §2a in [14].

2.2 Conservative formulation

The conservative form of (1) actually solved in the FVM assumes a generalised
curvilinear coordinate representation on a rotating sphere, upon which the
corresponding PDEs can be compactly written as

∂Gρ
∂t

+∇ ·
(
Gρv

)
= 0 , (14a)

∂Gρu
∂t

+∇ ·
(
Gρv ⊗ u

)
= Gρ

(
−ΘρG̃∇ϕ

− g

θa

(
θ′ + θa(εq

′
v − qc − qp)

)
− f × u′ +M′ + DDD

)
,

(14b)

∂Gρθ′

∂t
+∇ ·

(
Gρvθ′

)
= Gρ

(
− G̃Tu · ∇θa +

Lθ

cpT

(
Cd + Ep

)
+H

)
, (14c)

∂Gρq...
∂t

+∇ ·
(
Gρvq...

)
= Gρ

(
Rq...

)
. (14d)

The PDEs (14) intertwine three distinct aspects of mathematical symbolism.
First, (14d) consolidates (1d)-(1f), so q... stands for qv, qc, or qp while Rq...

marks their corresponding rhs forcings. Second, the focus on global applica-
tions extends (1b) with: i) the Coriolis acceleration f×u′ where f ≡ 2Ω and Ω
denotes a constant angular velocity of the rotating sphere; and ii) the metric
forcings in the spherical domain

M′
(
u,ua, θρ/θρa

)
=M(u)− (θρ/θρa)M(ua) (15)
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(cf. Appendix B). These extensions utilise a class of geostrophically balanced
ambient flows

0 = −cpθρaG̃∇πa − g − f × ua +M(ua) , (16)

together with identically satisfied ambient mass continuity and entropy equa-
tions. Consequently, u′ = u−(θρ/θρa)ua. Third, (x, t) refers to the coordinates
of the generalised time-dependent frame, and G(x, t) denotes the Jacobian—
so, G2 is the determinant of the metric tensor that defines the fundamental
metric in a space of interest where the problem is solved [37]. Following [56], for
the remainder of the paper the nabla symbol ∇ refers to the vector of partial
spatial derivatives in a computational space, whereby the physical meaning of
the vector differential operators of gradient, curl and divergence is retrieved by
combining nablas with metric coefficients, Jacobians, and relations between
the various forms of velocities [37,53]. Consequently, ∇· (..) denotes the scalar
product of spatial partial derivatives with a vector, so the total derivative
underlying conservation form (14), d/dt = ∂/∂t + v · ∇, takes the velocity
v = ẋ not necessarily equal to the physical velocity u for which equations
are solved. The G̃∇ϕ in the momentum equation symbolises the product of
a known matrix of metric coefficients and the vector of partial derivatives,
whereas G̃Tu = v − vg on the rhs of the entropy equation accounts for the
mesh velocity vg, set to zero in the remainder of this paper. For the readers
convenience, various metric coefficients are exemplified for the spherical frame
in Appendix B.

Analogously to (1), the system (14) is supplied with the corresponding gen-
eralisation of (3), the advective form of the gas law (2), written compactly
as

∂Gρϕ
∂t

+∇ · (Gρvϕ) = GρRϕ , (17)

given the rhs forcing

Rϕ = −ξφ 1

G
∇ · (Gv)− 1

Gρ
∇ · (Gρvφa) + φa

1

Gρ
∇ · (Gρv) + ξφΠ , (18)

where Π represents heat and mass sources/sinks from (1c) and (1d) aggregated
on the rhs of (3)

Π ≡
(
Rθ

θ
+
Rqv/ε

1 + qv/ε

)
. (19)

The PDE (17) extends the equation (56) in [61] to account for the thermo-
dynamic forcings according to the derivation detailed in the appendix A of
[31].
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3 NUMERICAL APPROXIMATIONS: PARCEL MODEL (PCM)(PCM)(PCM)

3.1 Principal algorithm

To facilitate the presentation of a complete semi-implicit integrator for the
generalised PDEs (14), it is constructive to consider first an isolated immis-
cible parcel in mechanical equilibrium with a prescribed steady environment.
Equations governing such an elementary model are (1d)-(1f) with all Dq... ≡ 0,
and the full θ version of (1c) with H ≡ 0,

dθ

dt
=

Lθ

cpT

(
Cd + Ep

)
. (20)

These equations can be compactly written as

dΦΦΦ

dt
= RRR ≡ RRRc + RRRp , (21)

with the vectors of variables and corresponding rhs forcing defined, respec-
tively, as

ΦΦΦ =



θ

qv

qc

qp


; RRRc =



Lθ
cpT

Cd

−Cd
Cd

0


; RRRp =



Lθ
cpT

Ep

−Ep
−Ap − Cp

Ap + Cp + Ep + Fp


, (22)

where the shorthand for the fallout

Fp := −1

ρ
∇ · (ρu↓qp) (23)

simplifies the notation. Recalling the discussion in Introduction, RRRc can be
identified with rapid processes of cloud droplets condensation/evaporation,
while RRRp with slow processes associated with precipitation formation, growth/evaporation
and fallout. The algorithm for integrating (21) follows the all-scale approach
of [17] inspired by the integral form of (21)

ΦΦΦ(x, t) = ΦΦΦ(xo, to) +
∫
T

(RRRc + RRRp) dτ (24)

that expresses the solution in an arbitrary point (x, t) in terms of the solution

at the foot
(
xo(x, t), to

)
of the trajectory T , connecting (xo, to) with (x, t),

and the corresponding path integral of the rhs forcings. The discretisation of
the integral in (24)

ΦΦΦn+1 =
(
ΦΦΦ + 0.5δtRRRc

)
o

+ 0.5δtRRRn+1
c + δt〈RRRp〉n+1

n (25)
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assumes the implicit trapezoidal rule and an explicit substepping, respectively,
for the fast and slow forcings. Here discrete time levels tn and tn+1 = tn + δt
correspond to to and t in (24), subscript o refers to the value at the foot of
the trajectory, 5 and 〈..〉n+1

n symbolises the mean value of the path integral
evaluated over multiple substeps δτ , such that

∑
δτ = δt.

3.2 Precipitation evaluation

The motivation behind (25) is a trade-off between the stability, accuracy and
complexity of the time integration—justified by the disparities of the char-
acteristic time scales associated with RRRc and RRRp as well as relative physical
fidelity of the forcings, substantially lower for RRRp [14,17]. In particular, the
substepping is important in coarsely resolved simulations of global flows, where
the time step required for resolving precipitation may impose severe restric-
tions on the time step admitted for the dynamics [17]. Our lofty goal are
global cloud-resolving simulations, where typically the mean value 〈..〉n+1

n can
be represented with explicit estimates of RRRp at tn+1 based on the past values of
thermodynamic variables. The latter simplifies the presentation of the parcel
algorithm, and facilitates concise incorporation of the substepping later.

The template algorithm (25) can have several alternative implementations
with different overall accuracy and complexity levels. Here we describe a par-
ticular version—formally second-order accurate in the absence of precipitation,
but first-order accurate otherwise—proven in research of all-scale moist atmo-
spheric dynamics [30–32]. A single time step of (25) from tn to tn+1 assumes
that the advection procedure along the flow trajectory, ”o”, preserves the sign
of transported fields. Given already available ΦΦΦo and RRRco at the foot, pre-
liminary O(δt) estimates of (Ap + Cp)

n+1 = −Rqc
p |n+1 and En+1

p = −Rqv
p |n+1

are evaluated employing advected values of the thermodynamic variables in
(73)-(75). This provides the estimate of qn+1

p as

q̃p
n+1 = (qp + δtRqp)o − δt(R̃qc

p + R̃qv
p )n+1 . (26)

Here q̃p
n+1 is merely an O(δt) estimate of qp

n+1 solution, due to the lack of
the fallout estimate on the rhs; whereas Rqp|n ≡ 0 in the context of (25) is
retained to acknowledge eventual contributions unaccounted for in the ideal
parcel model—e.g. (54b) in Section 4.2 also accounts for diffusion. Moreover,
the meaning of tildes over the forcings is special. Because the advection is sign
preserving, the only non-physical loss of field positivity can come from inac-
curacies in estimating the forcings. Thus, the estimated forcings are limited

5 Consequently, the subscript ”o” symbolises the field advected over δt [50,6].
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according to

(qc + δtRqc)o + δtRqc
p |n+1 ≥ 0 =⇒

−R̃qc
p |n+1 = min

(
−Rqc

p |n+1, (δt−1qc +Rqc)o
)
,

(27a)

(qp + δtRqp)o − δt(R̃qc
p |n+1 +Rqv

p |n+1) ≥ 0 =⇒
−R̃qv

p |n+1 = max
(
Rqv
p |n+1, −(δt−1qp +Rqp)o + R̃qc

p |n+1
)
,

(27b)

from which (27a) assures the precipitation autoconversion and accretion (the
only sink of qc due to qp) depleting no more qc than estimated based on the
past state, whereas (27b) ensures that subsequent precipitation evaporation
depletes no more qp than available q̃p

n+1.

The derived estimations of qp and Rqp
p at tn+1 are still incomplete, as they do

not account for the precipitation fallout Fp. However, the latter is a straight-
forward procedure that relies on an expedient use of a flux-form advection
operator,

L(ψ, υυυ, ρ∗, δτ) := ψ − δτ

ρ∗
∇ · (ρ∗υυυψ) , (28)

the discrete implementation of which can assume a variety of suitable 1D
advection schemes. In FVM, we employ either the implicit first-order-accurate
upwind (alias donor-cell) scheme or a second-order-accurate MPDATA [55]. 6

Having defined the L operator in (28) the completion of qp and Rqp
p estimates

at tn+1 can be compactly written as

˜̃qp = L
(
q̃p
n+1, G̃Tu↓|n+1, (Gρ)n+1, δt

)
(29a)

R̃qp
p |n+1 = −(R̃qc

p + R̃qv
p )n+1 + ( ˜̃qp − q̃pn+1)/δt , (29b)

where u↓|n+1 depends on the current estimates of its arguments in (72).

In cloud-resolving simulations, where the time scales of resolved dynamics
and precipitation evolution are comparable, (29) completes the evaluation of
explicit estimates of precipitation mixing ratio and, in fact, of all components
of slow forcings 〈RRRp〉n+1

n in (25). This is evident when writing a complete set
of available estimates of thermodynamic fields evolved due to action of slow
forcings:

˜̃
θ
n+1

= (θ + δtRθ)o − δtΛ? R̃qv
p |n+1 , (30a)

˜̃qvn+1
= (qv + δtRqv)o + δtR̃qv

p |n+1 , (30b)

6 The implicit donor-cell is particularly convenient due it is unconditional stability,
sign preservation and simplicity owing to the precipitation downward movement.
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˜̃qcn+1
= (qc + δtRqv)o + δtR̃qc

p |n+1 , (30c)˜̃qpn+1
= (qp + δtRqp)o + δtR̃qp

p |n+1 ; (30d)

where the abbreviated notation,

Λ? :=
L

cp

(̃
θ

T

)n+1

=⇒ Λ? =
L

cp
(̃π)

n+1
, (31)

has been introduced in (30a) to streamline further presentation, and the ap-

proximation of the (̃θ/T )
n+1

ratio, temporarily assumed to be known, is yet
to be discussed.

Notably, in cloud-resolving simulations only the R̃q...
p forcings are required,

while there is no further use for the (̃··)
n+1

fields’ estimates, unless higher
order variants of the parcel scheme are desired. However in coarse large scale
simulations, (30) summarises the contents of a single substep δτ that is to be
repeated as described above, until

∑
δτ = δt, to re-evaluate ϑ, Ap, Cp and Ep—

exemplified in Appendix A—while evaluating and summing all components of
〈RRRp〉n+1

n , such that

δt〈RRRp〉n+1
n =

N∑
ν=0

δτ νR̃RRp

ν
=
N∑
ν=0

δτ ν



−Λ?R̃qv
p

R̃qv
p

R̃qc
p

R̃qp
p



ν

, (32a)

R̃RRp

ν=0
= R̃RRp

n
≡ 0 , R̃RRp

ν=N
= R̃RRp

n+1
,

N∑
ν=0

δτ ν = δt . (32b)

Having accomplished the calculation of slow forcings, we turn the attention
back to (25).

In preparation for completing (25) we note that limiting of forcings in (27)
ensured positivity of water species in (30)—particularly important for the
substepped model—but not necessarily in (25). To assure the species positiv-
ity in (25), while conserving the water substance and energy, the cumulative
δt〈RRRp〉n+1

n forcings are limited as follows:

(qc + 0.5δtRqc)o + δt〈Rqc
p 〉n+1

n ≥ 0 =⇒

〈̃Rqc
p 〉

n+1

= max
(
〈Rqc

p 〉n+1
n , −δt−1(qc + 0.5δtRqc)o

)
,

(33a)

(qp + 0.5δtRqp)o + δt〈Rqp
p 〉n+1

n ≥ 0 =⇒

〈̃Rqp
p 〉

n+1

= max
(
〈Rqp

p 〉n+1
n , −δt−1(qp + 0.5δtRqp)o

)
,

(33b)
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∆ql = 〈̃Rqc
p 〉

n+1

− 〈Rqc
p 〉n+1 + 〈̃Rqp

p 〉
n+1

− 〈Rqp
p 〉n+1 =⇒

〈̃Rqv
p 〉

n+1

= 〈Rqv
p 〉n+1

n −∆ql ,

(33c)

〈̃Rθ
p〉
n+1

= 〈Rθ
p〉n+1 + Λ?∆ql (33d)

Subsequently, the complete explicit part of the solution (25) is created as

̂̂
ΦΦΦ :=

(
ΦΦΦ + 0.5δtRRRc

)
o

+ δt〈̃RRRp〉
n+1

n , (34)

with components of 〈̃RRRp〉
n+1

n specified in (33). This reduces (25) to

ΦΦΦn+1 =
̂̂
ΦΦΦ + 0.5δtRRRn+1

c , (35)

an implicit problem for ΦΦΦn+1 discussed next.

3.3 Condensation/evaporation of cloud water

The significance of (35) is constraining the thermodynamic variables to assure
thermodynamic equilibrium (10)-(13) of the evolved parcel. Technically, this
requires determining the increment of cloud water mixing ratio ∆qc = 0.5δtCd,
either via condensation (∆qc > 0) or evaporation (∆qc < 0), such that the
solution of (35) satisfies:

qn+1
v = ̂̂qv −∆qc = qvs

(̂̂
θ + Λ?∆qc, Λ?

)
, if ( ̂̂qc + ∆qc) > 0 ; (36a)

qn+1
c = ̂̂qc + ∆qc = 0 , if (̂̂qv −∆qc) < qvs

(̂̂
θ + Λ?∆qc, Λ?

)
. (36b)

Because of the functional form of qvs in (12), (36) together with the usual
positivity constraints forms the system of implicit transcendental inequalities,
the solution of which commences with unfolding the saturation condition in
(36a). The latter implies

∆qc = ̂̂qv − qvs (̂̂θ + Λ?∆qc, Λ?
)
≈ ̂̂qv − qvs(̂̂θ, Λ?)− dqvs

d∆qc

∣∣∣∣
∆qc=0

∆qc , (37)

where the first-order Taylor series approximation is justified, as typically

Λ?|∆qc| �
̂̂
θ. The linearised solution implied by (37) can be explicitly written

as

∆qc =
[̂̂qv − qvs (̂̂θ, Λ?

)] [
1 +

dqvs
d∆qc

∣∣∣∣
∆qc=0

]−1

, (38a)

dqvs
d∆qc

∣∣∣∣
∆qc=0

= qvs

(̂̂
θ, Λ?

) [
1− es(

̂̂
θ,Λ?)/p?

]−1 cp
Rv

(
Λ?̂̂
θ

)2

, (38b)
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es(
̂̂
θ,Λ?) ≡ es(

̂̂
T ) at

̂̂
T =

L

cp

̂̂
θ

Λ∗
, and p? = p0

(
cp
L

Λ?
)Rd/cp

. (38c)

Standardly, we supplement the linearised solution (38) with one Newton-
Raphson iteration

̂̂
θ

+

=
̂̂
θ + Λ?∆qc , ̂̂qv+

= ̂̂qv −∆qc (39a)

∆+qc = ∆qc + EQS(38)

(̂̂qv+
,
̂̂
θ

+)
. (39b)

which improves on the linearised result in problems with large δt and coarse
resolutions [13]; optionally, (39) can be further repeated if required.

Upon completing (39), final ∆+qc is limited according to

∆̃+qc = min[̂̂qv, max(− ̂̂qc,∆+qc)] (40)

that ensures positivity of final solutions for water vapour and cloud water
mixing ratios in

qn+1
v = ̂̂qv − ∆̃+qc (41a)

qn+1
c = ̂̂qc + ∆̃+qc (41b)

θn+1 =
̂̂
θ + Λ?∆̃+qc (41c)

Furthermore, to assure positivity of the future initial fields, assumed in the
second paragraph of Section 3.2 for the subsequent time step, the limiting of
the condensation rate (40) is repeated with respect to the updated fields (41),

˜̃
∆+qc = min[qn+1

v , max(−qn+1
c , ∆̃+qc)] , (42)

upon which specification of the rhs forcings RRR = RRRc in (21) for the subsequent
time step initial condition

Rqv |n+1 = −(0.5δt)−1 ˜̃
∆+qc (43a)

Rqc|n+1 = −Rqv |n+1 (43b)

Rθ|n+1 = Λ?Rqc |n+1 (43c)

completes the discrete approximation (25) of the formal integral (24) of (21)—
given the availability of Λ?, defined in (31). Formally, Λ? depends on the n+ 1
value of the Exner pressure, which is however unavailable until the very end
of the full time-step advancement of the entire dynamical model, concluded
by the solution of the elliptic pressure equation. A viable option is to employ
in (31) a pressure estimate based on the past fields’ values. An even simpler
option is the physically motivated approximation

π−1 =
θ

T
≈ θa
Ta

= π−1
a , (44)
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verified for needs of bulk parametrisations of cloud microphysics in atmo-
spheric models across scales [30–32].

3.4 Extensions

Because of its relative physical simplicity, the warm-rain bulk microphysics
parametrisation is attractive, and de facto standard [8], as a first step for
incorporating moist processes in nonhydrostatic atmospheric flow solvers. Al-
beit important per se, the warm-rain parametrisation does not account for
a broad range of equally important processes, the most apparent of which
are those associated with the solid phase of the water substance. The accom-
modation of the solid phase can, again, vary widely in physical complexity
[68]. For instance, a “simple ice” parametrisation [15] extends the classical
warm-rain approach to admit both liquid and solid phase within the mixing
ratios of cloud condensate qc and precipitation qp depending upon the local
temperature; and such a simple approach is already available in FVM as an
option. More complex parametrisations account for various ice forms such
as cloud ice, snow, hail, and graupel. Each of such species is subject to its
own phenomenological laws of evolution. Furthermore, such parametrisations
can branch further into single- and double-moment schemes, with the former
predicting only mixing ratios of cloud and precipitation species, whereas the
latter also accounting for variable particle size distributions; e.g. [19] versus
[21]. Altogether, this adds substantial physical complexity to the warm-rain
parametrisation. While cloud and precipitation microphysics is a large and
active research area, and the quest for an optimal parametrisation continues
[12,19], the single-moment multi-species microphysics is nowadays standard in
global weather prediction [11].

In the context of the considerations above, it is important to comment on
the broader applicability of the documented PCM scheme. In essence, the
scheme relies on the assumption of universally preserved positivity of physi-
cally nonnegative fields and, to a lesser extent, on the separation of microphys-
ical processes into slow and fast, respectively, for precipitation evolution and
condensation/evaporation of cloud water. From the perspective of numerics,
the latter one is rather helpful than essential, as one can always split integrals
of the rhs forcings into, e.g. left/right Riemann sums or trapezoidal rules based
on the accuracy arguments. On the other hand, given a sign-preserving advec-
tion, the positivity arguments provide solid foundation for clipping truncation
errors in the rhs forcings to assure physical realisability of complete solutions.
The same approach thus applies to multi-species schemes, with an obvious
consequence of advecting more fields and solving larger systems of inequali-
ties. Furthermore, the implicit procedure for evaluating the condensation rate,
§3.3, can be extended to account for finite supersaturations [20].
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4 NUMERICAL APPROXIMATIONS: MOIST-PRECIPITATING
DYNAMICS

4.1 Non-oscillatory forward-in-time template

The equations comprising system (14) can be written in a compact form of
the generalised transport equation for an arbitrary scalar variable Ψ,

∂GΨ

∂t
+∇ · (VΨ) = GR , (45)

in which the vector field V as well as scalar fields G and R are assumed to be
known functions of time and space. For the mass continuity equation R ≡ 0,
Ψ ≡ ρ, G ≡ G, so V = Gv. For all other equations, Ψ represents the specific
variables—expressing in (14) fluid properties in a unit of mass—namely, com-
ponents of the physical velocity vector u, the potential temperature θ together
with its perturbations θ′, and mixing ratios q...; whereas the density ρ is ab-
sorbed in G ≡ Gρ. Then R represents the corresponding parenthetic terms on
the rhs in (14), and V ≡ Gv = Gρv amounts to the mass flux in (14a). Formu-
lating numerical integrators of (14) according to the procedures adopted for
(45) assures the compatibility of conservative advection of all specific variables
with the mass continuity [61,62].

A key building block for semi-implicit integrators of the PDE system (14) is
a non-oscillatory forward-in-time (NFT) 7 template algorithm for (45)

Ψn+1
i = Ai

(
Ψ̃n,Vn+1/2, Gn, Gn+1

)
+0.5δtRn+1

i , Ψ̃n ≡ Ψn+0.5δtRn . (46)

Here, A is a shorthand for the NFT advection transport operator MPDATA
(for multidimensional positive definite advection transport algorithm) [55,62,29].
Furthermore, the index i symbolises position on the computational grid, and
the advector Vn+1/2 is an O(δt2) estimate of V at the intermediate time level.
The template (46) is congruent with the trapezoidal-rule trajectory integral
of the ODE underlying (45) [51,57], as illustrated by (25) in the absence of
precipitation. Its respective Euler-forward,

Ψn+1
i = Ai

(
Ψn + δtRn,Vn+1/2, Gn, Gn+1

)
, (47)

and Euler-backward,

Ψn+1
i = Ai

(
Ψn,Vn+1/2, Gn, Gn+1

)
+ δtRn+1

i , (48)

7 Inspired by [70], “non-oscillatory forward-in-time” labels a class of second-order-
accurate algorithms built on two-time-level nonlinear advection techniques that sup-
press numerical oscillations characteristic of higher-order linear schemes.
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forms as well as their combinations for selected counterparts of R will be also
employed in the subsequent discussions.

Notably, for any O(δt2) estimates of Rn and Rn+1 on the rhs of (46), the solu-
tion Ψn+1

i is second-order-accurate, given A assures the second-order-accurate
homogeneous transport [51]; see also [61] for a recent comprehensive discus-
sion. On the other hand, the trapezoidal-rule template (46) can be also used
to describe mixed integrals with respect to rhs forcings, by judiciously manip-
ulating forcings’ definitions at the template input. For example, conservative
form of (25) can be written in the formalism of (46) as

ΦΦΦn+1
i = Ai

(
Φ̃ΦΦ
n
,Vn+1/2, Gn, Gn+1

)
+0.5δtRRRn+1

i , Φ̃ΦΦ
n ≡ ΦΦΦn+0.5δtRRRn , (49)

given

RRRn = RRRn
c , RRRn+1 = RRRn+1

c + 2〈RRRp〉n+1
n . (50)

A virtue of such a notation is that it enables a concise description of complex
semi-implicit integrators discussed next—see (57a) for an example—while at
the same time reflecting the actual structure of the model code; cf. section 3.1
in [59] for complementary discussion.

4.2 Semi-implicit integrators

In the system (14), only the mass continuity equation (14a) is homogeneous,
whereas all remaining equations generally have non-vanishing right-hand-sides
that depend on the prognosed model variables. In consequence, the entire
model algorithm can be reduced to three conceptually distinct stages.

The first stage solves (14a) while taking the advantage of it to explicitly pro-
vide the advectors that enter the first term on the rhs of (46) in transport of
the specific variables. Namely, the provisional advector Vn+1/2 = (Gv)n+1/2,
evaluated by linear extrapolation from tn−1 and tn at faces of computational
cells (cf. Section 4.4), is used in the density advection,

ρn+1
i = Ai

(
ρn, (Gv)n+1/2,Gn,Gn+1

)
=⇒ Vn+1/2 = (Gρv)

n+1/2
, (51)

while updating the density, and concomitantly evaluating the advectors for
transport of u, θ′, θ and q... in (14) as cumulative directional mass fluxes; see
[61] for an exposition and [62] for details of the implementation in FVM.

The second stage evaluates the explicit components required in the semi-
implicit integrals of the momentum, entropy, and water-substance mixing-ratio
equations in (14). This stage involves a few distinct steps. First, the explicit
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transport components of the (46) template are evaluated for specific momenta
and entropy perturbations as

ûi = Ai

(
ũ,Vn+1/2, ρ∗n, ρ∗n+1

)
, (52a)

θ̂′i = Ai

(
θ̃′,Vn+1/2, ρ∗n, ρ∗n+1

)
, (52b)

where ũ and θ̃′ account for complete forcings on the rhs of (1b) and (1c),
respectively, and the effective densities, ρ∗ := Gρ, are specified as ρ∗

n
= Gnρn

and ρ∗n+1 = Gn+1ρn+1.

Second, a distinct block in the similar spirit follows for the moist specific
variables discussed in Section 3

θ̂i = Ai

(
θ̃,Vn+1/2, ρ∗n, ρ∗n+1

)
, θ̃ = θn + 0.5δt

(
Rθ + 2H

)n
(53a)

q̂...i = Ai

(
q̃...,V

n+1/2, ρ∗n, ρ∗n+1
)
, q̃... = qn...+0.5δt (Rq... + 2D(q...))

n (53b)

where Rθ and the Rq... were specified in (43) at the preceding time step.
Bespoke to moist dynamics, (53) are also supplied with advected forcings

R̂θ
i = Ai

(
Rθ|n +H(q...)|n,Vn+1/2, ρ∗n, ρ∗n+1

)
, (54a)

R̂q...
i = Ai

(
Rq... |n +D(q...)|n,Vn+1/2, ρ∗n, ρ∗n+1

)
, (54b)

required within (25) for a complete first-order-accurate estimate of the fu-
ture thermodynamic state in the precipitation evaluation (30) and then for
completing the explicit part of the solution in (34).

Third, the “parcel model” of Section 3 completes the integrals of (14d) and
(20)—now both with account for the dissipative processes via (53) and (54).
This step can be symbolised as

PCM
(
θ̂, q̂..., R̂θ, R̂q...

)
=⇒

[
θ, q..., Rθ, Rq...

]n+1
, (55)

which completes the second stage. Noteworthy, the PCM procedure provides
an updated total potential temperature θn+1 and, thus, the full θn+1

ρ . These
estimates could be used in the buoyancy term on the rhs of (14b) while eval-
uating the Rn+1

i forcing in the template algorithm (46). On one hand, this
would eliminate the need for advancing the θ′ perturbation variable. On the
other hand, this would result in an explicitly evaluated buoyancy term—in the
spirit of Runge-Kutta schemes [50,51]—imposing severe limits on the model
time step for global flows [61], where the phase velocity of internal gravity
waves supported by vertical stratification can be comparable with the speed
of sound (§1.2 in [24]). The latter is the primary reason for the incompatibil-
ity of explicitly evolved invariant variables and large-time-step semi-implicit
schemes as mentioned in the introduction. Consequently, θ′ remains a primary
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dependent model variable, whereas full θ is an explicit estimate required for
the PCM and for a first guess in the coefficients on the rhs of (14b). After
completing the solution at tn+1, this full θ is redefined using the updated θ′; so
at the subsequent time step, starting from the current instant tn+1 relabelled
to tn, θn = (θ′ + θa)

n.

The third stage culminates the entire solution procedure. It employs all the
explicit elements developed so far, to complete semi-implicit integrals of the
specific momentum and entropy perturbations. To account for nonlinearity of
the rhs in (14b)—due to the dependence of the coefficients on θ′ in the pressure
gradient, Coriolis and metric forces as well as the nonlinearity of the metric
forces in terms of the velocity components—the template algorithm (46) is,
generally, executed iteratively lagging nonlinear terms behind. 8 To simplify
notation, the lagged terms will be denoted by the superscript ?, variables
without superscripts will represent subsequent iterates of the solution future
values at tn+1, whereas variables marked with superscript n+ 1 will refer to
already-updated variables such as density and water substance mixing ratios
at tn+1. Consequently,

θ′i =
̂̂
θ′i − 0.5δt

(
G̃Tu · ∇θa

)
i

(56a)

ui = ûi−0.5δt
(

Θ?
ρG̃∇ϕ+

g

θa

[
θ′ + Bq, n+1

])
i

−0.5δt

(
f ×

[
u−

θ?ρ
θρa

ua
]
−M′

(
u?,ua,

θ?ρ
θρa

))
i

;
(56b)

where

̂̂
θ′ = θ̂′ + 0.5δt

(
Rθ + 2〈̃Rθ

p〉
)n+1

, (57a)

Θ?
ρ =

θ?ρ
θ0

=
θ?(1 + qn+1

v /ε)

θ0(1 + qn+1
t )

, (57b)

while

Bq := θa
(
εq′v − qc − qp

)
(58)

is a shorthand for moisture contributions to the density potential temperature
perturbation in the buoyancy force; recall that the functional dependence of
the M′ on its arguments has been specified in (15). Furthermore, resetting
the full θ directly follows the velocity update at the end of each iteration as

θi =
( ̂̂
θ′ − 0.5δtG̃Tu · ∇θa + θa

)
i
, (59)

8 Typically, a few fixed-point iterations suffice for practically converged solution;
see [57,59,61] for implementations in, respectively, gas dynamics, magnetohydrody-
namics and generalised PDEs (14), all in the context of the FT template (46).
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whereas its first guess can either use the PCM estimate, or the Euler-forward
estimate (47) generated as

θ0
i = Ai

(
θn + δt(Rθ +H)n,Vn+1/2, ρ∗n, ρ∗n+1

)
, (60)

in analogy to the dry case [61,62]. As far as the velocity lagging in the metric
forces is concerned, its first guess u0

i is obtained by linear extrapolation from
tn−1 and tn to tn+1. With this design, the inviscid non-precipitating solution
is second-order-accurate even for a single iteration, and two iterations give
already close approximation to the trapezoidal integral [57].

The scheme outlined in (56)-(59) contains implicit trapezoidal integrals of
pressure gradient, buoyancy and Coriolis terms with the coefficients, depen-
dent on the full potential temperature, and metric forces evaluated explic-
itly. The derivation of the closed-form expression for the velocity update is
straightforward for the colocated data arrangement employed in the FVM
[62]. Specifically, the future value of θ′ is substituted in the buoyancy term on
the rhs of (56b) with the rhs of (56a), and all terms depending on the future
value of u are gathered on the lhs of the momentum scheme—while dropping
the spatial grid index i everywhere, as all dependent variables, coefficients and
terms are colocated in (56)-(59). For the large-time-step compressible equa-
tions addressed here, this results in

u + 0.5δt f × u− (0.5δt)2 g

θa
G̃Tu · ∇θa = (61)

û− 0.5δt

(
g

θa

[ ̂̂
θ′ + Bq, n+1

]
− f ×

θ?ρ
θρa

ua −M′
(
u?,ua,

θ?ρ
θρa

))
−0.5δtΘ?G̃∇ϕ ≡ ̂̂u− 0.5δtΘ?

ρG̃∇ϕ ,

which symbolises a system of three linear algebraic equations with three un-
known components of the velocity vector u at each point of the colocated grid.
Viewing the lhs of (61) as a linear operator L acting on the velocity vector u,

L u = ̂̂u− 0.5δtΘ?
ρG̃∇ϕ , (62)

the closed-form expression for the velocity update may be symbolised as

u = ˇ̌u−C∇ϕ , (63)

where ˇ̌u = L−1 ̂̂u, and C = L−10.5 δtΘ?
ρG̃ denotes a 3×3 matrix of known co-

efficients. 9 Noting that the potential temperature perturbation θ′ is updated
according to (56a) upon the final velocity update, the only lacking element to

9 The expanded forms of (63) in either tensorial or explicit component notation
can be found in [37] and [58,60], respectively.
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complete the solution at each iteration is the pressure perturbation ϕ. This
brings the gas law back into focus, as discussed next.

4.3 Elliptic boundary value problem

In principle, the pressure perturbation can be evaluated straightforwardly from
the gas law (2). This leads to a viable acoustic option of the solver, which re-
solves propagation of sound waves in the spirit of gas dynamics for all speed
flows [57]. While impractical for NWP, such an option provides a useful ref-
erence for large-time-step simulations of low Mach number atmospheric flows
[61,30–32]. Otherwise, a boundary value problem (BVPs) for ϕ supersedes
(2) with its advective form (17) that, when integrated consistently with the
model numerics, can ensure computational stability independent of the speed
of sound [61,31,62]. In particular, recalling from Section 2.2 that in stationary
coordinates v = G̃Tu, (63) entails

v = ˇ̌v − G̃TC∇ϕ . (64)

Thereupon, manipulating the terms on the rhs of (17)—see [61,31] for details—
leads to the PDE

∂Gρϕ
∂t

+∇ · (Gρvϕ) = Gρ
3∑
`=1

(
a`
ζ`
∇ · ζ`(ˇ̌v − G̃TC∇ϕ)

)
+ bϕ+ c , (65)

where coefficients a`, b, c may depend on ϕ but the modified densities ζ` are
explicitly known. Interpreting (65) as an archetype PDE (45), empowers its
O(δt2) integration with a mixed forward/backward template

ϕn+1
i = Ai

(
ϕ̃,Vn+1/2, ρ∗n, ρ∗n+1

)
+ δtR̃ϕ|n+1

i ≡ ϕ̂i + δtR̃ϕ|n+1
i , (66)

where R̃ϕ ≡ [rhs(65)− (bϕ+ c)]/Gρ denotes the implicit forcing composed of
the three divergence operators on the rhs of (18), while ϕ̃ = [ϕ+ δt(bϕ+ c)]n

under A combines the past pressure with the explicit thermodynamic forcing
in the last term on the rhs of (18). Notably, the heat source/sink Πn specified
in (19) and contained in ϕ̃ accounts for complete forcings of full θ and qv,
including fast and slow moist processes as well as diffusion. Altogether, the
template (66) provides a discrete implicit constraint for (64), and thus for
(63),

0 = −
3∑
`=1

(
A?`
ζ`
∇ · ζ`(ˇ̌v − G̃TC∇ϕ)

)
−B?(ϕ− ϕ̂) . (67)

The coefficients A? and B? in (67) result from coefficients a` in (65) and the
superscript ? indicates that their dependence on ϕ is lagged. The Helmholtz
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problem (67) was discussed in [61,31]. In NFT codes, we solve (67) with a
bespoke nonsymmetric preconditioned Generalised Conjugate Residual (GCR)
approach, widely discussed in the literature; cf. [58] for a recent overview and
a comprehensive list of references.

4.4 Spatial discretisation

The theoretical considerations and adopted formalism do not depend on modes
of spatial discretisation. Namely, presentation so far applies equally well to
either structured grids or unstructured meshes. In particular, the described
advancements address as much the new hybrid finite-volume (FV) module
FVM [62] as its established structured-grid finite-difference (FD) predecessor
EULAG [38,61,32]. This versatility primarily owes to the colocated arrange-
ment of the dependent variables, which also facilitates the advocated NFT-FV
semi-implicit integrators. Because all relevant aspects of the spatial discreti-
sation were recently expounded in [62], we refer the interested reader to that
source and only briefly recall a few key generalities.

Sji j

Fig. 1. An edge-based, median-dual mesh. The edge connecting nodes i and j of the
primary polygonal mesh pierces, precisely in the edge centre, the face Sj shared by
computational dual cells surrounding nodes i and j; open circles represent barycen-
tres of the primary mesh, while solid and dashed lines mark primary and dual
meshes, respectively.

First, all calculations shown in the following section use a hybrid of two dis-
cretisation standards. In the horizontal, flexible fully unstructured median-
dual meshes, Fig. 1, favour FV discretisations, with the components of nabla
evaluated in the mesh nodes using the Gauss-divergence theorem [65–67]. In
the vertical, generic second-order-accurate centred FDs are used for the nodal
values of the radial partial derivative. The hybrid MPDATA judiciously com-
bines FV and FD variants [62,29], derivable from first principles separately
for the FD [45,51,52,55,28] and FV [54,65,29] modes of discretisation. As MP-
DATA evaluates both spatial derivatives and field values between the nodes—
in the spirit of staggered grids—these evaluations are different for structured
grids and unstructured meshes.

23



Fig. 2. Octahedral mesh O24 generated about reduced Gaussian with approximate
resolution of 3.75◦ (415 km). The shading represents the dual resolution, computed
as the square root of the local dual volume.

Second, although in general the numerics of FVM can use any horizontal
meshing, cf. [63], our interests so far are limited to bespoke meshes with control
volumes built about the Gaussian grids of the Integrated Forecasting System
(IFS) of ECMWF, Fig 2. While this imposes certain constraints on mesh
design [62], it accommodates both spectral-transform and grid-point solutions
at the same physical locations. In return, FVM inherits the equal regions
domain decomposition parallelisation scheme of the IFS, with multiple layers
of parallelism hybridising MPI tasks and OpenMP threads [34,62].

5 RESULTS

In the following, we illustrate theoretical considerations of the preceding sec-
tions with FVM simulations of the idealised supercell thunderstorm on a 120-
fold reduced-size sphere [27]. This problem captures intricate evolution of tor-
nadic storms governed by intense vorticity dynamics and heavy precipitation
[25,26]. Over the last four decades the problem has accumulated substantial
literature as an epitome of complex phenomena underlying severe weather.
Because it addresses a key area of nonhydrostatic dynamics and poses chal-
lenges to numerical simulation, it has recently been extended to the reduced-
size planet framework of [74] for testing nonhydrostatic models, to become a
standard benchmark for global model intercomparisons [27,8].

A supercell thunderstorm is a distinct atmospheric mesoscale phenomenon
with a convective cloud growing throughout the depth of the troposphere,
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forming a coherent structure and altering the ambient flow rather than be-
ing a mere perturbation of it. The supercell updraughts can achieve strength
of hurricane winds, in contrast with turbulence normally experienced while
flying through clouds characterised by vertical velocities of O(1) m s−1. Mois-
ture plays an essential role for the supercell formation. It provides means for
the intricate hydrodynamical instabilities that condition development of deep
convection as well as for enabling heavy precipitation playing a key role in the
supercell evolution [26,64]. Although simpler in scope than simulation of cloud
fields naturally evolving in response to diurnal cycle and intricacies of envi-
ronmental forcing [46,48], a controlled simulation of the archetypal supercell
evolution can be challenging. This is because large latent heat release and the
associated flow response occur at the finest scales and disturb the coherence of
resolved motions important for the process. Consequently, results of such sim-
ulations can be sensitive to initial/boundary conditions and details of model
numerics [5,31]. Such sensitivities are typically mitigated with explicit vis-
cosity and diffusion, aiming to assure a well-posed and numerically-resolvable
problem [25,31,27].

The two characteristic ingredients of the supercell simulation are ambient
conditions (wind, temperature and moisture profiles) conducive to supercells
development and a smooth localised initial perturbation of ambient poten-
tial temperature; cf. Appendix C. The detailed ambient and initial conditions
specified following [27] are available online at [8], including handy FORTRAN
scripts and instructions. Here, we only outline alternative analytic—as op-
posed to standard numerical—means for extending the thermodynamic pro-
files specified at the equator (summarised in Appendix C for the reader’s
convenience) to a balanced environment on a reduced sphere. In particular,
the prescribed zonal ambient wind

ua(φ, z) =
[
ua(φ, z), 0, 0

]
≡
[
û(z) cos(φ), 0, 0

]
, (68)

assumes a strongly sheared equatorial wind û(z) together with corresponding
profiles of potential temperature θ̂(z) and relative humidity Ĥ(z). These equa-
torial profiles idealise a typical supercell environment. Having available θ̂(z)
and Ĥ(z) ≡ q̂v(z)/qvs(T̂ , p̂) suffices to recover all necessary thermodynamic
profiles assuming hydrostatic balance and using formulae of moist thermo-
dynamics, provided in Sections 2.1.1 and 2.1.2. Furthermore, assuming the
shallow atmosphere approximation in the governing PDEs (cf. Appendix B),
moist undersaturated environment and the geostrophic balance (16) the an-
alytic expressions can be derived for ambient distributions of θρa(φ, z) and
Exner pressure πa(φ, z) compatible with the ambient wind (68),

θρ(φ, z) = θ̂ρ(z) exp[ sin2(φ)B(z) ] , (69a)

π(φ, z) = π̂(z)− exp[− sin2(φ)B(z) ]− 1

2cpθ̂ρC(z)
, (69b)
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where

B( z ) = Û∗C(z) , C(z) :=
1

2g

[
1

θ̂ρ

dθ̂ρ
dz
− 1

Û∗
dÛ∗

dz

]
, (70)

Û∗( z ) := û2 + a f0û ,

and .̂. accents denote equatorial profiles.

t [h] wmin, wmax qmax
v , qmax

c , qmax
p Rqp, Rqmax

p ∆qt

0 0, 0 0.014, 0, 0 0, 0 0

0.5 -9.32, 34.0 0.0157, 0.0027, 0.0141 0.03, 58.6 −10−3

1 -21.8, 39.0 0.0161, 0.0045, 0.0136 0.46, 135 -0.27

1.5 -19.3, 45.6 0.0150, 0.0048, 0.0139 0.60, 110 -0.88

2. -27.6, 47.9 0.0155, 0.0043, 0.0151 0.78, 129 -1.6
Table 1
Histories of vertical velocity extrema [m/s], water-species maximal mixing ra-
tios [kg/kg], precipitation-rate means and maxima [mm/h], and total water
deficit/excess [±%] defined in (71).

The sample results of a supercell simulation with FVM are summarised in
Table 1 and Fig. 3. The highlighted calculations assume a 20 km deep spherical
shell with 53.1 km inner radius, and a 2 h simulated time to cover the storm
evolution. The shell is horizontally discretised on the O180 mesh (cf. Fig. 2)
with quasi-uniform spacing δh<∼500 m on the reduced planet. In the vertical,
a regular grid is employed with uniform increment δz = 500 m. A variable
time step is specified according to the maximal advective Courant number
set at 0.97. Table 1 substantiates the earlier statements on the severity of
supercell storms by showing extreme values of vertical velocities, maximal
mixing ratios of the water species (qp in particular), averaged and maximal
surface precipitation rates, and the total water deficit/excess defined as

∆qt :=
[∫

(ρ∗qt)
/∫

(ρ∗qt)
0
]
− 1 (71)

where the superscript 0 refers to initial fields and the integration extends over
the entire model domain. Overall, the results in Table 1 and Fig. 3 verify
similar compilations already presented in the literature. In particular, the
updraughts maxima are consistent with the related results in Fig. 12 of [27],
Fig. 6 of [31] and Fig. 11 of [5], whereas the maximal mixing ratios of cloud
and precipitation water adequately agree with the results shown in the same
two figures of [31] and [5]. Furthermore, Fig. 3 documents the characteristic
updraught splitting in two disjoint cells past 30 min, matching a similar display
in Fig. 11 of [27].
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Fig. 3. The FVM supercell simulation on a reduced-size planet with horizontal
spacing δh<∼500. Horizontal cross sections at 5 km altitude are shown in 30 min
intervals for vertical velocity (top; contour interval 2 m s−1), and rainwater (bottom;
contour interval 1 g kg−1).

Noteworthy are data in the last two columns of Table 1. The total loss of water
substance after 2h, ∆qt = −1.6% of the initial integral mass of water vapour
1.645·1012 kg, can be perceived as substantial, if thought of in abstraction from
the water cycle with evapotranspiration and hydrology. The current simulation
employs an open boundary approximation for the precipitation fallout, and the
diagnosed deficit is consistent with the mean precipitation rates, 10 indicating
that predicted total water loss is physically meaningful rather than a numerical

10 The trapezoidal approximation to the 2h integral of the Rqp values listed in Table 1
matches the deficit within the multiplicative factor 1.01 .
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artefact. A more precise quantification of the deficit fraction due to the fallout
(as opposed to truncation errors) requires evaluating the cumulative (over all
simulation time steps) precipitation flux, integrated over the lower boundary
of the model [17]. Because we wish to address numerical details affecting model
conservativeness, we consider an analogous simulation with an impermeable
boundary for the precipitation fallout that conveniently provides an alternative
assessment of the conservation error.

t [h] wmin, wmax qmax
v , qmax

c , qmax
p Rqp, Rqmax

p ∆qt

0 0, 0 0.014, 0, 0 0, 0 0

0.5 -9.32, 34.0 0.0163, 0.0027, 0.0141 −10−17, 10−11 −10−14

1 -21.2, 39.7 0.0161, 0.0042, 0.0446 −10−9, 10−11 10−9

1.5 -23.4, 46.0 0.0162, 0.0045, 0.0403 −10−9, 10−11 10−4

2 -24.8, 47.9 0.0165, 0.0041, 0.0604 −10−8, 10−11 10−3

Table 2
As Table 1 but under the assumption of an impermeable surface for the precipitation
fallout.

As substantiated in Table 2, the resulting supercell is overall similar to that
highlighted in Table 1, except for huge maxima of the precipitation mixing
ratios. These large values of qmax

p mark the puddle formed by the fallout and
washed to the lee by the surface wind, Fig. 4. Because the water collected at the
ground is subject to phase changes in the same manner as aloft, it can evapo-
rate, feed the moisture back to the system and re-enter the cloud-evolution pro-
cess. Moreover, as the governing PDEs (14) account for dissipation/diffusion
with constant viscosity ν = 500 m2s−1 and Prandtl number Pr = 1/3 [27], the
puddle provides a reservoir for diffusion of qp to the atmosphere, as evidenced
by the water substance excess in the last column of Table 2. Albeit mathe-
matically correct under the impermeable-surface assumption, this process is
unrealistic and subject to truncation errors unaccounted for by the design of
the standard benchmark. Nonetheless, the values of the water substance excess
are sufficiently small to verify the thesis that the loss in Table 1 is essentially
due to the precipitation fallout.

Although in relative terms the magnitude of the water-substance conservation
error may appear acceptable, in absolute terms the unaccounted-for ∆qt ≈
10−3 % translates to 107 kg of water that can be worrisome, especially in the
context of climate models. To further assess the dependence of the conservation
errors on details of numerics, we conducted a series of experiments with various
boundary conditions for precipitation fallout and diffusion as well as a few
alternative forms of enforcing positivity of water-species mixing ratios. The
summary of our conclusions is guided by the results collected in Table 3.

The first and the second row of Table 3 repeat the last rows of Tables 1 and 2,
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Fig. 4. Surface qp [gkg−1] at t = 2 h in two identical simulations, except for the open
(run MpW0V1; left) versus impermeable (run MpW1V1; right) boundary conditions
for the precipitation fallout.

run [h] wmin, wmax qmax
v , qmax

c , qmax
p Rqp, Rqmax

p ∆qt

MpW0V1 -27.2, 47.8 0.0155, 0.0044, 0.0151 0.78, 130 -1.6

MpW1V1 -24.8, 47.9 0.0165, 0.0041, 0.0604 −10−8, 10−11 10−3

MgW1V1 -24.9, 48.2 0.0165, 0.0041, 0.0597 −10−8, 10−11 10−3

MgW1V0 -25.7, 45.4 0.0172, 0.0053, 0.2738 −10−17, 10−11 10−8

MpW1V0 -28.9, 58.1 0.0171, 0.0046, 0.1802 −10−16, 10−11 10−13

Table 3
Vertical velocity extrema [m/s], water-species maximal mixing ratios [kg/kg], pre-
cipitation rate means and maxima [mm/h], and total water deficit/excess [±%]
after 2h simulated time, for runs with various model set-ups; Mp/Mg refers to
standard/infinite-gauge variants of MPDATA, W0/W1 to open/impermeable lower
boundary for precipitation fallout, and V1/V0 to diffusion ON/OFF for all specific
variables.

respectively. Both these runs use the afore specified dissipation, and the be-
spoke advection approach that applies non-oscillatory MPDATA to moist spe-
cific variables in (53) as well as to their corresponding forcings in (54), while the
non-oscillatory infinite-gauge MPDATA variant (hereafter MPDATA∞) is ap-
plied to all other prognostic variables, which are common to dry and moist dy-
namics. A comprehensive technical exposition of FV MPDATAs for arbitrary
hybrid computational meshes is provided in [29]. For the purpose of this paper,
the only important distinction is that the MPDATA is strictly sign-preserving
(even in absence of non-oscillatory option), whereas positivity of MPDATA∞
relies on non-oscillatory enhancement and is assured only to round-off errors.
Thus, the only difference between the MpW0V1 and MpW1V1 runs is the sur-
face boundary condition for the precipitation fallout, as discussed earlier. The
run MgW1V1 parallels the MpW1V1, except that MPDATA∞ is applied to
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all advected variables, with the intent to assess the role of residual oscillations
in advective transport of moist variables on the solution accuracy. Judging by
the numbers collected in the second and the third row of Table 3, the two
solutions are close. This is corroborated by Fig. 5 that also hints (indirectly)
at a close agreement of the solution aloft in the first three runs summarised
in Table 3.

Fig. 5. Precipitation mixing ratio qp [g kg−1] at t = 2 h in the MgW1V1 simulation
at the surface (left) and 5 km aloft (right). The surface solution compares with the
MpW1V1 result in the right panel of Fig. 4; whereas the 5 km solution compares
with the MPW0V1 result in the right-most panel of the bottom row in Fig. 3.

Having established credibility of the viscous results in the first three rows of
Table 3, we now return to the water-substance conservation issue underlined in
the last column of the table. The simulations MgW1V0 and MpW1V0 repeat,
respectively, MgW1V1 and MpW1V1 runs with exception of setting the viscos-
ity ν ≡ 0. Such explicitly inviscid calculations rely on the implicit large-eddy-
simulation (ILES; [22]) property of MPDATA-based high-Reynolds-number
solvers, widely documented in the literature across a range of physical sce-
narios and scales [9,38,59–61,32,67,62]. Discarding the viscosity eliminates the
unrealistic moisture supply due to the diffusion from the puddle (discussed
above), and the last column of Table 3 documents the anticipated improvement
of the conservation error, by 5 and 10 orders of magnitude for the MPDATA∞
and the default MPDATA, respectively. Notably, larger conservation errors in
the MPDATA∞ run are due to the accumulation of roundoff-error negatives in
the FCT flux limiting, subsequently chopped off by the limiters of the PCM
integrators (55) detailed in Section 3. 11 Insofar as the adopted solution charac-
teristics are concerned, the inviscid results are consistent with each other and
overall agree with their viscous equivalents, except for substantially stronger
downdraughts and qp maxima. The respective solutions, corresponding to the

11 Recall, that considerations of Section 3 assure mathematically exact conservation
of the total water substance given strict positivity of advection.
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Fig. 6. As in Fig. 5 but for the inviscid runs MgW1V0 (top) and MpW1V0 (bottom).

viscous results in Fig. 5, are shown in Fig. 6. The higher Reynolds number
solutions show substantially different morphology especially in small scales.
Altogether, our ILES calculations corroborate results of [31] (cf. their Figs. 8-
9 and the accompanying discussion), illustrate the benchmark’s sensitivity
to the assumed artificial viscosity and numerical details, while concomitantly
attesting to the high degree of conservativeness available with FVM.

6 CONCLUSION

Early state-of-the-art 3D cloud models used fairly small horizontal domains
O(103) km2 resolved with coarse grid spacings of ≈1 km and modest size
grids not exceeding ∼503 nodes; cf. [25,5,46]. Nowadays, simulations of global
weather and climate at O(1) km horizontal mesh spacing are not only en-
visaged [2,36] but are already in progress [42,35,40,75]. The calculations per-
formed with operational settings at ≈ 1 km horizontal mesh spacing, high-
lighted in [40,75], attest to the tremendous advancement of computational
meteorology over the last four decades. It is this advancement that extends
the relevance of bulk microphysics parametrisations, originated for research
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of cloud dynamics and physics, to global weather and climate models; see
[44,43,76] for recent substantive developments and pertinent discussions. His-
torically, such models had to rely on sophisticated diagnostic subgrid-scale
parametrisation schemes [69], only recently superseded with more advanced
prognostic bulk microphysics [11]. The particular approach adopted for this
paper [13,14] assumes canonical warm-rain microphysics at the core of convec-
tive cloud models. Albeit physically simple, it contains the essential numerical
ingredients for generalisation to an all-scale method [15–17,31,32]. While the
underlying ideas were presented in application papers, its actual mathematical
apparatus and numerical machinery have never been documented in compre-
hensive detail. The current paper fills this gap, while extending the whole
concept to integration on manifolds using flexible finite-volume (FV) discreti-
sations on arbitrary hybrid computational meshes.

The PDEs describing evolution of water species in bulk microphysics parametri-
sations take a form of the generalised transport equation (45) with the right-
hand-side dependent on variables representing all water species as well as
the thermodynamic state of the system. While the lhs of (45) is analytically
expressed in the flux form, and thus susceptible to conservative FV discretisa-
tion, the dependencies on the rhs include transcendental functions and power
laws that assure conservation of the sum of all species—i.e., the total water
substance—subject to the boundary conditions for the precipitation fallout.
In consequence, designing a model conserving water substance to machine
precision entails judicious design of the rhs integrals. The design presented in
this paper exploits positivity of all water species and thus benefits from sign-
preservation of dependent variables in the advective transport. The results
of Section 5 show that not all means of assuring the positivity of advection
are equal. In that the standard MPDATA, attaining strict positivity based
on the convexity of upwinding, provides superior results to the infinite-gauge
MPDATA, attaining a round-off error positivity based on the FCT limiting.
This emphasises the role of algorithm customisation in addressing the be-
havioural errors; cf. §III-A-23 in [41]. Namely, the standard MPDATA delib-
erately targets the transport of water species in cloud models [45,47,49], while
the infinite-gauge variant targets the transport of fields with variable sign
[52,54,29]—even though both can transport arbitrary fields to second-order
accuracy.

The numerical approximations specific to the microphysics parametrisation
and their coupling to the semi-implicit integrators for the all-scale dynamics
were substantiated with a select problem of severe mesoscale weather. A tor-
nadic thunderstorm simulation benchmark [25], recently adopted to a reduced
size planet [27], is highly sensitive to the imposed viscosity and numerical de-
tails [31] and thereby serves well as a discriminating example. In particular, a
focused series of numerical experiments with varying model set-ups illustrates
the complexity of assessing the model conservativeness, the assurance of which
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spreads over several layers of the model numerics—from algorithms for advec-
tion and the rhs forcings, to compatible boundary conditions for the vector
differential operators ubiquitous in the model [53]. The discussed benchmark
fulfils its purpose in the context of the current paper. The reader interested in
other benchmarks and relative performance of FVM compared to other models
is referred to [8] and the publications to follow the program.
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Appendix A. Microphysical formulae

In a popular “warm rain” parametrisation [25,14], the power law expressing
precipitation terminal velocity in function of the dry air density and the pre-
cipitation mixing ratio can be written after [25] as

ϑ(ρ, qp) = 36.34(10−3ρ qp)
0.1364(ρ/ρ0)−1/2 , (72)

where the the numeral coefficients assume SI units of ρ and ϑ [14].

Similarly, moist thermodynamic sinks and sources on the rhs of (1c)-(1f) are:

Ap = max(0., k1(qc − qTc )) , (73)

Cp = k2 qc q
0.875
p , (74)

Ep =
1

ρ

(qv/qvs − 1)C(10−3ρ qp)
0.525

5.4× 102 + 2.55× 105/(p qvs)
, (75)

where k1 = 10−3 s−1, the autoconversion threshold qTc depends on a particular
application but typically is between 10−4 and 10−3 kg kg−1, k2 = 2.2 s−1, and
C = 1.6 + 124.9(10−3ρ qp)

0.2046 is the ventilation factor.

Appendix B. Specifications of the spherical frame

In the spherical curvilinear framework of [37], the vector u represents the
physical velocity with components aligned at every point of the spherical shell
with axes of a local Cartesian frame (subsequently marked as c) tangent to the
lower surface (r = a) of the shell; r is the radial component of the vector radius,

33



and a is the radius of the sphere, cf. Fig. 7.7, section 7.2 in [10]. Consequently,
dxc = r cosφ dλ, dyc = r dφ and zc = r−a; where λ and φ denote longitude and
latitude angles, respectively. Then, in the formalism of Sections 2 and 4 and
in the absence of coordinate stretching, x = aλ, y = aφ, and z = zc; thereby
effectively employing longitude-latitude coordinates standard in many global
atmospheric models [66]. Furthermore, the coefficient matrix G̃ consists of zero
off-diagonal entries, whereas G̃1

1 = [Γ cos(y/a)]−1, G̃2
2 = Γ−1, and G̃3

3 = 1. Here,
Γ = 1 + χ z/a, and indices 1, 2, and 3 correspond to x, y, and z components.
Consequently, the Jacobian is G = Γ2 cos(y/a). The parameter χ is set to unity
by default; whereas the optional setting χ = 0 selects the shallow atmosphere
approximation in the governing PDEs [74].

In the momentum equation, the components of the Coriolis acceleration are

−f × u =
[
v f0 sin(y/a)− χw f0 cos(y/a) , (76)

−u f0 sin(y/a) ,

χ u f0 cos(y/a)
]
,

where u = [u, v, w] and f0 = 2|Ω|. Furthermore, the metric forcings (viz.,
component-wise Christoffel terms associated with the convective derivative of
the physical velocity) are,

M(u) = (Γa)−1
[

tan(y/a)u v − χ uw , (77)

− tan(y/a)uu− χ v w ,

χ (uu+ v v)
]
.

Appendix C. Specifications for the supercell simulation

The equatorial profile of the zonal velocity component,

û(z) =


Us ž − Uc for ž < 0.8

Us(−1.25 ž2 + 3 ž − 0.8)− Uc for |ž − 1| < 0.2

Us − Uc for ž > 1.2 ,

(78)

idealises a supercell storm environment. Here ž := z/zs with zs = 5 · 103m
marking the shear depth, while Us = 30 ms−1 and Uc = 15 ms−1 are assumed.
Notably, the specified Uc is a numerical facilitator with an interpretation of a
Galilean shift, placing the observer in the reference frame of the moving storm

34



[27]. The equatorial potential temperature is accordingly prescribed as

θ̂(z) =

θ0 + (θtr − θ0) z̆1.25 for z̆ ≤ 1

θtr exp [S(z − ztr)] for z̆ > 1 .
(79)

Here z̆ := z/ztr, ztr = 12 · 103 m denotes the height of the tropopause, the
stratification S = g/(cpTtr), and Ttr = 213 K marks the temperature of the
isothermal stratosphere. Furthermore, the relative humidity profile is defined
as

Ĥ(z) =

1− 0.75 z̆1.25 for z̆ ≤ 1

0.25 for z̆ > 1 .
(80)

A smooth spheroidal perturbation δθ(λ, φ, z)—added to the ambient field
θ(φ, z) to initiate convection—is specified according to

δθ =

∆θ cos2(0.5π Rθ) forRθ < 1

0 forRθ ≥ 1 ,
(81)

where

Rθ =
[(
r(λ, φ)/rh

)2
+
(
(z − zc)/rz

)2
]1/2

. (82)

Here, r(λ, φ) denotes the great-circle distance from the perturbation’s origin,
the spheroid dimension parameters rh and rz are 10 and 1.5 km, respectively,
and the magnitude of the perturbation ∆θ = 3K is assumed.
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