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A big drawback of single, deterministic forecasts is that they 
tell us nothing about the certainty of the predicted outcome: 
is it quite certain, in other words is there quite a narrow band 
of possible outcomes, or is it quite uncertain, in other words 
is there a rather broad band of such outcomes? This is 
why ensemble forecasts were introduced: a whole range of 
forecasts are produced with slightly different initial conditions 
and approximations in the model. The result enables us to 
draw conclusions on the probability that particular outcomes 
will materialise. Ensemble forecasts have been with us 
since 1992. They were initially introduced at a coarser 
resolution than a single ‘high-resolution forecast’. However, 
since June 2023 the grid spacing of all our global medium-
range forecasts, produced operationally by the Integrated 
Forecasting System (IFS), has been 9 km. This change in 
emphasis in favour of ensemble forecasts has now also been 
applied to the experimental machine learning forecasts we are 
producing with the Artificial Intelligence Forecasting System 
(AIFS). As described in this Newsletter, at this stage two 
methods have been developed to produce AIFS ensemble 
forecasts. They have both been found to be similarly skilful, 
and we have made forecasts from one of them available as 
open charts under ECMWF’s open data policy. 

The task now will be to decrease the horizontal grid spacing of 
these forecasts, which is still rather coarse at about 111 km. 
This compares with a grid spacing of currently 28 km for 
deterministic AIFS forecasts, which is set to go down further. 
The number of AIFS ensemble members is currently 51, the 
same as for our medium-range IFS forecasts. However, it 
could be higher in the future because AIFS forecasts can be 
produced using considerably less computing power than 
traditional, physics-based forecasts. Meanwhile, ECMWF has 
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Machine learning ensembles

teamed up with Member 
States in an initiative to 
create machine learning 
weather forecasting 
systems, called Anemoi.

This Newsletter also 
provides an overview of the changes to be introduced 
in the IFS next month, when the operational forecasting 
system is upgraded to Cycle 49r1. This upgrade particularly 
improves 2 m temperature and 10 m wind speed forecasts. 
One reason for these improvements is the assimilation of 
2 m temperature observations, but upgrades to the data 
assimilation methodology and improvements to the land 
surface model also play a role. IFS Cycle 49r1 includes a new 
and fundamentally different scheme for model uncertainty in 
the operational ensemble forecasts. This development, which 
has been in the making for years, is presented in a separate 
article. There are also updates from the two EU Copernicus 
services we run. The Copernicus Climate Change Service 
(C3S) has developed a tool to explore climate change, and 
the Copernicus Atmosphere Monitoring Service (CAMS) 
has monitored high levels of wildfire emissions in Canada. 
Progress has also been made in ECMWF’s contribution to 
the EU’s Destination Earth initiative, which is detailed in an 
article that presents evaluation results. Destination Earth 
also uses machine learning to provide ensemble capabilities 
at high resolution, which shows that this method has wide 
applicability in what we do.

Florence Rabier 
Director-General

Editor  Georg Lentze   •   Typesetting & Graphics  Anabel Bowen   •   Cover  See figure on page 33
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Extremely warm summer in southeast Europe
Linus Magnusson, Rebecca Emerton

Summer 2024 was the warmest on 
record for Europe as a whole, albeit 
with large variability across the 
continent, according to ECMWF’s 
ERA5 reanalysis from January 1940 to 
the present. While parts of western 
Europe saw near-average or below-
average temperatures, the summer 
was characterised by much warmer-
than-average temperatures across 
most of eastern Europe. As an 
example, Cuprija in Serbia had 
65 consecutive days with a maximum 
temperature above 30°C. In this article, 
we focus on a region covering a large 
part of southeastern Europe (39–46°N, 
15–30°E), much of which saw its 
warmest summer in the ERA5 record.

The sub-seasonal to 
seasonal scale
Here we focus on predictions at the 
sub-seasonal scale up to six weeks 
ahead, and at the seasonal scale four 
months ahead. Comparing 

composites of 2‑metre temperature 
weekly anomalies for 6 June to 
25 August from ERA5 and ECMWF 
sub-seasonal forecasts with different 
lead times, the pattern over Europe 
was well captured in week‑2 forecasts 
(see the first image). In week‑6 
forecasts the signal was weaker, as 
expected, but it captured the pattern, 
with southeastern Europe having a 
stronger anomaly than western 
Europe. However, the extension of the 
warm anomaly to northeastern Europe 
was not well captured. 

The seasonal forecast from 1 May valid 
for June–July–August also captured a 
signal that southeastern Europe would 
have a stronger warm anomaly than 
western Europe. However, in the 
seasonal forecast, western Europe was 
predicted to be warmer than average, 
too, which was not the case in the 
outcome. The seasonal forecast also 
had a strong cold anomaly in the 
northern Gulf of Bothnia in the Baltic 

Sea, which was a remnant of the cold 
winter in northern Europe, but this water 
body became warmer than average.

Turning to the week-to-week variability 
for land-points in the box over 
southeastern Europe, we see 
significant variability during the 
summer in the ERA5 reanalysis, but all 
weekly means had a warm anomaly 
(see the second image). The largest 
anomalies are found for the 2nd and 
3rd week of July. The week-to-week 
variability was very well captured in 
week‑1 forecasts. Week‑2 forecasts 
captured the variability but with a 
somewhat lower amplitude in the 
ensemble mean. The week‑3 forecasts 
were more problematic, especially for 
the onset of the hottest period in the 
middle of July. For the 2nd week of 
July, the ensemble mean from 26 June 
predicted a slight cold anomaly for a 
large part of southeastern Europe. 
The outcome was also warmer than 
the 95th percentile of the ensemble 

Temperature anomalies in 
reanalysis and forecasts. 
Two-metre temperature 
anomalies for 6 June – 
25 August from ERA5 (top 
left), composite of 2‑week 
forecasts (top right) and 
6‑week forecasts (bottom left) 
from sub-seasonal forecasts, 
and seasonal forecast from 
1 May for June–July–August 
(bottom right).
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(not shown). For week‑4 to week‑6 
forecasts, we find very little intra-
seasonal variability, but all forecasts 
predicted warm anomalies of 1–2°C.

Heat stress
Associated with the warm anomalies, 
southeastern Europe also experienced 
well-above-average heat stress based 
on the Universal Thermal Climate 
Index (UTCI), which considers 

temperature, humidity, wind speed, 
sunshine and heat emitted by the 
surroundings, and how the human 
body responds to different thermal 
environments. It indicates weather-
induced outdoor thermal stress in 
humans by classifying UTCI values 
into ten different heat and cold stress 
categories, with units of °C 
representing a ‘feels-like temperature’. 
An ERA5 dataset of UTCI is available 

on the website of the EU-funded 
Copernicus Climate Change Service 
(C3S) implemented by ECMWF 
(https://doi.org/10.24381/
cds.553b7518).

Based on UTCI values calculated 
from ERA5, the UTCI anomaly in 
southeastern Europe for the summer 
as a whole was 3.3°C above average, 
relative to the 1991–2020 reference 
period. The entire period from 
28 May to 31 August saw daily 
maximum feels-like temperatures 
averaged over southeastern Europe 
exceeding the threshold for 
‘moderate heat stress’ (see the third 
figure). Sixty-six days during summer 
(June–July–August) exceeded the 
‘strong heat stress’ threshold (32°C), 
which can be compared to an 
average of 29 days per summer in 
the period 1991–2020. The ‘very 
strong heat stress’ threshold (38°C) 
was reached on 17 July (38°C) and 
13 August (38.3°C). At the peak of 
the heat stress on 13 August, the 
feels-like temperature was up to 
10°C higher than the 2 m 
temperature in some locations, 
particularly in the east of the region 
and in southern Italy (not shown). 
This indicates the importance of 
considering other environmental 
factors beyond temperature for 
assessing the impacts of heatwaves. 
Operational medium-range forecasts 
of UTCI, alongside other thermal 
comfort indices such as heat index, 
wind chill factor and wet bulb globe 
temperature, will become available in 
Cycle 49r1 of the Integrated 
Forecasting System (IFS), which is to 
be made operational this November.

Further information on surface air 
temperature anomalies in Europe and 
the world in August 2024 can be found 
in the corresponding C3S climate 
bulletin: https://climate.copernicus.
eu/surface-air-temperature-
august-2024

Weekly temperature anomalies in southeastern Europe. Weekly mean 2-metre 
temperature anomalies for land areas in southeastern Europe, in the box highlighted in the 
first plot of the previous figure, from ERA5 (dashed) and ensemble means from sub-
seasonal forecasts with different lead times.
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Universal Thermal Climate Index. 

https://doi.org/10.24381/cds.553b7518
https://doi.org/10.24381/cds.553b7518
https://climate.copernicus.eu/surface-air-temperature-august-2024
https://climate.copernicus.eu/surface-air-temperature-august-2024
https://climate.copernicus.eu/surface-air-temperature-august-2024


news

4 ECMWF Newsletter 181  •  Autumn 2024

Cause attribution. This is a summary of the causes of wildfires in three regions in 2023. 
It highlights the shifts in the drivers of fire activity during the extended fire seasons in 
Canada and Western Amazonia, where the influence of natural factors (weather and fuel) 
decreases as the fire season progresses. The anomalous event in Greece also stands out, 
with 60% of the causes remaining unexplained, likely linked to human influence.

State of wildfires 2023–24
Francesca Di Giuseppe, Joe McNorton, Mark Parrington, Anna Lombardi

The State of Wildfires report  
(https://essd.copernicus.org/
articles/16/3601/2024/), the first 
edition of a new systematic annual 
review of wildfires across the globe, 
was published in the journal Earth 
System Science Data (ESSD) in 
August. The publication takes stock 
of extreme wildfires of the 2023–2024 
season, explains their causes, and 
assesses whether events could have 
been predicted. It also evaluates how 
the risk of similar events will change 
in future under different climate 
change scenarios. 

The report, which will be published 
annually, is co‑led by authors from 
ECMWF, the UK Met Office, the 
University of East Anglia (UK), and the 
UK Centre for Ecology & Hydrology, 
with the support of more than 40 fire 
scientists from five continents.

Main outcomes of this 
year’s report
Globally, during the March 2023 to 
February 2024 fire season, wildfires 
released 2.4 Gt of carbon (C), or 
8.8 Gt of carbon dioxide (CO2), into 
the atmosphere – an amount 
equivalent to the combined annual 
anthropogenic emissions of the USA, 
the EU, and South America. 

Notable fire events included a 
record-breaking fire season in 
Canada, the largest recorded wildfire 
in the EU (Greece), El Niño-driven 
drought fires in western Amazonia 
and northern South America, and 
deadly, fast-moving fires in Hawaii 
and Chile. All major wildfires 
combined claimed over 250 lives and 
led to the evacuation of at least 
250,000 people worldwide.

The report highlights how human-
driven climate changes have made 
these extreme fire events more likely. 
An attribution analysis led by the UK 
Met Office shows how human influence 
has made fire weather conditions 
witnessed during parts of the 2023–
2024 fire season three times more 
likely in Canada, 20 times more likely in 
western Amazonia, and twice as likely 
in Greece.

The report also explores the likely 
scenarios if human emissions continue 
at their current pace or decrease 
thanks to reduction efforts. Even 
assuming emission reduction 
initiatives are in place, a Canadian 
born today is more likely than not to 
experience another fire season of 
similar magnitude to last year’s within 
their lifetime. In comparison, someone 
born in the 1940s would have had a 
one‑in‑ten chance of witnessing such 
an event.

ECMWF’s contribution
ECMWF contributed to diagnosing the 
drivers of wildfires, assessing their 
predictability, and evaluating 
emissions related to these events. 

The Centre's fire weather forecast 
identified which events could be 
predicted and at what lead time, 
proving forecasting skills at the 
seasonal timescale.

The Probability of Fire (PoF) model 
used by ECMWF provided valuable 
insights into the drivers of key wildfire 
events (see the figure). The model 
concluded that early-season wildfires 
in Canada and Western Amazonia 
were primarily driven by extreme fire 
weather conditions. However, 
persistent wildfires later in the season 

were unlikely to have been caused by 
anomalous weather or fuel conditions 
alone. This suggests that several 
factors unaccounted for by the model 
may have contributed to the 
prolonged fire season. These factors 
may include limited fire management 
resources following the unprecedented 
early season activity, continued fire 
spread not captured by the model, 
land management practices, or the 
re‑emergence of dormant early-
season fires.

Data from the EU's Copernicus 
Atmosphere Monitoring Service 
(CAMS), which is implemented by 
ECMWF, was also used extensively in 
the report. The reported fire emission 
totals were based on the mean value 
between CAMS Global Fire 
Assimilation System (GFAS) and 
Global Fire Emissions Database 
(GFED) datasets. Additional context 
for the impact of fire emissions on air 
quality was provided with the CAMS 
reanalysis of global atmospheric 
composition, showing that Canada 
had the highest annual average 
surface concentrations of particulate 
matter less than 2.5 micrometres in 
diameter (PM2.5) in 2023. Meanwhile, 
many regions of North America 
experienced concentrations above the 
US Environmental Protection Agency’s 
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exposure threshold of 35 μg/m3 for 
more than 10 days, increasing to more 
than 120 days close to the where the 
fires were burning in western Canada.

Media impact 
Officially published on Wednesday, 
14 August 2024, the report attracted 
significant media attention, being 
featured in over 600 items of 

international coverage. It has been 
promptly accepted as a scientific 
reference source and as a basis for 
several Wikipedia page updates 
documenting the extreme wildfires of 
the 2023–2024 season. It now ranks 
as ESSD’s 6th most impactful 
publication, according to Altmetric. 
The Altmetric score even surpassed 
those of other major reports, like the 

Global Carbon Budget and the 
‘Indicators of Global Climate Change’, 
a keystone publication by 
Intergovernmental Panel on Climate 
Change (IPCC) Working Group I 
authors. These achievements are even 
more impressive given this was the 
inaugural edition of the report, and we 
are still in the process of establishing 
its reputation.

Monitoring the 2024 Canada wildfires in CAMS
Mark Parrington, Enza Di Tomaso

During the summer of 2024, a large 
number of wildfires burned across 
Canada, primarily the western part of 
the country. According to estimated 
biomass burning emissions from the 
Copernicus Atmosphere Monitoring 
Service (CAMS), implemented by 
ECMWF for the EU, they resulted in 
the second-highest annual total 
emissions since the start of systematic 
monitoring in 2003. They were only 
surpassed by the historic Canadian 
wildfires which burned from May to 
September 2023 (see the first figure). 

Location of fires
The first significant fires of 2024 
occurred in May in western Canada. 

The British Colombia Wildfire Service 
attributed them to the surface 
reignition of holdover fires which had 
been smouldering underground 
through the winter. Most of the fires 
were relatively localised to the 
northeastern corner of British 
Columbia but resulted in the 
evacuation of thousands of people. 
The fires continued in this area 
through June. The fire count increased 
significantly through July as large 
wildfires developed across a wide 
region of boreal North America, 
covering Alaska and Canada’s western 
territories and provinces. 
The Northwest Territories, as in 2023, 
contributed the highest number of 
fires of any region of Canada through 

August. Further east during August, 
large fires also developed across 
Saskatchewan, Manitoba and Ontario. 

Monitoring of emissions
As part of CAMS, the Global Fire 
Assimilation System (GFAS) provides 
near-real-time monitoring of daily 
global wildfire locations and 
emissions. GFAS currently merges fire 
radiative power observations from the 
two Moderate-resolution Imaging 
Spectroradiometer (MODIS) 
instruments on the NASA Terra and 
Aqua Earth Observation System 
satellites. Emissions of a variety of 
smoke constituents, including carbon 
monoxide (CO), carbon dioxide (CO2), 
methane (CH4), black carbon and 
organic carbon aerosols, nitrogen 
oxides (NOx), and non-methane 
hydrocarbons (NMHCs), are estimated 
in GFAS. They are subsequently used 
as lower boundary conditions for the 
operational 5‑day forecasts and 
analyses of global and regional 
atmospheric composition produced by 
CAMS. The GFASv1.2 dataset 
provides a daily time series that starts 
in 2003 at a spatial resolution of 
0.1 degrees, allowing us to compare 
current emissions with those in 
previous available years.

Routine analysis of the GFAS data and 
CAMS forecasts hinted throughout the 
summer that the 2024 fire emissions 
were going to be at an extreme level for 
the second year in a row. Overall, the 
total emissions for Canada were 
established in early August as the 
second-highest annual total of the past 
22 years (see the first figure). However, 
at the territory/province level different 
patterns emerged. Twenty-two-year 
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records in monthly total emissions were 
set for British Columbia (May), Alberta 
(July), the Northwest Territories 
(August), Saskatchewan (August), 
Manitoba (May and August) and 
Ontario (August). The highest August 
monthly total emissions were also 
recorded for Canada.

Effects on air quality and 
temperature
The scale of the 2024 wildfires resulted 
in severely degraded air quality across 
western Canada, which also spread as 
far as eastern Canada and the USA. 
One notable atmospheric impact, 
resulting from the increased fire 
emissions in the Northwest Territories 
during August, was an episode of 
long-range smoke transport across the 
North Atlantic (see the second figure). 
This was detectable as enhancements 
to surface PM2.5 concentrations 
across parts of western Europe. 
Analysis of the impacts on numerical 
weather prediction of this smoke 
transport, comparing the interactive 
aerosols in the CAMS operational 
system with a corresponding control 
run based on the CAMS IFS 
configuration, but using climatological 
aerosols, indicated a reduction of up to 
2°C in the daily mean 2 m temperature 
from France to Scandinavia.

0 0.4 0.8 1.2 1.6 2

Aerosol optical depth analysis. Total aerosol optical depth analysis at 550 nm valid for 
18 August 2024 at 12 UTC, showing a smoke plume crossing the North Atlantic.

Why we monitor wildfire 
emissions
Canada fires in 2024 have clearly been 
record-setting and impacting different 
scales, from local air quality 
degradation in downwind regions to 
long-range effects at both the 
continental and inter-continental 

scales. CAMS near-real-time 
monitoring of wildfire emissions 
around the world and the impacts on 
atmospheric composition are essential 
for evaluating the CAMS forecast 
performance. It also enables 
applications of CAMS open data on 
significant episodes which can lead to 
degraded air quality in near real-time.

Introducing Anemoi: a new collaborative 
framework for ML weather forecasting
Jesper Dramsch, Baudouin Raoult, Matthew Chantry (all ECMWF), Teresa García (AEMET, Spain), Leif Denby 
(DMI, Denmark), Florian Prill (DWD, Germany), Niko Sokka (FMI, Finland), Antonio Vocino (ITAF Met Service, 
Italy), Jasper Wijnands (KNMI, the Netherlands), Thomas Nipen (MET Norway), Carlos Osuna (MeteoSwiss), 
Sara Akodad (Météo-France), Michiel Van Ginderachter, Dieter Van den Bleeken (both RMI, Belgium)

A range of national meteorological 
services across Europe and ECMWF are 
pleased to announce the launch of 
Anemoi, a Python-based framework for 
creating machine learning (ML) weather 
forecasting systems. Named after the 
Greek gods of the winds, Anemoi is a 
collaborative, open-source initiative 
involving the Spanish State 
Meteorological Agency (AEMET), the 
Danish Meteorological Institute (DMI), 
the German National Meteorological 
Service (DWD), the Finnish 
Meteorological Institute (FMI), the Italian 
Air Force Meteorological Service (ITAF 

Met Service), the Royal Netherlands 
Meteorological Institute (KNMI), MET 
Norway, Météo-France, MeteoSwiss, 
Belgium’s Royal Meteorological Institute 
(RMI) and ECMWF. It has the potential 
to democratise access to and further 
develop data-driven weather forecasts.

The goal of Anemoi is to provide the 
key building blocks to train state‑of-
the‑art data-driven models and run 
them in an operational context. As a 
framework it seeks to handle many of 
the complexities that meteorological 
organisations will share, allowing them 

to easily train models from existing 
recipes but with their own data.

Components
Anemoi comprises an ecosystem of 
Python packages, which cover the full 
life cycle of data-driven modelling. 
These Python packages each 
address a crucial aspect of the 
artificial intelligence (AI) weather 
forecasting pipeline:

•	 Anemoi Datasets: This component 
generates ML‑optimised datasets 
from various sources and data 
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formats of meteorological data and 
observations, complete with rich 
metadata. For example, an 
optimised subset of ECMWF's 
ERA5 reanalysis or of a historical 
operational analysis dataset. 
It streamlines the often 
cumbersome process of data 
preparation, ensuring that high-
quality, consistent, and optimised 
data is available for model training. 
(https://anemoi-datasets.
readthedocs.io)

•	 Anemoi Training: Understanding 
that flexibility is key in ML model 
development, this module allows 
users to modify most parts of the 
training through configuration files, 
without needing to alter the 
underlying code. This approach 
democratises access, enabling 
meteorologists without deep coding 
expertise to experiment with 
advanced data-driven weather 
prediction models. (https://anemoi-
training.readthedocs.io)

•	 Anemoi Models: This package 
houses the model code, designed 
with efficiency and minimal 
dependencies in mind. It ensures 
that the transition from 
development to deployment is as 
smooth as possible. (https://
anemoi-models.readthedocs.io)

•	 Anemoi Inference: Building on 
ECMWF's experience with the AI 
Models tool, which has been 
running daily experimental ML 
forecasts for over a year, Anemoi 
Inference enables fast operational 
deployment of trained models. This 
component is crucial for integrating 
ML forecasts into time-sensitive 
operational workflows. (https://
anemoi-inference.readthedocs.io)

•	 Anemoi Graphs: Supporting 
custom graph generation, this 
module is particularly exciting for 
researchers exploring novel graph 
architectures. It already supports 
multi-scale GraphCast-like graphs 
and stretched-grid graphs 
showcased recently by MET 
Norway, with more innovations on 
the horizon. Graphs can be easily 
visualised to understand the 
connectivity. (https://anemoi-
graphs.readthedocs.io)

Additional utility tools exist in 
supporting repositories beyond these 
core modules. Anemoi builds on top of 

ECMWF’s Artificial Intelligence 
Forecasting System (AIFS), expanding 
that codebase to enable wider 
functionality for a greater range of 
users. Future AIFS models will be 
trained using Anemoi.

Collaborative and data-
driven innovation
Anemoi represents a significant 
European effort to pool expertise and 
resources, at a time of rapid changes in 
weather forecasting. It is not just a 
technical framework but a philosophy 
of open collaboration, which we believe 
is essential for tackling the complex 
challenges of modern meteorology. 
The code is freely available on github, 
under a permissive licence, meaning 
that anyone can contribute to its 
development or use it for their activities.

AEMET, DMI, DWD, FMI, ITAF Met, 
KNMI, MET Norway, Météo-France, 
MeteoSwiss, RMI and ECMWF have 
joined together to further develop this 

Anemoi
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Current contributors to Anemoi

A large number of people across the 
organisations mentioned in this article 
have already contributed to the 
Anemoi codebase, and we’d like to 
thank them by naming them here:

Ana Prieto Nemesio, Baudouin Raoult, 
Cathal O’Brien, Christian Lessig, Ewan 
Pinnington, Florian Pinault, Gabriel 
Moldovan, Gareth Jones, Gert Mertes, 
Harrison Cook, Helen Theissen, 

Håvard Homleid Haugen, Jakob 
Schlör, Jan Polster, Jesper Dramsch, 
Kasper Hintz, Leif Denby, Magnus 
Sikora Ingstad, Marek Jacob, Mariana 
Clare, Mario Santa Cruz, Matthew 
Chantry, Meghan Plumridge, Michiel 
Van Ginderachter, Mihai Alexe, 
Ophelia Miralles, Rilwan Adewoyin, 
Sándor Kertész, Sara Hahner, Simon 
Lang, Simon Kamuk Christiansen, 
Steffen Tietsche.

code, with some using it as a basis for 
their data-driven activities. It supports 
collaboration across borders, leveraging 
the best tools and knowledge to 
develop new forecasting methodologies. 
This cooperative approach ensures that 
Anemoi can adapt to evolving scientific 
and technological advancements and 
will facilitate the integration of ML 
algorithms into existing forecasting 
workflows. Anemoi offers a platform for 
experimentation and development, 
encouraging stakeholders to test novel 
techniques and share results. 

We look forward to more 
contributions from the organisations 
currently contributing to Anemoi as 
well as others, as we together 
develop a tool by the community and 
for the community.  

The vision of Anemoi
The development of Anemoi aligns with 
ECMWF’s commitment to improving 
forecast accuracy and reliability in the 
face of changing climate conditions. 

https://anemoi-datasets.readthedocs.io
https://anemoi-datasets.readthedocs.io
https://anemoi-training.readthedocs.io
https://anemoi-training.readthedocs.io
https://anemoi-models.readthedocs.io
https://anemoi-models.readthedocs.io
https://anemoi-inference.readthedocs.io
https://anemoi-inference.readthedocs.io
https://anemoi-graphs.readthedocs.io
https://anemoi-graphs.readthedocs.io
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By utilising ML weather models, 
Anemoi aims to significantly improve 
short-term and long-term forecasts, 
helping societies better prepare for 
extreme weather events.

Looking ahead, the project plans to 
expand its network of collaborators, 
welcoming new partners to contribute 
to this innovative initiative. This 

expansion will not only increase the 
diversity of input data but also drive 
further advancements in ML 
applications for meteorology, including 
new AI real-time services to support 
national meteorological services.

We invite the global meteorological 
community to join us in this exciting 
journey. Whether you are a seasoned 

ML practitioner, a meteorologist curious 
about new technologies, or a student 
looking to shape the future of weather 
forecasting, there might be a place for 
you in the Anemoi community.

To stay updated on Anemoi 
contributions from ECMWF, visit the 
AIFS blog: https://www.ecmwf.int/
en/about/media-centre/aifs-blog.

Effect of a solar eclipse on an IFS forecast. Two‑metre temperature differences (°C; 
colour shading) between two 9 km IFS 19 h forecasts with and without solar eclipses included. 
The valid time is 19 UTC on 8 April 2024, during the total solar eclipse that crossed North 
America from the Pacific coast of Mexico towards Labrador. Small white dots show the eclipse 
path, while the yellow star indicates the eclipse’s centre at 19 UTC.

Solar eclipses in IFS forecasts and (re)analyses
Philippe Lopez

Every year, two to five solar eclipses 
(either total, annular or partial) affect 
our planet for up to six hours at a time. 
As documented in the literature using 
both observations and numerical 
simulations, the impact of an eclipse 
day on meteorological conditions can 
be significant, even in regions where 
the sun is only partially eclipsed by the 
moon. Indeed, during an eclipse solar 
radiation can locally be partially 
obstructed for up to three hours. 
The moving region within which 
obstruction occurs is up to 6,500 km 
wide. The strongest meteorological 

effects are found over land within the 
planetary boundary layer, especially 
close to the surface, with a local 
cooling of up to 7°C and a local 
reduction in wind speed. These 
low-level meteorological impacts are 
strongest in fair-weather conditions and 
for high solar elevations, and they can 
persist for several hours after the 
eclipse. Furthermore, temperatures in 
the stratospheric ozone layer between 
15 and 50 km altitude can also drop by 
several degrees Celsius, through a 
reduction in the ozone heating rate 
and, to a lesser extent, changes in 

chemical processes involving ozone. 
All these effects will be included in the 
analysis and in forecasts of ECMWF’s 
Integrated Forecasting System (IFS) 
from Cycle 49r2. They will be made 
operational next year with the upgrade 
to Cycle 50r1. They will also be 
included in the next global 
reanalysis, ERA6. 

Computation of solar 
eclipses
Until now, solar eclipses have been 
neglected in the IFS. This could 
occasionally lead to unwelcome 
large-scale errors, especially in 
low-level atmospheric temperatures, 
lasting for several hours. As a result, 
both analyses and forecasts were 
degraded, not only in ECMWF’s daily 
operations but also in reanalyses of 
past weather, such as ERA5. Although 
the effects of solar eclipses are not 
visible in the long-term statistical 
evaluation of the IFS due to their 
relative rarity, it is important to capture 
their effects to improve the forecasts 
when they do occur. The IFS has 
therefore been modified to account for 
the effects of solar eclipses using 
accurate astronomical computations of 
the sun’s position (VSOP87D solutions 
from Bretagnon and Francou, 1988) 
and of the moon’s position (ELP-
MPP02 solutions from Chapront and 
Francou, 2003). Over the period 
1900–2100, the accuracy of the 
eclipse’s central location on Earth as 
predicted by the IFS is typically within a 
couple of kilometres, compared to 
detailed calculations by NASA. Such a 
level of accuracy seems adequate for 
ECMWF’s operational 9 km resolution, 
but also for kilometre-scale simulations 
used in ECMWF’s contribution to the 

40˚N

30˚N

20˚N

120˚W 110˚W 100˚W 90˚W 80˚W 70˚W

–7 –5 –3 –2 –1 –0.5 –0.2 0
Two-metre temperature differences (°C)

0.2 0.5 1 2 3 5 7

https://www.ecmwf.int/en/about/media-centre/aifs-blog
https://www.ecmwf.int/en/about/media-centre/aifs-blog


news

9ECMWF Newsletter 181  •  Autumn 2024

EU’s Destination Earth initiative. Larger 
errors may occur for solar elevations 
lower than a few degrees, because in 
these cases the lunar shadow is very 
elongated. However, in these situations 
the radiative impact of the eclipse is 
usually negligible. The fraction of the 
sun eclipsed by the moon is computed 
at each location on Earth and used to 
reduce the incoming solar radiation at 
the top of the atmosphere, at each 
model time step.

Impacts on weather 
forecasts
The dramatic meteorological impact of 
a total solar eclipse in the IFS is 
illustrated with an event over North 
America on 8 April 2024. The figure 
shows a map of 2‑metre temperature 
differences between two 9 km IFS 19 h 
forecasts with and without the solar 
eclipse included. This was a total solar 
eclipse that crossed North America 

from the Pacific coast of Mexico 
towards Labrador. The figure highlights 
a drop of up to 6°C in predicted 
2‑metre temperature near the eclipse’s 
maximum over land. A cooling of 
comparable magnitude was observed 
using ground station 3‑second 
measurements kindly provided by the 
Purdue University Mesonet (Indiana, 
USA). It is worth emphasising that the 
sizeable effects of the eclipse are not 
confined to the 180‑km wide band of 
totality. They also affect the much wider 
penumbral region, with a cooling 
exceeding 1°C over most of the USA 
and Mexico. The asymmetry in the 
cooling over the central USA is due to 
the presence of clouds east of the 
eclipse path. Another particularly 
strong impact in the studied case is the 
reduction in predicted low‑level wind 
speeds by up to 3 m/s, in agreement 
with observations. Over sea and large 
lakes, the impact of the eclipse is 
negligible, mainly because of the slow 

thermal response of water to changes 
in radiation.

Inclusion in data 
assimilation
The handling of solar eclipses in the 
IFS has also been added to 4D‑Var 
data assimilation (DA), since their 
absence could lead to undesirable, 
excessive observation–background 
departures, especially for temperature. 
The inclusion of eclipses in both 
4D‑Var trajectories and minimisations 
improves the assimilation process, not 
only because the fit between model 
and observations gets closer, but also 
because fewer observations are 
rejected through quality control in 
regions affected by the eclipse. 
Further benefits should be expected 
when solar reflectance satellite 
observations start to be assimilated, 
due to their direct strong dependence 
on incoming solar radiation.

The modernisation of the Data Stores at ECMWF
Angel López Alós

The Copernicus Climate Data Store 
(CDS) and Copernicus Atmosphere 
Data Store (ADS) services are the 
backbone technical components 
supporting the implementation of the 
EU’s Copernicus Climate Change 
Service (C3S) and Atmosphere 
Monitoring Service (CAMS) run by 
ECMWF. These CDS and ADS services 
have recently been modernised and 
brought together in a Data Stores 
Service. This encompasses a wide 
range of software and data products, 
which now integrates with, benefits 
from and contributes to the more 
comprehensive ECMWF Software 
EnginE (ESEE). The ESEE is used to 
provide transversal data provision and 
workflow services across the 
portfolios of ECMWF, Copernicus, and 
the EU’s Destination Earth initiative, to 
which ECMWF contributes. The Data 
Stores Service is now hosted and 
running on the ECMWF Common 
Cloud Infrastructure (CCI). 
The modernised Data Stores have 
evolved from the original CDS 
infrastructure and capitalised on the 
experience and know-how gained 
from it. At the same time, they rely on 
open-source and cutting-edge 

technologies fully aligned with 
ECMWF’s Strategy.

Key components
The operational Data Stores Service is 
split into two main layers, which have 
different functions and cloud 
requirements: Data Repositories and 
Software Services. These layers are 
integrated by modular components 
sharing common interfaces and acting 
jointly to perform the full range of 
capabilities exposed to users. Similar 
to what happens for other services 
provided at ECMWF, such as the 
European Weather Cloud (EWC), the 
modernised Data Stores Service is 
deployed and runs on the CCI. This 
ensures the elastic provision of 
resources for further scalability of 
different components, facilitates 
integrated management across 
hardware and software, and 
strengthens synergies with different EU 
cloud-related initiatives in which both 
ECMWF and EUMETSAT participate, 
such as WEkEO. Layers of the Service 
can be described as follows: 

•	 Data Repositories: These are the 
foundational base of the Data Stores 

Service. This layer encompasses a 
broad range of distributed data 
products made available to users as 
part of the Services catalogue 
portfolio. External repositories are 
those hosted outside the CCI, while 
internal repositories are hosted 
within the CCI. Internals are managed 
as part of the Data Stores and are 
optimised to be accessed by its 
different components. The internal 
data repositories include an instance 
of ECMWF’s online Meteorological 
Archival and Retrieval System 
(MARS), where a subset of the most 
requested variables from the core 
MARS archive are regularly 
uploaded. It also includes an 
observations repository; other small 
on-disk datasets from C3S and 
CAMS; and an experimental ARCO 
(Analysis Ready, Cloud Optimized) 
data lake to improve visualisation and 
interactivity of catalogued data on 
the WEkEO platform and as an 
extension to address the needs of 
demanding machine learning/artificial 
intelligence (ML/AI) and visual-
interactive applications.

•	 Software Services: This layer 
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integrates all the different software 
components which deploy and run 
together to support the operational 
functioning of the Data Stores 
Service. The functional baseline of 
the Data Stores is to provide a 
seamless user journey from 
searching, discovering and sub-
setting to retrieving data, via 
interactive and programmatic 
interfaces. These services 
encompass different software 
applications, which deploy and run 
on dedicated servers and clusters 
within the CCI. They include the Core 
Data Stores Engine, the Evaluation 
and Quality Control (EQC) function, 
monitoring and metrics, the 
Copernicus Services web portals, 
interactive applications, different 
micro-services deployed and 
operated by third parties as part of 
contractual agreements, and soon a 
JupiterHub development 
environment where users will be able 
to perform computation and 
visualisation on top of the data, using 
a set of preconfigured expert tools.   

Data Stores software infrastructure is 
based on a plug-in architecture, which 
makes it possible to share 
components to power other platforms, 
but also to integrate third-party 
components to complement functional 
areas of the system. This layer 
supports interactive and programmatic 
interfaces (APIs), which are highly 
configurable and serve as an entry 
point for users to the data repositories 
and other standard services offered by 
the system. Most of this software has 
been developed directly on the CCI as 
part of the modernisation project. Data 

Store software components are 
cloud-oriented and ready to deploy 
and run in different clouds as backend 
engines, ‘powering’ other services and 
platforms. 

The CDS for C3S, the ADS for CAMS, 
and the recently launched Early 
Warning Data Store (EWDS) for the 
EU’s Copernicus Emergency 
Management Service (CEMS) are the 
well-known public-facing interfaces of 
the Data Stores Service. 

On the periphery of the Data Stores, 
but closely interlinked with them, there 
is a layer made of components which 
complement the content and 
functional scope of the Data Stores. 
Of special relevance are the following:

•	 earthkit: the ECMWF open-source 
Python code repository offering a 
broad set of expert libraries 
optimised to work with ECMWF 
and Data Store data resources. 
Within the Data Stores, earthkit 
libraries are used to foster data 
formatting, processing and 
visualisation capabilities. 

•	 Visual Interactive Content (VIC): 
this includes a broad set of user-
oriented applications and training 
material that showcases or makes 
use of the full range of data 
resources and capabilities of the 
Data Stores and earthkit via friendly 
interfaces. VICs can deploy and run 
anywhere. This enables user 
communities to discover, learn and 
interact with the available data and 
functionalities. The recently 
launched Copernicus Interactive 
Climate Atlas is an example of a VIC.

•	 External platforms: this includes a 
very broad ecosystem of platforms 
and infrastructures ‘powered by’ 
the Data Stores. These platforms 
may interact with or consume data 
resources via the exposed 
interfaces, embed technical 
components or integrate VIC as 
part of their portfolio. 
The Copernicus WEkEO DIAS 
Platform – a partnership of ECMWF, 
the European Organisation for the 
Exploitation of Meteorological 
Satellites (EUMETSAT), Mercator 
Ocean and the European 
Environment Agency (EEA) – is an 
example of such a platform.

Like an iceberg
The ECMWF Data Stores Service is a 
complex, multi-layer system that can 
be conceptually likened to an iceberg: 
simple interfaces on the surface, with a 
robust and scalable backend 
underneath providing seamless access 
to a broad set of catalogued resources. 

The modernisation of the former Data 
Stores has touched all the different 
layers of the architecture. It became 
necessary to overcome the 
obsolescence of former components 
and make the system evolve in a 
changing and highly demanding 
environment. The Data Stores Service 
will thus play a central role as an 
efficient, versatile and trusted 
transmission link between big, 
distributed and heterogeneous data 
sources and increasingly sophisticated 
user requirements, driven by the 
development of new technologies and 
the need for immediate data and 
information. 
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the data layer, the system layer, 
and the business layer.
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Increasing the lead time for early warnings
Christian M. Grams (MeteoSwiss), Joshua Dorrington (University of Bergen, Norway), Federico Grazzini 
(ARPAE-SIMC, Italy), Linus Magnusson, Frédéric Vitart (both ECMWF), Marta Wenta (AXPO Solutions AG, 
Switzerland)

ECMWF has taken part in a project 
that aimed to increase the lead time 
for early warnings by ensuring that the 
forecasting of extreme events is 
dynamically informed. In this ‘Transfer 
Project’ of the collaborative research 
centre Waves to Weather (SFB/
TRR165) funded by the German 
Research Association (DFG), two 
forecast prototypes, DOMINO and 
MaLCoX, were developed. It was 
realised together with scientists at the 
Karlsruhe Institute of Technology (KIT, 
Germany), the University of Munich 
(Germany), and the Italian regional 
meteorological service of Emilia-
Romagna (ARPAE). ECMWF’s role 
came about through its collaboration 
with ECMWF Fellow Christian Grams 
and his group at KIT. The central aim 
was to make use of the wealth of 
knowledge about dynamical 
precursors for extreme events. While 
the prototypes showcase heavy 
precipitation events in northern Italy, 
they are generally applicable to any 
type of weather event for which some 
understanding of dynamical 
precursors is available. 

Forecasting extreme weather events is 
the most important task of operational 
numerical weather prediction (NWP). 
However, predicting details of local 
extremes beyond 1–3 days in advance 
remains challenging. Research has 
shown that most events have specific 
large-scale dynamical precursors, 
which depend upon the type of 
extreme weather, the region, and the 
season. For instance, springtime heavy 
precipitation events in northern Italy are 
typically embedded in a highly 
amplified Rossby wave pattern 
downstream of a trough in a region of 
enhanced integrated water vapour 
transport (IVT). Such dynamical 
precursors can provide a narrative 
chain of the unfolding of an extreme 
event. However, operational forecasting 
procedures do not yet systematically 
incorporate this knowledge. 

DOMINO
The first tool, DOMINO (Dorrington 
et al., 2024a, https://doi.org/10.1002/
qj.4622), focuses on the large-scale 
circulation patterns that modulate the 

likelihood of extreme events. Given a 
list of extreme event dates, the 
framework automatically identifies the 
precursor patterns in any set of 
candidate variables in ECMWF's 
ERA5 reanalysis, e.g. 500 hPa 
geopotential height (Z500) or IVT. 
Based on these patterns, DOMINO 
computes a standardised ‘activity 
index’, which estimates the 
probability of an extreme. An elevated 
precursor activity occurred for 
northern Italy during 15–17 May 2023, 
resulting in devastating floods in the 
Emilia-Romagna region. The medium-
range ensemble precipitation forecast 
of ECMWF’s Integrated Forecasting 
System (IFS) indicated the extreme 
event with a lead time of about 
3 days. However, only 1.5 days 
before the event (forecast initialised 
on 14 May) did the ensemble centre 
around the observed precipitation 
(see the first plot of the figure and 
Dorrington et al., 2024b, https://doi.
org/10.5194/nhess-24-2995-2024). 
In contrast, already from 8 May the 
Z500 and IVT precursors showed 
elevated risk with the ensemble 
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et al., 2024b, https://doi.org/10.5194/nhess-24-2995-2024, published under CC BY Licence 4.0.
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median slightly above a pre‑warning 
level (yellow >1) and 25% of the 
ensemble members above 2 (red) for 
IVT (see the second plot of the figure). 
Thus the dynamical precursor 
ensemble forecast indicated the 
event 2–5 days earlier compared to 
direct precipitation forecasts, 
extending the lead time for early 
warnings from 3 days to up to 8 days. 
DOMINO also makes it possible to 
explore a potential predictability 
barrier for an event and to assess – a 
priori – when a forecast becomes 
more reliable (details in Dorrington 
et al., 2024b). 

MaLCoX
The second tool, MaLCoX (Machine 
Learning model predicting 
Conditions for eXtreme precipitation, 
Grazzini et al., 2024, https://doi.
org/10.1002/qj.4755), recognises 
favourable synoptic conditions 
leading to precipitation extremes and 
subsequently classifies extremes 
into three different categories 
according to the presence of 
convection. It is tailored for extreme 
precipitation events in northern and 
central Italy but is extensible to other 
regions and timescales. MaLCoX, 
which is based on random forest 
architecture, uses different groups of 
predictors, including local (point-
based) predictors and the precursor 
indices from DOMINO as non-local 
(field-based) predictors. The non-
local predictors are particularly 
relevant and increase the skill of 
MaLCoX for medium-range lead 
times > 6 days. 

MaLCoX has been implemented 
operationally at ARPAE Emilia-
Romagna (Bologna) and shows 
comparable skill to direct precipitation 
output from the ensemble, in particular 
in situations with strong dynamical 
forcing (see the second figure). This is 
remarkable as MaLCoX is solely 
trained on the control forecast and 
currently uses no dynamical ensemble 
information as input. An advantage 
over ensemble forecasts comes from 
interpretability. MaLCoX is able to 
attribute its decision (extreme ‘yes’ or 
‘no’, and category) to individual 
components, thus providing forecast 
products which allow dynamical 
insights (e.g. anomalous IVT values vs. 
wave amplitude). Understanding why 
a model makes a certain prediction 
can be as crucial as the prediction's 
accuracy, especially when forecasters 
have to face rare conditions and they 
need to gain trust in model output.

Applicability
According to discussions with 
forecasters at ARPAE Emilia-Romagna 
and MeteoSwiss, such early warnings 
based on dynamical precursors are 
particularly useful for ‘low regret’ 
actions, for which measures to 
mitigate negative impacts can be 
taken at a low cost and some false 
alarms are acceptable. The MaLCoX 
suite at ARPAE Emilia-Romagna 
(Bologna) is already fine-tuned for 
heavy precipitation events in northern 
Italy, and it runs operationally at 
ARPAE. For more information, please 
contact Frederico Grazzini. 
The DOMINO workflow is 
implemented on ECMWF’s ecgate 
server and is available to ECMWF 
Member States as an easy-to-use 
preconfigured software package. 
For more information, please contact 
Linus Magnusson, Christian M. 
Grams, or Joshua Dorrington. 

Performance of 
MaLCoX. Brier 
score for 
precipitation 
forecasts of MaLCoX 
(orange) compared 
to the direct 
ensemble output 
(blue) and 
climatology (green). 
The shading 
represents 95% 
confidence intervals. 
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Code for Earth 2024 – successful completion of 
13 challenges
Athina Trakas, Esperanza Cuartero

Code for Earth is an ECMWF activity 
focused on innovation, collaboration 
and open-source development. 
It bridges the gap between creative 
minds and real-world challenges. 
Since 2018, selected developer 
teams and individuals from outside 
ECMWF have come together each 
summer with ECMWF mentors and 
partners on innovative projects in 

data science; weather, atmosphere, 
climate or other Earth sciences; 
visualisation; and more. So far, the 
programme has produced over 
50 open-source projects, some of 
which have been beneficial to 
activities at ECMWF and its Member 
and Co‑operating States. For 
example, the Jupyter Notebooks 
developed in one of the 2023 projects 

will be used in core ECMWF training 
resources, and code developments in 
land verification from another 2023 
project have been incorporated into 
the LANDVER package. In this year’s 
edition, Code for Earth has seen the 
successful completion of 
13 challenges under the headings of 
data visualisation, machine learning, 
and software development.

https://doi.org/10.1002/qj.4755
https://doi.org/10.1002/qj.4755
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Code for Earth in numbers

Started in 2018

Has produced 59 projects

Has involved 107 mentors

Has attracted 126 participants

Code for Earth 2024
Each year, the programme outlines a 
set of challenges and invites 
individuals and developer teams to 
submit proposals through an open Call 
for Participation. Once selected, 
teams work on their chosen challenge 
during a four-month coding phase, 
transforming the initial ideas into 
actionable projects as they develop 
their solutions.

This year’s Code for Earth edition 
benefited from expanding its impact 
through strengthened partnerships, in 
particular with IFAB, the International 
Foundation Big Data and Artificial 
Intelligence for Human Development, 
and additionally through so-called 
Joint Challenges. These were 
developed jointly with the following 
partner organisations: the European 
Environment Agency, the University of 
Reading (UK), the University of Bonn/
Center for Earth Observation and 
Computational Analysis (Germany), 
and the Helmholtz-Zentrum Hereon 
(Germany). 

From the proposals submitted, 
13 talented developer teams were 
selected to tackle challenges faced by 
scientists and technical specialists 
working on real-world issues. Each 
team was guided by an ECMWF 
mentor and, for Joint Challenges, 
mentors from partner institutions – all 
experienced specialists in their 
respective areas. The teams worked 
on the following projects:

Stream: Data visualisation and visual 
narratives for Earth science 
applications

•	 CAMS Verisualiser: A web 
application for interactive 
verification results. This project 
developed a web application with a 
Python backend and JavaScript 
frontend to visualise CAMS 
verification data interactively, 
allowing a user to change scale, 
zoom in, etc. CAMS is the EU’s 
Copernicus Atmosphere Monitoring 

Service, implemented by ECMWF.

•	 CAMS-nb-Charts: Jupyter 
notebooks for CAMS web charts. 
CAMS-nb-Charts created reusable 
Jupyter notebooks to 
programmatically reproduce CAMS 
forecast charts. Using a flexible 
template and configuration file, the 
project enables easy customisation 
and data visualisation across 
various variables.

•	 vAirify: An air quality dashboard. 
The project developed a dashboard 
that compares CAMS air pollution 
forecasts with in‑situ measurements. 
Forecasters can visualise variations 
and zoom into local areas via an 
intuitive map view, helping them to 
improve model accuracy.

•	 Tales of Dry Lands: 
Contextualising Earth’s water 
story. This project used Python 
notebooks to help users 
understand and visualise climate 
data related to droughts. 
It simplified complex drought 
patterns, making them accessible 
to a broader audience.

•	 SunVizor: Visualising ECMWF and 
Copernicus data for the 
renewable energy community. 
SunVizor developed a user-centric 
web application to visualise and 
compare solar energy data, 
addressing the need for better tools 
in the solar energy sector. 

Stream: Machine learning for Earth 
science applications

•	 HydroGap-AI: Bridging gaps in 
streamflow observations with 
ML-driven solutions. The project 
focused on filling gaps in daily 
streamflow time series using 
advanced machine learning 
techniques. It provides an open-
source Python package to ensure 
more accurate and continuous 
hydrological data.

•	 Project Polly: A natural language 
processing interface to extract 
complex features from weather 
datacubes. The project developed 
a Natural Language Model (NLM) 
capable of extracting specific 
weather information from large 
datasets. It integrates with a 
chatbot to assist both technical and 
non-technical users in accessing 
complex weather data.

•	 XAI for weather forecasting 
models. The project focused on 
analysing training phase data of AI 
weather forecasting models 
(PanguWeather and ECMWF’s 
Artificial Intelligence Forecasting 
System – AIFS). It explored input–
output relationships for process-
based analysis to improve 
forecasting accuracy.

•	 ML-BEES: Using machine 
learning to emulate the Earth’s 
surface. This project evaluated and 
improved the performance of 
ECMWF's land surface ML model 
prototype by validating its accuracy 
and comparing its output to in‑situ 
observations. It developed an 

Group photo. Participants in the Code for Earth Final Event in Reading, UK, in September 2024.
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evaluation framework for land 
surface model emulators.

•	 KGB-TruthGuiding: Knowledge 
graph generation for enhanced 
chatbot and scientific literature 
synthesis. The project built a 
knowledge graph from scientific 
documents to enhance Large 
Language Models (LLMs) and 
chatbots. It aimed to improve the 
ECMWF-assistant chatbot by 
providing more interactive, 
explainable and engaging 
responses.

Stream: Software development for 
Earth science applications

•	 Optimising CDSAPI Datasets 
Retrieval: Advance user 
capabilities to handle data 
constraints when using CDSAPI. 
The project developed a 
mechanism to optimise data 
retrieval requests via the Climate 

Data Store API (CDSAPI). A key 
feature was to break down user 
requests into multiple valid sub-
requests that adhere to data 
constraints.

•	 CDSAPI Request Check. 
The second project on advancing 
user capabilities when using 
CDSAPI produced a Python library 
that validates CDSAPI data 
requests in advance, increasing the 
chances of successful data 
retrieval, reducing time, and 
minimising server costs.

•	 AirQuality Urban View: Regional 
to urban air quality mapper. 
The project achieved downscaling 
regional air quality data to urban 
levels and visualising it through 
intuitive maps, providing precise air 
quality insights for European cities.

In 2024, the Final Event celebration 
took place at the end of September at 

ECMWF’s headquarters in Reading, 
UK. All teams showcased their 
projects and solutions. These 
innovative outcomes are available on 
GitHub (https://github.com/
ECMWFCode4Earth) and may be 
incorporated into operational systems. 
The participants’ and mentors’ hard 
work and commitment played a key 
role in another successful Code for 
Earth edition.

A look to the future
Looking forward to 2025, the 
programme will keep evolving to 
address new challenges and 
partnerships. With rapid 
advancements and shifting user 
needs, Code for Earth will identify key 
opportunities and turn them into 
challenges for the 2025 edition. 
For more details and feedback, visit 
our website (https://codeforearth.
ecmwf.int/) or contact us directly at 
codeforearth@ecmwf.int.

Evaluating km-scale simulations in Destination Earth
Estíbaliz Gascón Salvador, Michael Maier-Gerber, Benoît Vannière, Žiga Zaplotnik, Tobias Becker, 
Linus Magnusson, Matthieu Chevallier, Irina Sandu

As part of the European Commission’s 
Destination Earth (DestinE) initiative, 
ECMWF is developing a digital twin 
focused on weather-induced extreme 
events. This digital twin (Extremes DT) 
includes a global component, created 
using ECMWF’s Integrated 
Forecasting System (IFS) at 4.4 km 
resolution, and a regional component 
over Europe, at 500 to 700 m 
resolution, developed by a consortium 
led by Météo-France involving several 
national meteorological services.

ECMWF has been running the global 
Extremes DT daily for over a year. 
To assess its performance, ECMWF 
conducted a preliminary evaluation of 
five-day 4.4 km forecasts initialised 
daily from 1 September 2023 to 
31 August 2024 from the ECMWF 
operational analysis. This evaluation 
provided valuable insights into the 
added value of km-scale simulations, 
particularly regarding the representation 
of extreme weather events, and for 
future model improvements.

The evaluation shows that the global 

Extremes DT improves the prediction 
of certain extreme phenomena 
compared to ECMWF’s 9 km 
operational forecasts. For example, 
the 4.4 km resolution enhances the 
intensity prediction of tropical 
cyclones (TC) in general, but 
particularly for some rapidly 
intensifying TCs. It also improves the 
representation of extreme precipitation 
in mountainous areas, thanks to better 
orographic representation.

Enhanced precipitation 
forecasts over complex 
orography 
In terms of extreme precipitation, this 
one year of data has demonstrated 
that the 4.4 km resolution of the 
Extremes DT brings an improvement 
of the global forecast performance in 
complex orographic areas, compared 
to the 9 km resolution. This is 
noticeable across most percentiles of 
the precipitation distribution, as 
shown in the first figure. Both the 
overestimation of small 24 h 

precipitation values and the 
underestimation of very large 
precipitation values observed in the 
9 km forecast are reduced, which 
leads to a smaller absolute bias. 

Increasing the resolution from 9 km to 
4.4 km also significantly reduces the 
occurrence of false alarms for extreme 
convective precipitation over small but 
complex orographic islands 
(i.e. Tenerife). These false alarms are 
due to an overestimation of the 
moisture convergence closure of the 
convective parametrization when small 
mountain ranges with steep slopes are 
under-resolved. Higher resolutions 
mitigate this issue.

Higher resolution enables 
more accurate tropical 
cyclone intensity prediction
The evaluation of all TCs occurring 
globally in the one-year verification 
period clearly demonstrates a great 
benefit of running the IFS at higher 
resolution for TC intensity prediction. 
While the TCs are always 12–15 knots 

https://github.com/ECMWFCode4Earth
https://github.com/ECMWFCode4Earth
https://codeforearth.ecmwf.int/
https://codeforearth.ecmwf.int/
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Comparison of precipitation forecasts. We compare one year of operational (9 km, 
blue) and DestinE (4.4 km, orange) 24 h precipitation forecasts valid on day 4. Specifically, 
we show the results of a quantile–quantile evaluation against SYNOP weather station 
observations in areas with complex orography. Dots are 1–98 percentiles, and crosses are 
percentiles from 99 to 99.9. The closer the dots and crosses are to the diagonal line, the 
less the forecast distribution diverges from the observation distribution. The inset bar plot 
shows the changes of root-mean-square error (RMSE), correlation ρ, and absolute bias |b| 
for forecasts at 4.4 km resolution with respect to the 9 km forecast. Numbers above the 
bar plot show raw verification indices for each forecast model. 

weaker on average than observed in 
9 km forecasts up to 120 h ahead, the 
initially equally large bias in the 4.4 km 
forecasts steadily reduces until it 
almost vanishes on day five (see the 
second figure). This confirms our 
experience from monitoring forecast 
performance for individual TCs during 
that one year: DestinE forecasts were 
usually better at predicting both TC 
intensification and peak intensity.

The fact that the bias at initialisation 
time remains almost unchanged 
highlights that the resolution increase 
in the forecast model should ideally 
be accompanied by a higher-
resolution 4D‑Var analysis. Initial tests 
in this direction are promising as they 
show, for example, that the explosive 
rapid intensification of TC Otis (2023) 
could have been accurately predicted 
if the DestinE forecast had been 
initialised from a higher-resolution 
4D‑Var with a 12‑hour window, 
together with a reduced dependence 
on the convection scheme.

Addressing remaining 
challenges
Despite promising results from this 
one‑year evaluation of Extremes DT 
daily forecasts, some challenges 
remain. An example is the 
overestimation of very cold 2 m 
temperatures globally in very stable 
boundary layers. This is likely caused 
by increased vertical wind shear due to 
better resolved orography. However, 
this aspect has significantly improved 
in DestinE 4.4 km simulations carried 
out with the new IFS Cycle 49r1, which 
is to be implemented in November 
2024. This is thanks to the inclusion of 
2 m temperature in data assimilation 
and enhanced 2 m diagnostics. Some 
issues with convective precipitation still 
persist, such as the failure to propagate 
marine convective precipitation further 
inland. Tuning the cloud base 
convective mass flux in the convective 
parametrization has shown potential to 
help, but as it causes some forecast 
degradation in the tropics, it still 
requires further investigation. In view of 
the enhancements that high-resolution 
4D‑Var has brought in the case of TC 
Otis, as mentioned above, we will 
undertake a more comprehensive 
investigation into its added value for 
the representation of extreme weather 
events. These aspects will be key 
points of investigation for Phase II of 
DestinE (2024–2026).

Comparison of TC intensity forecasts. We compare one year of mean maximum wind 
speed errors of TCs from all ocean basins in operational (9 km, blue) and DestinE (4.4 km, 
orange) forecasts. The error is shown as a function of lead time. Vertical bars indicate 
2.5%–97.5% confidence intervals. IBTrACS observations serve as reference, and a 17 m/s 
intensity threshold is applied to the observations to only consider TCs of at least tropical 
storm intensity. The numbers on top indicate the number of TCs found per lead time in 
both operational and DestinE models.
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IFS upgrade improves near-surface wind 
and temperature forecasts
Christopher D. Roberts, Bruce Ingleby, Alan Geer, Elias Hólm, Martin Janousek, Fernando Prates, 
Mark Rodwell

The latest update to the ECMWF Integrated 
Forecasting System (IFS) is due to be 
implemented operationally in November 2024.

IFS Cycle 49r1 is a major upgrade to the IFS model 
and associated data assimilation system. Among 
many other changes, it includes the assimilation of 
2 m temperature observations; increased resolution 
and soft re‑centring of the Ensemble of Data 
Assimilations (EDA); activation of the Stochastically 
Perturbed Parametrizations (SPP) scheme for model 
uncertainty in all ensemble applications; extended use 
of microwave data over sea ice; higher-resolution data 
from infrared satellite sounders; and improvements to 
land-surface modelling and assimilation methodology. 
This upgrade substantially improves 2 m temperature 
and 10 m wind speeds, particularly for the winter 
months in the northern hemisphere. Cycle 49r1 also 
brings changes to the resolution of the ocean wave 
model and the frequency of medium-range and 
sub‑seasonal re‑forecasts, which will now run on fixed 
days of the month.

Forecast model
An essential ingredient of a reliable ensemble forecast 
system is an accurate representation of the uncertainties 
associated with parametrized physical processes. One 
of the major changes in IFS Cycle 49r1 is the activation 
of the Stochastically Perturbed Parametrizations (SPP) 
scheme, which replaces the effective and long-serving 
Stochastically Perturbed Parametrization Tendencies 
(SPPT) scheme in all ensemble configurations. The main 
impacts of the switch to SPP include:

•	 improved physical consistency due to local 
conservation of moisture and energy, which was not 
respected by SPPT

•	 an improved representation of uncertainties in the 
near-surface boundary layer, which contributes to 
improved probabilistic skill of 2 m temperature and 
10 m winds in medium-range forecasts

•	 improvements to the spread–error relationship of 
sub-seasonal forecasts of the Madden–Julian 
Oscillation (MJO), and

•	 an increase in the frequency of tropical cyclones (TCs).

Further information about this revision of the IFS model 
uncertainty scheme, including the scientific motivations 
and implementation details, are provided by Leutbecher 
et al. in this Newsletter. 

Cycle 49r1 includes several scientific and technical 
changes to the ocean wave model, including a revision 
of the horizontal grid to match the atmosphere 
resolution in all forecasts. This corresponds to a 
reduction of the wave model grid spacing to ~9 km 
(TCo1279) in medium-range forecasts and ~36 km 
(TCo319) in sub-seasonal forecasts. To make this 
increased resolution affordable, the number of 
frequencies in wave spectra output (but not online 
computations) is reduced from 36 to 29 frequencies. 
The most significant scientific changes are to the wind 
input parametrizations, including a new gravity–capillary 
model and non-linear growth rates. These updates 
modulate variations in the drag coefficient with wind 
speed, which addresses a known underestimation of 
extreme ocean wind speeds. There are also new 
sea-state-dependent heat and moisture fluxes. These 
changes have a strong impact on air temperatures over 
the oceans throughout the troposphere, primarily in the 
tropics and winter hemisphere (Bidlot & Janssen, 2024). 

The land surface benefits from several IFS model 
updates introduced in Cycle 49r1. These include a 
single-layer urban canopy model implemented as a 
new surface tile, which improves 2 m temperature and 
10 m wind speed forecasts over urban areas 
(McNorton & Balsamo, 2023). Vegetation and leaf-area 
index maps are updated with new versions from the 
European Space Agency (ESA) Climate Change 
Initiative and the new Copernicus Global Land 
Services-based leaf area index (LAI), respectively 
(Boussetta & Balsamo, 2021). The overall effect of 
these modifications is to increase low vegetation cover, 
reduce high vegetation cover, and improve the 
representation of seasonal variations in leaf area index. 
To allow for better near-surface and atmospheric 
forecast skill, these changes were combined with 
additional land surface updates including a new soil 
moisture stress function, a new interpolation method to 
diagnose 2 m temperatures, and an improved 

doi: 10.21957/crx2bn4is8
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representation of snow shadowing under high 
vegetation. Additional information about these changes 
to the land-surface model and their impact on 2 m 
temperature forecasts are provided by Ingleby 
et al. (2024).

Other updates to the IFS forecast model in Cycle 49r1 
are summarised below:

•	 Improvements to short-wave radiation biases by 
assuming a liquid phase for mid-level convection if 
temperatures exceed –20ºC. 

•	 Improvements to convection–surface coupling and 
downdraught scaling, which improves nighttime 
convective organisation. 

•	 A revision of the diagnostic 10 m wind calculation, 
which removes a limiter and modifies the blending 
height, leading to reduced 10 m wind biases.

•	 Introduction of a time-varying source of stratospheric 
water vapour from methane oxidation. 

•	 A new flexible treatment of aerosols in the IFS 
radiation code, which includes the potential for future 
‘hybrid’ configurations that combine climatological 
and prognostic aerosol species. 

•	 Many updates to the Copernicus Atmosphere 
Monitoring Service (CAMS) modelling systems 
(IFS-COMPO and IFS-GHG), including more 
up‑to‑date anthropogenic emissions, a new wetland 
emission model for methane, and major revisions to 
the aerosol model, including updated optical 
properties and a simple representation of 
stratospheric aerosols. 

Data assimilation and observation usage
Cycle 49r1 includes substantial changes to the IFS data 
assimilation system, including several updates that 
improve near-surface weather forecasts. Daytime and 
nighttime 2 m temperature and 2 m humidity 
observations from SYNOP weather stations are now 
assimilated within the atmospheric 4D-Var system. 
Previous IFS versions assimilated only 2 m humidity 
during the daytime. This change has a strong positive 
impact on short-range 2 m temperature forecasts, 
particularly during the northern hemisphere winter. 
Several changes to the land data assimilation system 
also improve near-surface weather forecasts 
substantially. These include:

•	 a lapse-rate correction for 2 m temperature that 
accounts for differences between real-world and 
simulated orography

•	 updated background errors in the soil moisture 
analysis, and

•	 improved thinning of Interactive Multisensor Snow 
and Ice Mapping System (IMS) snow cover data 
combined with an updated diagnostic model for 
snow cover, which enables the activation of snow 
cover assimilation over mountainous areas.

These changes constitute a first step towards a more 
unified land data assimilation system, and they pave the 
way for further land–atmosphere coupled data 
assimilation developments (de Rosnay et al., 2022). 
Their impacts on 2 m temperature forecasts are 
described in more detail by Ingleby et al. (2024).

The Ensemble of Data Assimilations (EDA) receives a 
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FIGURE 1  Contribution of EDA and model uncertainty changes to spread in Cycle 49r1 for zonal average temperature, showing (a) the 
impact of the soft re‑centred EDA formulation, combined with a reduction of the horizontal grid-spacing of the EDA outer/inner-loop 
resolution from ~18 km/~100 km to ~9 km/~50 km – this is mostly above the boundary layer; (b) the impact of changing from SPPT to SPP 
at a grid spacing of ~9 km – this is mostly in the boundary layer; and (c) the total effect of soft re-centring, resolution change, and the switch 
to SPP. The plots are for the period of 17 December 2021 to 6 January 2022.



18

earth system science

ECMWF Newsletter 181  •  Autumn 2024

major upgrade in Cycle 49r1. Although the ensemble 
forecast resolution was increased from 18 km (TCo639) 
to 9 km (TCo1279) in Cycle 48r1, the resolution of the 
EDA was not changed. In Cycle 49r1 the horizontal 
grid spacing of the EDA outer loop resolution is 
reduced to ~9 km and the inner-loop grid spacing is 
reduced from ~100 km to ~40 km for the control 
member and to ~50 km for perturbed members. This 
substantial increase in horizontal resolution is made 
affordable by soft re‑centring of each member (1 outer 
loop) around a more accurate control member (3 outer 
loops). Hólm et al. (2022) provide further background 
on the motivation for this soft re-centring approach. 
The combination of increased resolution and activation 
of SPP results in a general increase of EDA spread, 
though the magnitude of this effect varies regionally 
and with height. Figure 1 shows the changes in the 
spread of temperature, where the resolution increase 
and the soft re-centring contribute most above the 
boundary layer, and activation of SPP predominantly 
increases spread in the boundary layer. The combined 
effect is a 15–20% increase in spread in the 
extratropics, which leads to a significant improvement 
in the reliability of the EDA. These changes in spread 
impact the ensemble forecasts via initial perturbations 

but also deterministic analyses and forecasts, through 
the influence of the EDA on 4D-Var background error 
covariances. The impacts on ensemble variance as a 
function of horizontal scale are shown as power 
spectra in Figure 2. The increased EDA resolution in 
Cycle 49r1 removes the drop in ensemble variance 
previously evident at scales smaller than 200 km 
(wavenumber around 100). The variance spectrum at 
synoptic and planetary scales is also much smoother.

An important step towards a fully integrated Earth 
system assimilation system in Cycle 49r1 is the 
activation of microwave imaging radiances over 
sea‑ice surfaces within the atmospheric 4D‑Var 
component. This was not previously possible due to 
inadequate knowledge of either the sea-ice 
concentration (SIC) or the surface radiative properties 
of the sea ice. The problem has been solved using an 
innovative combination of machine learning and data 
assimilation to train a new sea‑ice surface emissivity 
model for microwave radiances. A crucial aspect of the 
model is that it takes empirical input parameters that 
characterise the radiative properties of the sea ice. 
The empirical parameters summarise important 
aspects of the sea ice relating to things like the aging 

FIGURE 2  Global power spectra of the (ensemble) variance of the EDA and of the ENS for 250 hPa geopotential height against total 
wavenumber n, valid at 00 UTC during December 2023 – February 2024 for (a) Cycle 48r1 and (b) Cycle 49r1. The total ensemble variance 
(i.e. the sum over all wavenumbers) is provided in the legend. The use of a logarithmic x‑axis means that wavenumbers become more tightly 
packed from left to right. To help discern the impact of this, diagonal lines represent contours of variance per linear unit length on the x‑axis 
(with value proportional to the y‑intercept). Approximate length scales are indicated on the top axis.
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process of the ice as well as the snow cover on top. 
These aspects are poorly known, but they have a very 
strong control over the radiative signature of sea ice 
observed by microwave imagers. Using an observation 
space control variable (often referred to as a sink 
variable), the 4D‑Var control vector is extended to 
estimate SIC and the empirical sea-ice properties at 
each observation location. The addition of data from 
Advanced Microwave Scanning Radiometer 2 (AMSR2) 
and Global Precipitation Measurement Microwave 
Imager (GMI) in sea ice and neighbouring areas 
improves forecast scores in the vicinity of Antarctica by 
around 0.5% out to day 4. The SIC retrievals are of 
good quality and could be provided as an input to the 
ocean/sea-ice data assimilation system in a future IFS 
cycle. An example of the quality of the SIC 
observations is given in Figure 3, which shows the 
evolution of a giant iceberg (note that microwave 
imagers sense any ice coverage on the ocean surface, 
which differs from stricter definitions of sea ice). 

Further details can be found in Geer (2023, 2024). 

Other data assimilation and observation usage 
contributions to Cycle 49r1 include the following:  

•	 A 140% increase in the use of satellite microwave 
humidity data.

•	 Activation of additional channels from the Advanced 
Microwave Sounding Unit‑A and the Special Sensor 
Microwave Imager/Sounder.

•	 Several updates to non-microwave observations, 
including reduced thinning of Spinning Enhanced 
Visible and InfraRed Imager data, assimilation of 
ground-based Global Navigation Satellite System 
data, and scene-dependent observation errors for 
Cross-track Infrared Sounders.

•	 A vertical extension of Global Navigation Satellite 
System Radio Occultation assimilation from 50 km to 
60 km altitude.

FIGURE 3  Daily maps of the extent of long-lived giant iceberg A76A during October 2022, based on the new AMSR2 SIC retrievals within 
atmospheric 4D‑Var. Iceberg A76A was at this time around 135 km by 26 km in size and rotating in the currents of the Southern Ocean near 
the Antarctic Peninsula. The pixel size of the AMSR2 retrievals is 40 km by 40 km. Grid lines are shown every 1° latitude and 2° longitude, 
and the projection is centred on 59.25°S, 50°W. The figure is re‑used under creative commons attribution licence from Geer (2024, https://
doi.org/10.1002/qj.4797).
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•	 An upgrade to version 13.2 of the Radiative Transfer 
for TOVS (RTTOV) model and other updates in the 
radiance observation operator.

•	 Activation of Variational Quality Control (VarQC) in the 
first 4D-Var minimisation.

•	 Activation of balance constraints above 20 km, which 
allows stratospheric sounding instruments to 
generate geostrophically balanced increments from 
the start of the assimilation window. 

Impact on medium-range and 
sub‑seasonal forecasts
Cycle 49r1 substantially improves short- and medium-
range forecasts of 2 m temperature and 10 m wind 
speeds. The largest impacts on 2 m temperature forecasts 
are for the winter months in the northern hemisphere 
(Figure 4), where the Continuous Ranked Probability Score 
(CRPS) is improved by 11% at day 1 and 2% at day 10. 
In short-range forecasts, the biggest improvements are 
over Asia and Canada (Figure 5). These improvements 
reflect the combined impact of many contributions, 
including the assimilation of 2 m temperature observation 
data, upgrades to 4D-Var and land-surface data 
assimilation methodology, and improvements to the IFS 
land surface model (Ingleby et al., 2024).

Forecasts of 10 m wind speed are improved throughout 
the year. The largest impacts are for the winter months 
of the northern hemisphere (Figure 6), where the CRPS 
is improved by 12% at day 1 and 6% at day 10. 
The major contributors to improved ensemble forecasts 
of 10 m wind speed are the increased spread in the 
boundary layer associated with the switch to the SPP 
scheme for model uncertainty; improvements to the 

diagnostic 10 m wind calculation; and the combination 
of updates to the land-surface model. 

Figures 7 and 8 summarise the impact of Cycle 49r1 
relative to Cycle 48r1. They use several metrics of 
deterministic and probabilistic forecast skill for a range 
of variables and levels across medium-range lead times. 
Cycle 49r1 has an overall positive impact on both 
deterministic and ensemble forecast skill scores. 
For example, CRPS and anomaly correlations are both 
improved in 73% of comparisons shown in Figure 8. 
The impact in the tropics is more mixed, especially for 
verification against analyses. Some of the negative 
impacts are a consequence of interactions between the 
new EDA configuration and other contributions to 
Cycle 49r1. In particular, the increased EDA resolution 
and the introduction of SPP both have a non-uniform 
impact on the EDA forecast spread (see Figure 1). This 
spread informs background errors of the 4D-Var system 
and provides perturbations for the initialisation of the 
ensemble forecasts. The final configuration of 
Cycle 49r1 reflects a compromise that balances 
evidence from observation-based verification, analysis-
based verification, and observation–background/
observation–analysis statistics. This involved a tuning 
process that uniformly reduced the background errors 
provided to the 4D-Var system by 16% and separately a 
15% reduction of the amplitude of the singular vector 
perturbations added to ensemble initial conditions. 

Despite significant changes to the EDA and model 
uncertainty representations, the scale-dependent growth 
of forecast uncertainty is, to first order, very similar in 
Cycle 49r1 and Cycle 48r1 (Figure 2). Nevertheless, there 
is a systematic reduction in synoptic-scale ensemble 
variance at medium-range lead times that provides a 
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FIGURE 4  The charts show (a) the root-mean-square error (RMSE) of the ensemble mean and (b) the continuous ranked probability score 
(CRPS) for 2 m temperature from Cycle 48r1 (blue) and Cycle 49r1 (red), verified against observations and averaged over the northern 
hemisphere. All scores are calculated using 50 perturbed members from 75 forecasts initialised daily between 1 December 2022 and 
13 February 2023.
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10% improvement to the over-dispersion in the storm 
tracks in Cycle 48r1. This improves both ensemble 
reliability and sharpness (not shown).

Tropical cyclone (TC) intensity and position errors are 
generally similar in Cycle 49r1 and Cycle 48r1 (Figure 9). 
The most important change is the significant increase in 
the ensemble spread of TC intensity, especially at earlier 
lead times, which is mainly a consequence of the new 
EDA configuration. This change improves the reliability of 
TC intensity forecasts, as seen in ensemble spread and 
ensemble mean root-mean-square error (RMSE) moving 
closer to each other. In addition, the switch from SPPT to 
SPP results in a systematic increase in the frequency of 
tropical cyclones. This increase is likely to be detrimental 
for weaker systems, which were already overestimated 
compared to observations, but beneficial for deeper 

systems, which remain underestimated in Cycle 49r1.

An undesirable feature of TC forecasts in Cycle 49r1 is 
the increased frequency of unrealistic TC structures that 
are not axisymmetric and associated very strong winds 
at initialisation time in perturbed ensemble members. 
These artefacts are a property of the ensemble initial 
conditions rather than the forecast model and dissipate 
within the first 12 hours of the forecast without 
significantly changing medium-range TC forecast 
quality. This issue is a consequence of the way 
ensemble initial conditions are derived from 
perturbations taken from a more realistic EDA and then 
re‑centred around a reference analysis. It was previously 
described by Lang et al. (2015) and will be addressed 
with a revision of the ensemble initial perturbations 
methodology in a forthcoming IFS upgrade. 

FIGURE 5  Change in 
root-mean-square 
error (RMSE) for 
24‑hour deterministic 
forecasts of 2 m 
temperature at 00 and 
12 UTC between 
December 2022 and 
February 2023 
inclusive. Blue colours 
indicate improvements 
in IFS Cycle 49r1 with 
respect to IFS 
Cycle 48r1.
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FIGURE 6  As Figure 4, but for 10 m wind speeds.
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Northern extratropics Southern extratropics Tropics
Anomaly correlation/ 

SEEPS
RMS error/ 

Std. dev. of error
Anomaly correlation/ 

SEEPS
RMS error/ 

Std. dev. of error
Anomaly correlation/ 

SEEPS
RMS error/ 

Std. dev. of error

Parameter

Level 
(hPa)

Forecast day Forecast day Forecast day Forecast day Forecast day Forecast day

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

An
aly

sis

Geopotential

50 █▼██▼▼▼███▲▲▲▲▲▲▲▲██▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
100 █▲▲▲▲██▲▲█▲▲▲▲▲▲█▲██▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
250 ▲▲▲▲▲▲▲▲██▲▲▲▲█▲█▲▲█▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
500 █▲▲▲███████▲▲████▲▲█▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
850 ▼█████████▼██████████▲▲▲▲▲▲▲▲▲█▲▲▲▲▲▲▲▲▲

Mean sea level pressure ▲▲▲▲██████▲▲▲█████▲▲▼▲▲▲▲▲▲▲▲▲▼▲▲▲▲▲▲▲▲▲

Temperature

50 ▲▲▲▲▲▲▲▲▲█▲█▼▼▼▼▼▼▼▼█████▲▲▲▲▲█▼▼▼██▲▲▲▲▼▼▼███████▼▼▼▼▼▼▼▼▼▼
100 ▲▲▲▲▲▲▲▲▲█▲▲▲▲▲██▲▲█▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▼▼▼███████▼▼███████▲
250 ▲▲▲▲▲██▲▲█▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▼▼▼▼▼▼▼███▲▲▲▲██████
500 ▲▲▲▲▲▲████▲▲▲▲██▲▲██▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▼▼▼▼▼▼████▼▼▼▼▼▼▼▼▼▼
850 ▲▲▲▲▲▲▲▲██▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲██▲▲▲▲▲▲▲▲▲▲

2 m temperature ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

Vector wind

50 ▲▲▲▲▲▲▲▲███▲▲███████▼▼███▲▲▲▲▲▼▼▼████▲▲▲▼▼▼▼▼▼████▼▼▼▼▼▼▼▼▼▼
100 ▲▲▲▲▲▲▲▲▲█▲▲▲▲▲▲█▲▲█▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▼▼▼▼██████▼▼▼▼▼▼▼███
250 ▲▲▲▲▲▲█▲██▲▲▲▲▲▲█▲▲█▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▼▼▼▼▼▼████▼▼▼▼▼▼████
500 ▲▲▲▲▲▲████▲▲▲▲▲▲▲▲▲█▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▼▼▼▼▼▼▼▼██▼▼▼▼▼▼▼▼██
850 ▲▲▲▲██████▲▲▲▲▲▲▲▲██▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▼█▲▲▲▲▲▲▲▲▼▼█▲▲▲▲▲██

10 m wind speed ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲█▲▲▲▲▲▲▲▲█▼▼▼██████▼▼▼▼▼██████▼▼▼▼▼▼▼▼▼▼

Relative humidity
250 ▲▲▲▲██████▲▲▲▲▲▲▲▲▲▲█▲▲▲▲▲▲▲▲▲█▲▲▲▲▲▲▲▲▲▼█████████▼█▲██████▲
700 ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲█▼▼▼███████▼▼▼███████

10 m wind at sea ▲▲▲▲█▲▲▲██▲▲▲▲█▲▲▲▲█▲▲▲▲▲▲▲▲▲█▼▼▼██████▼▼▼▼▼▼▼████▼▼▼▼▼▼████
Significant wave height ▲▲▲▲▲▲▲▲▲▲▲▲▲▲████▲█▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲█▲▲▲▲▲▲▲▲▲▲▲█▼▼▼▼▼▼▼▼
Mean wave period █▼▼▼▼█████▼▼▼▼▼▼▼▼▼▼▲▲▲▲▲▲▲▲▲▲▲▲████████▼▼▼▼▼▼▼▼██▼▼▼▼▼▼▼▼▼▼

Ob
se

rv
at

ion
s

Geopotential

50 ▼▼▼███████▲▲▲▲▲▲▲▲██▲▲▲▲▲▲██▲▲▲▲▲▲▲▲▲▲▲▲
100 ▼▲▲▲███▲▲█▲▲▲▲██████▲▲▲▲▲▲█▲▲▲▲▲▲▲▲▲▲▲▲▲
250 ▲▲▲▲█▲█▲██▲▲▲▲████▲█▲▲▲▲▲▲▲▲▲█▲▲▲▲▲▲▲▲▲▲
500 ▲▲▲▲█▲▲▲██▲▲▲████▲▲█▲▲▲▲▲▲▲▲▲█▲▲▲▲▲▲▲▲▲▲
850 ▲▲▲██▲████▲▲▲██▲████▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

Temperature

50 ███▲█▲▲█▲██▼▼▼▼▼▼▼▼▼███████▲▲▲████████▲▲███████████▼████████
100 ██▲█▲▲▲▲▲███▲▲▲▲█▲▲█████▲▲█▲▲▲█▲███▲▲▲▲▲██▼▼███▼████▼▼███▼██
250 ▲▲▲▲███▲██▲▲▲▲██▲▲▲██▲▲████▲███▲▲▲▲▲▲▲██▼▼▼▼██████▲▲█▼▼▼▼███
500 ▲▲▲███████▲▲▲█████████▲█▲█▲█▲█▲▲██▲█▲█▲███████████▲▲▲▲▲▲▲▲██
850 ▲▲▲▲▲▲▲▲██▲▲▲▲▲▲▲▲▲▲███▲██▲▲▲██▲▲▲▲▲▲▲▲▲▼▼▼▼▼▼█▼▼███▼███▲███

2 m temperature ██████████▲▲▲▲▲▲▲▲▲▲██████████▲▲▲▲▲▲▲▲▲▲██████████▲▲████████

Vector wind

50 ▼██████▲██▼▼███████████████▲▲▲███▼███▲▲▲▼▼████████▼▼▼▼████▼█
100 ███████▲▲███▲████▲▲██████▲██▲▲█████▲▲█▲▲▼▼▼▼▼█████▼▼▼▼▼▼█▼▼▼
250 ▲▲▲▲█▲████▲▲▲▲██████▲▲██▲▲▲█▲█▲▲▲▲▲▲▲█▲███████████▼▼████████
500 ▲▲▲██▲████▲▲███▲█▲▲█▲▲█▲▲▲▲█▲█▲▲█▲▲▲▲█▲▲▼█████████▼█████████
850 ▲▲▲█▲█████▲▲▲█▲▲▲▲██▼█▲█▲▲▲███▼██▲▲▲▲█████████▲█▲█▼████▲▲▲▲█

10 m wind speed ██████████▲▲▲▲▲▲▲▲▲▲███████████▲▲▲▲▲▲█████████████▲▲▲▲▲▲▲▲▲▲

Relative humidity
250 ██████████▲▲▲▲█▲█████▲███▲█████▲█▲█▲██████▲█▲███████▲█▲█████
700 ▲▲▲▲██████▲▲▲▲███▲▲██▲██▲██████▲██▲███▲███████▲█████████▲▲██

2 m dew point ██████████▲▲▲▲▲▲▲▲▲▲██████████▲▲▲▲▲▲▲▲▲▲██████████▲▲▲▲▲▲▲▲▲▲
Total cloud cover ██████████▲▲██████████████████████████████████████▼▼▼▼▼▼▼▼▼▼
Total precipitation ▲████▲▲████████████████▲███▲█▲▼█████████████████▼█▲██████▲▲█
Significant wave height ████████████▼██████▲████████████████████████████████████████
10 m wind at sea ██████████████▲█▲█▲██████████████████████████████████▼▼▼████

Symbol legend: for a given forecast step...  

▲ 49r1 better than 48r1 statistically significant with 99.7% confidence

▲ 49r1 better than 48r1 statistically significant with 95% confidence

49r1 better than 48r1 statistically significant with 68% confidence

no significant difference between 48r1 and 49r1

49r1 worse than 48r1 statistically significant with 68% confidence

▼ 49r1 worse than 48r1 statistically significant with 95% confidence

▼ 49r1 worse than 48r1 statistically significant with 99.7% confidence

FIGURE 7  Summary scorecard comparing the difference between 
control forecasts from IFS Cycle 49r1 and IFS Cycle 48r1 using 
anomaly correlation coefficients and the root-mean-square error 
(RMSE). Note that total precipitation is evaluated using the Stable 
Equitable Error in Probability Space (SEEPS) score rather than 
correlation, and wave parameters are evaluated using the standard 
deviation of errors rather than RMSE. Blue colours indicate 
improvements in IFS Cycle 49r1 with respect to IFS Cycle 48r1. 
Scores are calculated from more than 1,000 forecasts initialised at 00 
and 12 UTC between 1 June 2022 and 8 August 2024.
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The ECMWF sub-seasonal forecasting system, which 
provides an overview of potential weather conditions 
up to 46 days ahead, is also updated in Cycle 49r1. 
The most robust impacts on weekly mean forecast 
anomalies are small but statistically robust changes in 
ensemble spread, which are driven by the switch from 
SPPT to SPP. These changes are most evident in the 
tropics, where ensemble spread in the free atmosphere 
is reduced by several per cent, which represents a 
slight improvement in ensemble reliability relative to 

Symbol legend: for a given forecast step...  

▲

▼

Northern extratropics Southern extratropics Tropics

ENS mean ACC CRPS ENS mean ACC CRPS ENS mean ACC CRPS

Parameter

Level 
(hPa

Forecast day Forecast day Forecast day Forecast day Forecast day Forecast day

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

An
aly

sis

Geopotential

50 ▼▼▼ ▼▼ ████ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ █ ▲▲ ▲▲▲▲▲ ███████████████
100 █▲▲▲▲▲▲ ██▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲ █▲▲▲▲▲▲▲▲▲▲▲▲▲▲
250 ▲▲▲▲▲▲▲▲ ███▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲ █▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
500 ▲▲▲▲▲▲▲ ███▲▲▲▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲▲▲▲ █▲▲▲▲▲▲▲▲▲▲▲▲▲
850 ▲▲▲▲▲▲▲▲▲ ███▲▲▲▲▲▲▲▲▲▲▲ ██▲▲▲▲▲▲▲▲▲▲▲▲▲ █▲▲▲▲▲▲▲▲▲▲▲▲█

Mean sea level pressure ▲▲▲▲▲▲▲▲▲ ███▲▲▲▲▲▲▲▲▲▲▲▲ █▼▲▲▲▲▲▲▲▲▲▲▲ █ ▲▲▲▲▲▲▲▲▲▲▲ ██

Temperature

50 ▲▲▲▲▲▲▲ ██████ ▲ ▼▼▼▼▼▼▼▼▼▼▼ █▲▲▲ ▲▲▲▲▲ █▲ ▼ ████████▼ ▼▼▼▼▼▼▼ █ ▼▼▼▼▼▼▼▼ █████
100 ▲▲▲▲▲▲▲▲▲ ▲▲ █▲▲▲▲▲▲▲▲▲ ▲▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲█████ ▲▲▲▲▲▲▲▲▲██ ▲▲▲▲▲▲▲▲
250 ▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▼██▲▲▲▲▲▲▲▲▲▲▲▲██▲▲▲▲▲▲▲▲▲▲▲▲▲
500 ▲▲▲▲▲▲▲▲▲ ██▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲ █▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▼▼▼▼▼ ██ █ ███▼ ▲▲▲▲▲▲▲▲▲▲▲▲▲
850 ▲▲▲▲▲▲▲▲▲ ▲ ██▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲█ █▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

Wind speed

50 ▲▲▲▲▲ █████████▲▲████████████████████ ▲ ████ ▼▼███ ▲▲▲ ██▼▼▼▼▼▼▼████████▼▼▼▼▼▼▼▼▼▼▼
100 ▲▲▲▲▲▲▲▲▲ ██▲▲▲▲▲▲▲▲▲ ██▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲██ ▲▲▲▲▲▲▲▲ █████ ▲▲▲▲▲▲▲▲▲
250 ▲▲▲▲▲▲▲▲▲▲▲▲ ██▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲█▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ▼▼▼██ ▲▲▲▲▲▲▲▲▲▼▼▼▼▼ █████████
500 ▲▲▲▲▲▲▲▲ ██████▲▲▲▲▲▲▲▲ ████ █▲▲▲▲▲▲▲▲▲ ▲▲ █▲▲▲▲▲▲▲▲▲▲▲▲▲ █▼▼▼▼▼▼▼▼███████▼▼▼▼▼▼▼▼ █
850 ▲▲▲▲▲▲▲▲▲ ███ █▲▲▲▲▲▲▲▲▲ █ █ █▲▲▲▲▲▲▲▲▲ ▲▲ █▲▲▲▲▲▲▲ ██ ███▼▼▼▼▼▼▼▼███████▼▼▼▼▼▼▼▼▼ █

Relative humidity
250 ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲▲▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
700 ▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲ ██▲▲▲▲▲▲ █████████▼▼▼▼▼ ███▲ ▲▲▲█▼▼▼▼ ███ ████

2 m temperature ▲▲▲▲▲▲▲▲ ██████▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ███ ▲▲▲▲▲▲▲▲ █ ▼▼▼▼▼▼▼▼▼▼▼
10 m wind at sea ▲▲▲▲▲▲▲▲▲▲█ ▼█ ▲▲▲▲▲▲ █▲▲▲▲▲▲▲ █ █ ▼▼▼▼█████ ▼ ▼▼▼▼▼▼▼▼▼▼▼ █████▼▼▼▼▼ █████████

▲▲▲▲▲▲▲▲ █ ████████████▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ▼ █ █████████ ▲▲▲ ██████ ▲ ██▲▲▲▲▲▲▲ █████ ▼
Mean wave period ▼▼ █████████ █ ▼▼▼▼▼▼▼▼▼▼▼▼▼ ████████ ▲▲██ ████████████ ▼██▼▼▼▼ ██████▼███▼▼▼▼▼▼▼▼▼▼▼

Ob
se
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Geopotential

50 ▼ ▼ █████████ ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼██▲ ███ █ ██▲ ███████████
100 ▼▼█ █ █████████▼▼█▲▲▲▲▲▲▲▲▲▲▲ ▼ █████ ▲ █ ▼▼██████ ▲▲▲▲▲▲
250 ▲▲▲▲▲▲ ██ █████▲▲▲▲▲▲▲▲ ▲▲▲ ██ ▲▲ ▲▲▲ ▲██████ █ ▲▲▲▲▲
500 ▲▲▲▲▲▲▲███ ████▲▲▲▲▲ ███ ███▲▲▲▲▲▲▲▲▲▲ ▲ ▲▲▲▲▲ ▲▲▲▲ ▲ ██
850 ▲▲▲▲▲▲▲ █ ████▲▲▲▲▲▲▲ █ ████▲▲▲▲▲▲▲▲▲▲▲▲▲ █▲▲▲▲▲▲▲▲▲▲▲▲▲

Temperature

50 █▲▲▲▲▲ ██ ▼▼▼▼▼▼▼▼▼▼▼▼ ███ ████████████▼▼▼▼▼▼▼▼ ███ █████████ █████▼▼▼▼▼▼▼ ▼ ████
100 █▲▲▲▲▲▲ ███ ██▼█ ▲ ████ ███████▲ ▲ █████ ███ ▲ ▲ ▲ ██ █ ████████████▼ ███████ ▲▲
250 ▲▲▲▲ ▲▲ ▲▲▲ ██ ▲▲▲▲▲▲▲▲▲▲▲▲ █ █ ███ ██████ █▲▲▲▲▲▲ ▲ █▼██ ██ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
500 ▲▲▲ ▲▲▲ █ ████▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ███ ▲ ▲▲ █████ ▲▲▲▲▲▲▲▲▲▲ █▼███████ ██████ ▼███ ▲▲▲▲▲▲▲▲▲
850 ▲▲▲▲▲▲▲▲ █ ▲ ███ ▲▲▲▲▲▲▲ ▲▲▲▲████ █ ▲▲ ▲ ████ ▲ █ █████████████████▲█▼▼▼▼▼▼ ███

Wind speed

50 ███ █ ▲██▼▼▼▼▼▼▼▼ ██████ ███▼███ ▲▲█ ██▼▼▼▼▼▼███ ██████ █ █████ ▲▲██ ▼▼▼▼▼▼▼▼▼█████
100 ▲▲▲▲▲▲▲ ██ ████▼▼▼██████████████ ▲ ▲ █ ▼███ ▼████████████ ████▼ █████████
250 ▲▲▲▲▲▲ ███▲▲▲▲▲███ ███████████ ███████████ ███████████████████████████▲█████
500 ▲▲▲▲▲▲█ ███████▲▲▲ █████████ █ ▲ ████▲██▲▲▲█ ███ █ ██ ▼▼▼▼▼▼████████▲█▼▼▼▼▼▼▼▼▼▼▼▼▼
850 ▲▲▲████████ ██▼██████████████ █ █ ██████████████ ████████▼▼▼▼▼▼▼ ██████ ▼▼▼▼▼▼▼▼▼▼ █

Relative humidity
250 ██ ▲█ ▲ ▲ █ █▼▼▼▼▼▼▼▼▼▼▼▼▼▼▲ ████████ ███▲███▼ ▼▼▼▼█ ▲██████████████ █▼▼██ ▼▼ ▼
700 ▲▲▲▲▲▲▲ ▲▲▲▲ ██▲▲▲ ▲█ ▲▲ ███ ███ █ █ ██████████████ ████▼ █████████▲ ▼▼▼▼ ████████

2 m temperature ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲ ██████ ██████ ▲▲▲████████████
2 m dew point ██████████████ ▼▼▼▼▼█████████ ▲▲▲▲ ▲▲▲▲▲▲▲▲
Total cloud cover ▲▲▲████████████ ▲▲▲▲ ████ █████ ▲▲███▼▼▼▼▼▼▼▼▼▼
10 m wind speed ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲ ▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
Total precipitation ▲▲▲▲ ██████████ ▲▲▲████████████ ▲▲▲ █ ▼▼▼▼▼▼▼▼▼

▲▲▲▲▲▲ ██▲▲ ███ ███████████████ ▲▲▲▲▲▲▲▲ █████
10 m wind at sea ██████ ████████▲▲▲ ▲█▲███████ ███▼▼▼██ ██████▲██▼▼▼ ▼▼██▼▼

FIGURE 8  Summary scorecard comparing the difference between ensemble 
forecasts with IFS Cycle 49r1 and IFS Cycle 48r1, using the anomaly correlation 
coefficient (ACC) of the ensemble mean and the continuous ranked probability score 
(CRPS). Blue colours indicate improvements in IFS Cycle 49r1 with respect to IFS 
Cycle 48r1. Scores are calculated using 50 perturbed ensemble members from more 
than 400 forecasts initialised at 00 UTC between 1 June 2022 and 8 August 2024.

Cycle 48r1. Despite these changes to ensemble 
spread, deterministic and probabilistic weekly mean 
anomaly scores are generally very similar in Cycle 49r1 
and Cycle 48r1. 

Despite the limited impact on weekly mean scores 
aggregated over large regions, Cycle 49r1 improves the 
bivariate correlation skill of Madden–Julian Oscillation 
(MJO) forecasts at lead times greater than 15 days. 
These changes are associated with improved MJO 
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reliability at sub-seasonal lead times, which is a 
consequence of the switch from SPPT to SPP. 

System configuration changes and 
updated products
Cycle 49r1 introduces new and revised diagnostic 
products, including a harmonisation of convection-
related parameters. All relevant applications and 
products in Cycle 49r1 use consistent definitions of 
Most Unstable Convective Available Potential Energy 
(MUCAPE) and Most Unstable Convective Inhibition 
(MUCIN). The original parameters for Convective 
Available Potential Energy (CAPE) and Convective 
Inhibition (CIN) are discontinued. Other product changes 
include new graphical products for true-colour 
simulated satellite imagery, new parameters related to 
heat stress (Wet Bulb Globe Temperature, Heat Index, 
Humidex, Wind Chill Temperature, Universal Thermal 
Climate Index), and an extension of probabilistic 
clear-air turbulence products to include contributions 
from non-orographic gravity-wave dissipation outside of 
convection areas. 

Cycle 49r1 also introduces several major changes to the 
configuration of operational systems: 

•	 The wave model is now run with the same native grid 
as the atmospheric model in all forecast systems, 
and the number of frequencies in wave spectra 
output is reduced from 36 to 29. For example, for 
medium-range ensemble forecasts (ENS), the native 

grid of the wave model will change from a 14 km 
reduced latitude–longitude grid to use the same 
TCo1279 (~9 km) grid as the atmosphere. 

•	 Cycle 48r1 increased the horizontal resolution of ENS 
from TCo639 to TCo1279. One consequence of this 
upgrade was to make the unperturbed ENS control 
forecast scientifically equivalent (though not 
computationally identical) to the high-resolution 
deterministic forecast (HRES). Although nearly 
identical, HRES and the ENS control forecast retained 
some differences in lead time (10 days vs 15 days), 
output frequencies, and dissemination times. In Cycle 
49r1, HRES and the ENS control forecast become 
scientifically and computationally identical and both 
are run for 15 days at 00 UTC and 12 UTC. 
The superfluous ENS control forecast will be stopped 
in a future IFS upgrade, and the data stream currently 
known as HRES will become known as the ‘control’ 
forecast. The retitled control forecast will be available 
on the same schedule as the current HRES (i.e. earlier 
than the perturbed ENS forecast members). 

•	 Cycle 49r1 introduces new configurations for 
medium-range and sub-seasonal retrospective 
ensemble forecasts (also known as ‘re-forecasts’ or 
‘hindcasts’). The ensemble size of re-forecasts (ten 
perturbed members and one control member) is 
unchanged from Cycle 48r1. However, the 
frequency of re‑forecasts is changed for both 
systems. In Cycle 48r1, both medium-range and 
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FIGURE 9  Tropical cyclone position and intensity forecast errors in IFS Cycle 49r1 compared to IFS Cycle 48r1, showing (a) ensemble mean 
position forecast errors of Cycle 49r1 and Cycle 48r1 and (b) intensity (central pressure) forecast errors (solid lines) and ensemble spread 
(dashed lines) of Cycle 49r1 and Cycle 48r1. The vertical error bars represent 95% confidence intervals. Tropical cyclone scores are 
calculated using 50 perturbed members from forecasts initialised daily between 3 June 2022 and 29 March 2024.
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sub-seasonal re‑forecasts were run every Monday 
and Thursday for the previous 20 years. In Cycle 
49r1, sub‑seasonal re-forecasts are run every odd 
day of the month over the previous 20 years 
(i.e. 1st, 3rd, 5th…, excluding 29th February) and 
medium-range re‑forecasts are run every other odd 
day of the month over the previous 20 years 
(i.e. 1st, 5th, 9th…, excluding 29th February). There 
are several advantages to these new re-forecast 
configurations: (i) The increased frequency of 
sub-seasonal re‑forecasts benefits skill assessment 
and the calibration of real-time forecasts. (ii) The 
use of fixed re-forecast dates enables direct 
comparisons with seasonal re-forecasts and 
between sub-seasonal re-forecasts produced in 
different years. (iii) The common dates for medium-
range and sub-seasonal re-forecasts facilitate 
resolution sensitivity studies and provide 
opportunities for the generation of calibrated 
dual-resolution ensemble products. 

Summary and outlook
IFS Cycle 49r1 brings substantial changes to data 
assimilation methodology, the use of observations, and 
the underlying IFS forecast model. These changes have 
an overall positive impact on both deterministic and 
ensemble forecasts and significantly improve 2 m 

temperature and 10 m wind forecasts, particularly for 
the winter months in the northern hemisphere. 
The improvements in near-surface weather conditions 
reflect the combined impact of many contributions, but 
especially the assimilation of 2 m temperature 
observation data; upgrades to 4D‑Var and land-surface 
data assimilation methodology; improvements to the IFS 
land surface model; the switch to the SPP scheme for 
model uncertainty; and improvements to the diagnostic 
10 m wind calculation. The assimilation of microwave 
imaging radiances over sea‑ice surfaces is an important 
step towards Earth system data assimilation, in which 
the different components are integrated in a coupled 
data assimilation framework (de Rosnay et al., 2022). 
Other major contributions to Cycle 49r1 include the 
increased resolution and soft re‑centring of the EDA; the 
increased usage of satellite observations; the increased 
resolution of the ocean wave model; and changes to the 
frequency of medium-range and sub‑seasonal 
re‑forecasts. Looking ahead, the next update of the IFS 
(Cycle 49r2) will build upon Cycle 49r1 and serve as the 
foundation for the next ECMWF reanalysis (ERA6) and 
seasonal forecast system (SEAS6). Cycle 49r2 will not 
be implemented operationally for medium-range or 
sub-seasonal forecasts, but all developments for ERA6 
and SEAS6 will be included as part of the next 
operational IFS upgrade (Cycle 50r1). 
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Improving the physical consistency of 
ensemble forecasts by using SPP in the IFS
Martin Leutbecher, Simon Lang, Sarah-Jane Lock, Christopher D. Roberts, Aristofanis Tsiringakis

Ensemble forecasts need to account for 
uncertainties in both initial conditions and the 
forecast model. Since 1998, the latter 

uncertainties have been represented in ECMWF’s 
Integrated Forecasting System (IFS) via the 
Stochastically Perturbed Parametrization Tendency 
scheme (SPPT; Buizza et al., 1999). This scheme is 
also referred to as ‘stochastic physics’. It has been 
revised several times. SPPT has played an important 
role through increasing the ensemble spread and 
boosting the probabilistic skill of ECMWF ensemble 
forecasts over the past 25 years (see Lock et al., 2019, 
for details of the operational SPPT configuration). 
In IFS Cycle 49r1, which will be implemented in 
November 2024, SPPT will be replaced by the 
Stochastically Perturbed Parametrizations (SPP) 
scheme in all ensemble applications. SPP has been 
developed over several years (Ollinaho et al., 2017; 
Lang et al., 2021). It represents model uncertainties 
closer to the sources of errors. The remainder of the 
article explains the motivation for this revision and 
how the new scheme works, and it sets out the 
impacts expected from the revision of the model 
uncertainty representation.

Motivation
While SPPT has been a success story in terms of its 
impact on the skill of ensemble forecasts, awareness of 
some drawbacks has increased over the years. This 
fuelled interest in developing a representation of 
uncertainties that has a comparable positive impact on 
ensemble skill to SPPT, but which can bring additional 
benefits. In particular, we seek a perturbation method that 
maintains the conservation properties of the unperturbed 
model, by ensuring that fluxes at the surface and top of 
the atmosphere respond consistently to the perturbations 
within the atmospheric column. Furthermore, by applying 
the perturbations to individual physical processes, we 
can introduce a representation of errors in, for example, 
the shape of a heating profile, and remove the need to 
taper perturbations near the surface.

Methodology
SPP is a stochastic representation of uncertainties 
which targets uncertain elements within the 

parametrizations of individual physical processes. 
The elements are identified by scientists who develop 
the parametrizations and have in-depth knowledge of 
the sensitivities of their schemes to specific choices 
that need to be made to constrain the parametrization. 
The version of SPP in Cycle 49r1 has 27 perturbed 
elements in order to represent the dominating 
uncertainties in the parametrizations of convection, 
large-scale cloud, radiation, surface exchanges, 
vertical turbulent mixing, and orographic gravity wave 
drag (Table 1). Each perturbation element has its own 
probability distribution, which is anchored to the 
unperturbed values used in the deterministic model. 
Figure 1 shows the distributions sampled by SPP for 
the elements perturbing the standard deviation of the 
subgrid orography (HSDT) and the ocean cold skin 
temperature parametrization (COLDSKIN). 
The distributions of these elements are limited to a 
finite range to ensure numerical stability. 
The distributions are sampled via evolving random 
fields with prescribed time and space scales (see Lang 
et al., 2021, for details). Each perturbation element has 
its own independent random field. Figure 2 displays 

doi: 10.21957/mlz238dk1p
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TABLE 1  Overview of the active perturbation elements in SPP.

Surface fluxes, turbulent mixing and subgrid orography

CFM Transfer coefficient for momentum

RKAP Surface flux uncertainties via von Kármán constant

TOFDC Turbulent orographic form drag

HSDT Standard deviation of subgrid orography

VDEXC_LEN Mixing length-scale stable boundary layer 

VDSST Sea-surface temperature (SST) used in calculation of surface fluxes

COLDSKIN Cold skin temperature parametrization used for surface fluxes

Convection

ENTRORG Entrainment rate

ENTSHALP Shallow entrainment rate

DETRPEN Detrainment rate for penetrative convection

RPRCON Conversion coefficient cloud to rain

CUDU/CUDV Deep convective momentum transport

CUDUS/CUDVS Shallow convective momentum transport

RTAU Adjustment timescale in Convective Available Potential Energy (CAPE) closure

ENTSTPC1 Shallow convection test parcel entrainment

Cloud and large-scale precipitation

RAMID Relative humidity threshold stratiform condensation

RCLDIFF Diffusion for evaporation of cloud at subgrid cloud edges

RLCRITSNOW Cloud ice threshold for autoconversion to snow

RAINEVAP Rain evaporation rate

SNOWSUBLIM Snow sublimation rate

QSATVERVEL Vertical velocity for adiabatic temperature change in saturation adjustment

FALLSPEED Hydrometeor terminal fall speeds

Radiation

ZDECORR Cloud vertical decorrelation height

ZSIGQCW Fractional standard deviation of horizontal distribution of water content

ZRADEFF Effective radius of cloud water and ice

ZHS_VDAERO Scale height of aerosol normal vertical distribution

DELTA_AERO Optical thickness of aerosol

the evolution of the HSDT and COLDSKIN random 
fields over three days for one ensemble member. 
The gridpoint values of the random fields are 
transformed such that they sample the specified 
probability distributions. The random fields have two 
components with spatial decorrelation scales of 
1,000 km and 3,000 km and corresponding 
decorrelation time scales of 3 days and 30 days, 
respectively. The development of the scheme required 
a number of iterations to constrain the distributions of 
all elements in order to generate the right level of 
variance in ensembles at all lead times, using one 
unified configuration. 

SPP inherits the local conservation properties from the 
deterministic parametrizations. The fluxes at the surface 
and at the top of the atmosphere are computed using the 
perturbed elements, resulting in perturbed fluxes that 
remain consistent with the tendencies in the atmospheric 
column. Due to the use of multiple perturbation elements, 
the structure of the tendencies can be altered by the 
perturbations and can represent, for instance, 
uncertainties in the shape of heating profiles.

Impacts
Now, we provide an overview of the impacts of SPP on 
local conservation and on the different ranges of 
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ECMWF’s forecasts, from the medium range (up to 
15 days) via the sub-seasonal range (up to 46 days) to 
the seasonal range (up to 13 months), as well as in 
km‑scale ensemble forecasts explored in the EU’s 
Destination Earth (DestinE) initiative.

Local conservation
The parametrizations of physical processes aim to 
conserve moisture and enthalpy (moist static energy). 
Column integrals of the tendencies together with the 
fluxes at the surface and the top of the atmosphere form 
a nearly closed budget when the semi-Lagrangian 
averaging of the physics tendencies is deactivated (see 
Part IV of the IFS documentation for details: https://
www.ecmwf.int/en/publications/ifs-documentation). 
Figure 3 (a,b) shows that the residual term in the budget 
for moisture is very small compared to the precipitation 
flux in the unperturbed control forecast. The forecast 
perturbed with SPP achieves a similar level of 
conservation as the control forecast, while the forecast 

perturbed with SPPT has a residual that is locally nearly 
of the same magnitude as the precipitation flux itself 
(Figure 3 c,d). The level of conservation or lack of 
conservation shown in the figure for forecast lead times 
of 45 to 48 hours is representative for all forecast lead 
times, and it is also representative for other ensemble 
members or start dates. 

For the local budget of enthalpy, the level of 
conservation of forecasts perturbed with SPP is again 
similar to the level of conservation in the unperturbed 
control forecast, while the forecasts using SPPT show 
large residuals.

Medium-range forecasts
Tropospheric scores in the extratropics are overall 
improved with SPP, e.g. geopotential (see Figure 4a). 
Upper-air scores in the tropics are more mixed, with 
improvements at some levels and degradations at 
others. For example, there is a strong positive impact 

FIGURE 2  Random fields used by SPP in member 1 on 1, 2 and 3 January 2024 (from top to bottom) at 00 UTC for the perturbation 
elements (a) HSDT and (b) COLDSKIN. The latter has larger spatial and temporal decorrelation scales than the former. The contour interval is 
0.5, with values ≥ 0.5 in solid red contours and values ≤ –0.5 in blue dashed contours.

a HSDT random field b COLDSKIN random field

https://www.ecmwf.int/en/publications/ifs-documentation
https://www.ecmwf.int/en/publications/ifs-documentation
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FIGURE 3  Moisture budget terms accumulated during a forecast lead time of 45–48 hours, showing (a) the precipitation flux in the control 
forecast, and budget residuals for (b) the control forecast, (c) an example SPP perturbed forecast, (d) an example SPPT perturbed forecast. 
The contour interval values in plots (b)–(d) are 100 times smaller than in (a). The data is from an ensemble forecast at a resolution of 25 km 
(TCo399) and with 137 vertical levels with Cycle 49r1, starting on 1 December 2022, 00 UTC, with only either SPP or SPPT perturbations 
in (c) and (d) and no initial condition perturbations.
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a Total precipitation of control forecast b Budget residual of control forecast

c Budget residual of forecast with SPP d Budget residual of forecast with SPPT
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for temperature in the tropics at 500 hPa and 250 hPa. 
Here, SPP shows improvements of around 10%. 

Conversely, wind scores in the tropics are degraded, 
between 1 and 2% for some levels. In general, upper-air 
spread (ensemble standard deviation) is somewhat 
decreased, around 1 to 2% in the extratropics. Forecast 
skill of surface variables like 2-metre temperature and 
10-metre wind speed is improved (Figure 4b and c). 
While 2‑metre temperature spread is quite similar, 
spread of 10‑metre wind is increased, by around 25% at 
a lead time of 48 hours. 

SPP results in a noticeable increase in the occurrence 
frequency of tropical cyclones in the ensemble. 
The impact on tropical cyclone frequencies originates 
mainly from the SPP perturbations in the convection 
parametrization, specifically the perturbations to the 
deep convective momentum transport (CUDUDV). 
We have compared the occurrence frequencies to 
tropical cyclone data from the international best track 
archive for climate stewardship (IBTrACS). For wind 
speeds exceeding 20 m/s, the increase in tropical 
cyclone frequency appears to bring the forecasts 
closer to the observed frequencies. We believe that for 

weaker systems, with wind speeds less than 20 m/s, 
the observed frequencies in IBTraCS may be 
underestimated.

Sub-seasonal forecasts
In broad terms, the response in sub-seasonal forecasts 
to changing from SPPT to SPP is similar to that in the 
medium range. There are small changes in spread 
(typically of a few percent) throughout forecast lead 
times. The changes are characterised by reduced 
spread in upper‑air fields and increased spread in 
surface fields. They are most pronounced in the tropics. 
The reduced spread with SPP tends to translate into 
improved spread–error ratios, since using SPPT in the 
latest ensemble configuration generates somewhat 
over-dispersive forecasts of some upper‑air fields.

A key component of predictability in longer-range 
forecasts derives from the Madden–Julian Oscillation 
(MJO, see e.g. Lin et al., 2009). The MJO is a large-scale 
weather pattern that occurs over the Indian and Pacific 
Oceans and is associated with global teleconnection 
patterns. Figure 5 illustrates ensemble spread and 
root-mean-square error (RMSE) of the ensemble mean 
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Seasonal forecasts
Although the change from SPPT to SPP will not be 
applied to operational seasonal forecasts until the next 
upgrade of the seasonal system (to SEAS6), the impact of 
the change has been tested in seasonal configurations.

Switching from SPPT to SPP tends to reduce ensemble 
spread. For some key forecast variables, that reduction 
in spread addresses an over-dispersive signal from 
SPPT. This translates into improved spread–error ratios. 
For example, for equatorial Pacific regions that are 
important for El Niño–Southern Oscillation (ENSO) 
predictions, the spread–error ratios for sea-surface 
temperatures (SSTs) are mostly improved by the 
reduced spread with SPP.

The change of the model uncertainty scheme also 
impacts some forecast biases over these longer lead 
times. For example, for SSTs in the eastern equatorial 
Pacific, SPP leads to some warming, while SPPT tends 
to cool the region. The consequence of the bias 
changes is complicated, since for both schemes there 
are regions and seasons for which the change helps (or 
hinders) by counteracting (or strengthening) the 
prevailing forecast bias. However, the differences are 
small relative to the underlying biases.

Kilometre-scale ensemble forecasts
Replacing SPPT with SPP brings benefits in km-scale 
ensemble forecasts (at a grid spacing of 4.4 km) similar 
to those in the medium-range. In the tropics, fair CRPS 
scores for wind speed are slightly degraded for 500 
and 850 hPa levels, and for temperature at 850 hPa. 
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against analyses, (b) 2‑metre temperature verified against SYNOP 
weather station observations, and (c) 10‑metre wind speed verified 
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higher forecast skill for the ensemble using SPP. Shown are combined 
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FIGURE 5  Ensemble spread (solid lines) and root-mean-square 
error (RMSE) of the ensemble mean (diamonds) for the bivariate 
RMM index for experiments with model uncertainty represented with 
SPPT (red) and SPP (blue). Confidence intervals (95%) are indicated 
by the dashed lines (for spread) and bars (for error). Forecasts are 
started on the first of each month from 1 January 1989 to 
1 December 2016.

for the real-time multivariate MJO (RMM) index 
(following Wheeler and Hendon, 2004) from two sets of 
re‑forecasts: one using SPPT and one SPP. The RMM 
index is constructed from a combination of tropical 
upper-air fields: zonal (east–west) winds at 850 hPa and 
200 hPa, and outgoing longwave radiation. The goal is a 
good match between ensemble spread and RMSE. 
While the forecast skill (represented by the RMSE of the 
ensemble mean) for the two model uncertainty 
representations remains very similar, the ensemble 
spread with SPP is significantly reduced from that with 
SPPT, and it matches the error much more closely.
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However, surface fair CRPS scores (evaluated against 
observations) improve between 2 and 5% for 2‑metre 
temperature and 10‑metre wind speed. For several 
extreme weather events (e.g. tropical cyclones, 
extreme precipitation) evaluated with the km‑scale 
ensemble explored within the EU’s Destination Earth 
(DestinE) initiative, the SPP scheme seems to generally 
provide better probabilistic predictions and introduces 
more ensemble spread than SPPT. Furthermore, 
forecasts using SPP have 24‑hour precipitation 
distributions over the tropics that better match 
observations (based on IMERG satellite precipitation) 
than those produced with SPPT.

Conclusion and outlook
Adopting SPP restores the physical consistency of the 
ensemble members to the level of the unperturbed 
forecast. With SPP, precipitation, evaporation, sensible 
and latent heat fluxes as well as perturbed radiative 
fluxes are consistent with the perturbations in the 
atmospheric column. This leads to a degree of local 
conservation of moisture and enthalpy comparable to 
that achieved in the unperturbed forecast. With SPPT, 
the forecasts exhibit residuals which are on average at 
least an order of magnitude larger than the residuals in 
the control forecast. Moreover, the combination of 
many independent perturbed elements across the 
different parametrizations permits introducing a 
representation of uncertainties that goes beyond 
amplitude errors of the total physics tendencies. 
It permits, for instance, the representation of 
uncertainties in the shape of a heating profile.

The replacement of SPPT with SPP in Cycle 49r1 is the 
result of a major complex development effort, which 
had to balance requirements across lead times of 
hours in the Ensemble of Data Assimilations (EDA) to 
months in seasonal forecasts. Both SPPT and SPP 
have some effect on mean errors. The bias changes 
with SPPT can compensate the mean errors of the 
unperturbed model for some variables and regions of 
the atmosphere. In general, the mean errors of 
forecasts perturbed with SPP are closer to the mean 
errors of the unperturbed forecast than when SPPT is 
used. This is a desirable feature that will support IFS 
development in the future. However, it has the 
inevitable effect that biases increase for some variables 
and some regions when SPP replaces SPPT. 

Noticeable improvements in skill with the introduction of 
SPP are achieved for 2‑metre temperature and 10‑metre 
wind. Further improvements will appear via the use of 
SPP in the EDA in Cycle 49r1. SPP has helped to 
address the underdispersion in the boundary layer, 
which has been seen as a limiting factor for the 
assimilation of 2‑metre temperature observations. 
The introduction of SPP together with other changes in 

the EDA (higher resolution and soft re-centring) has 
permitted reducing the amplitude of the singular vector 
initial perturbations. This will partly address the 
overdispersion in the winter storm tracks in the early 
medium range.

In the coming years, it is planned to extend SPP into the 
parametrizations of the land surface. An initial 
investigation has explored the beneficial impact of 
increased ensemble spread from stochastic 
perturbations to land surface parameters in the context 
of land data assimilation.

SPP has gained popularity as a representation of model 
uncertainties and has been introduced already in the 
Canadian Global Ensemble Prediction system and in the 
regional HARMONIE ensemble prediction system 
(McTaggart-Cowan et al., 2022; Tsiringakis et al., 2024). 
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Data-driven ensemble forecasting with 
the AIFS
Mihai Alexe, Simon Lang, Mariana Clare, Martin Leutbecher, Christopher Roberts, Linus Magnusson, 
Matthew Chantry, Rilwan Adewoyin, Ana Prieto-Nemesio, Jesper Dramsch, Florian Pinault, 
Baudouin Raoult

Data-driven weather forecast models are a 
promising addition to physics-based 
numerical weather prediction (NWP) models. 

ECMWF now runs the Artificial Intelligence 
Forecasting System (AIFS) in an experimental 
real-time mode. It is run four times daily and is open 
to the public under ECMWF’s open data policy. This 
AIFS version (henceforth referred to as ‘deterministic 
AIFS’) is trained to produce forecasts that minimise 
mean squared error (MSE) up to 72 h into the 
forecast. The MSE optimisation leads to excessive 
smoothing and reduced forecast activity (Lang et al., 
2024(a)). This is detrimental to ensemble forecasts, 
which rely on a realistic representation of the intrinsic 
variability of the atmosphere.

In this article, we describe two training approaches for 
data-driven forecast models to produce skilful ensemble 
forecasts: diffusion training (Karras et al., 2022, and 
Price et al., 2024), where the forecast is the result of a 
denoising task, and probabilistic training with a proper 
score objective adjusted for the finite ensemble size, 
such as the fair continuous ranked probability score (fair 
CRPS; Leutbecher, 2019, and Kochkov et al., 2024).

Model and data
The forecast model for both methods, diffusion-based 
training and CRPS-based training, is the AIFS (Lang 

et al., 2024(a)). The AIFS is built around an ‘encoder–
processor–decoder’ architecture. The encoder and 
decoder are attention-based graph neural networks 
(GNNs), and the processor is a sliding-window 
transformer. The latest version of the AIFS at the time of 
writing (0.2.1) was trained on approximately 40 years of 
Copernicus ERA5 reanalysis data and ‘fine-tuned’ on the 
ECMWF operational analysis from 2019 to 2020 to 
improve the skill of real-time forecasts. 

CRPS-based training
In the AIFS–CRPS configuration, multiple model states 
(i.e. ensemble members) are propagated forward in 
time, as shown in Figure 1 (see for example Kochkov 
et al., 2024). For each ensemble member, a different 
realisation of random Gaussian noise is injected into the 
transformer processor. White noise is fed into the 
model, during both training and inference (forecasting), 
to be used by AIFS–CRPS to learn a representation of 
forecast model uncertainty. The CRPS training objective 
is calculated against the ERA5 deterministic reanalysis 
at the forecast target time. Perturbed initial conditions 
are generated by re-centring the ERA5 Ensemble of 
Data Assimilations (EDA) on the ERA5 deterministic 
reanalysis. This is consistent with the use of the EDA for 
ECMWF’s Integrated Forecasting System (IFS), as 
described in Lang et al., 2015. In addition to model 
parallelism (sharding, see Lang et al., 2024(a)), the AIFS 
code can distribute ensemble members across several 
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FIGURE 1  Probabilistic training 
with CRPS optimisation 
(AIFS–CRPS): the AIFS 
propagates four ensemble 
members that are then 
optimised jointly through the 
CRPS loss. The ensemble 
members can reside on 
separate GPU devices; in this 
case, a differentiable all‑gather 
operation happens before the 
loss computation. Ensemble 
member trajectories start from 
different initial conditions 
(re‑centered ERA5 EDA, see 
text) and receive different 
noise inputs.
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graphics processing units (GPUs) to enable the training 
of larger ensembles at higher spatial resolution. AIFS–
CRPS also implements autoregressive rollout during 
training, with 6‑hour time steps; this makes it possible 
to optimise CRPS up to several days into the forecast. 
We found that a four-member ensemble was sufficient 
during training to arrive at a model that shows good 
probabilistic skill in both training and inference. Larger 
ensemble sizes are used during inference.

Diffusion-based training
In the diffusion approach (AIFS–Diffusion), the AIFS 
learns to remove noise from a forecast state, 
conditioned on the initial conditions and a noise 
schedule (Price et al., 2024; Karras et al., 2022; and 
Figure 2). During training, the model ‘sees’ different 
noise levels, i.e. increasingly noisy forecast states, all 
the way up to ‘pure’ noise. The model iterates on the 
same state using a sampling process, arriving at a 
12‑hour forecast tendency after 20 denoising steps. 
This increases the computational cost of a single 
forecast trajectory. Diffusion-based training usually 
requires a significantly larger number of training steps 
than deterministic training. On the other hand, AIFS–

Diffusion does not incur the overhead of propagating 
multiple ensemble members as in AIFS–CRPS. 
We have found that both ensemble configurations have 
comparable training costs at a horizontal grid spacing 
of approximately one degree (111 km).

Inference
During inference, AIFS–CRPS and AIFS–Diffusion start 
from the initial conditions of the operational IFS 
ensemble. The initial conditions include the singular 
vector component of the initial perturbations. Both 
AIFS–CRPS and AIFS–Diffusion are then run 
autoregressively to generate 15-day forecasts. 
The ensembles are configured with a forecast step of 
12 hours (AIFS–Diffusion, cf. Price et al., 2024) and 
6 hours (AIFS–CRPS). Each ensemble member is 
independent, and thus the forecast generation is fully 
parallel. The cost of an AIFS–Diffusion forecast is 
significantly higher than that of an AIFS–CRPS forecast 
because the diffusion model is called multiple times per 
forecast step. That said, both data-driven approaches 
are very cheap when compared to the computational 
cost of an IFS ensemble member trajectory: e.g., when 
run on a single NVIDIA A100 GPU device, AIFS–

FIGURE 2  Diffusion training (AIFS–Diffusion): we show four (non-consecutive) steps from a denoising diffusion chain. Starting from pure 
Gaussian noise (top left), the model generates a 12‑hour tendency (bottom right). The model has many variables and levels; for illustration 
purposes, the meridional wind component at 850 hPa has been selected.
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Diffusion needs only about 2.5 minutes to produce a 
15‑day forecast ensemble member. For reference, one 
IFS Cycle 48r1 ensemble member takes about one hour 
to produce (excluding I/O), on 96 AMD Epyc Rome 
central processing units (CPUs). The operational IFS 
ensemble runs at a spatial resolution of approximately 
9 km (Lang et al., 2023).

Forecast evaluation
To enable rapid testing at a small computational cost, 
we have thus far only trained models at a horizontal grid 

spacing of one degree, which is consistent with the 
configuration used for the development of the first 
deterministic (v0.1) AIFS system.

We found that both approaches produce skilful ensemble 
forecasts. In Figure 3 we compare AIFS–Diffusion and 
AIFS–CRPS initialised from perturbed, re-centred ERA5 
analyses at O96 horizontal grid spacing (ca. one degree) 
to the 2019 IFS operational ensemble (ca. 18 km 
horizontal grid spacing). AIFS–Diffusion and AIFS–CRPS 
produce well-calibrated forecasts and generate realistic 
forecast variability. In contrast to deterministic AIFS 
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FIGURE 3  Fair CRPS scores of (a) 500 hPa geopotential height and (b) 850 hPa temperature, comparing the 50‑member operational IFS 
ensemble with 8‑member ensembles initialised from the ERA5 EDA for a 3‑month period in 2019, using models trained with the proper score 
optimisation (AIFS–CRPS) and diffusion (AIFS–Diffusion) techniques.

a Deterministic AIFS, 24 hours, 0.25 degrees b AIFS-Diffusion ensemble member, 24 hours, 1 degree

c Deterministic AIFS, 240 hours, 0.25 degrees d AIFS-Diffusion ensemble member, 240 hours, 1 degree

FIGURE 4  Depicted are (a) a 24‑hour forecast of the deterministically (MSE) trained AIFS at N320 (a forecast with a horizontal grid spacing of 
ca. 0.25 degrees), (b) a 24-hour AIFS–Diffusion ensemble member at O96 (a forecast with a horizontal grid spacing of ca. 1 degree), (c) the same 
as (a) but showing a 240 h forecast, and (d) the same as (b) but showing a 240 h forecast. The forecasts the AIFS produces after probabilistic 
training (diffusion or fair CRPS) show a similar level of detail at short- and medium-range lead times.
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FIGURE 5  Ensemble forecasts of 2‑metre temperature ahead of a cold spell over Europe, in late April 2024. The forecasts are averaged over 
a 1x1‑degree box centred around 48.3°N, 4°E (near Troyes, France). 

forecasts, probabilistically trained AIFS ensemble 
members retain a similar level of detail at short- and 
medium-range lead times, as evidenced in Figure 4.

Implementation
AIFS–Diffusion was chosen as the first candidate for 
experimental real-time implementation. The operational 
IFS ensemble provides perturbed initial conditions for 
the data-driven ensemble forecast. After fine-tuning on 
operational IFS analyses, the resulting model is 
competitive with the 9 km IFS ensemble for upper-air 
scores (see Figure 3 in Lang et al., 2024(b)). It now runs 
twice daily in a 51‑member configuration and produces 
a similar set of variables to that of the deterministic AIFS 
(Lang et al., 2024(b)). It is important to note that, while 
the control member of the AIFS–Diffusion ensemble 
configuration is started from unperturbed initial 
conditions, it nonetheless includes a representation of 
model uncertainty because of the stochastic sampling 
involved in calculating the forecast.

To better quantify and understand its forecast 
performance, the real-time AIFS–Diffusion ensemble is 
periodically evaluated by ECMWF analysts – see, 
e.g., the recent episode of exceptionally heavy rainfall in 

the United Arab Emirates described by Magnusson 
et al., 2024.

A cold snap over western Europe
The forecasting skill of the diffusion-trained ensemble 
can be illustrated with an example from France. A cold 
spell was observed over parts of central and western 
Europe in late April 2024. The cold air caused late-
season, potentially damaging frost during the flowering 
period of fruit trees and grapevines. Figure 5 shows 
2‑metre temperature ensemble forecasts from the IFS 
ensemble and the experimental real-time AIFS–
Diffusion ensemble. The forecasts are averaged over a 
1x1-degree box located near Troyes, France, a 
winemaking region. Both forecasting systems 
successfully forecast the 24 April cold anomaly about 
8–10 days before the event.

Sub-seasonal forecasts
Early evidence strongly suggests that the ensemble 
AIFS will also have a role to play in sub-seasonal 
forecasting. While deterministically trained data-driven 
forecast models are known to develop large biases 
over relatively long forecast horizons (Ben‑Bouallègue 
et al., 2023), the systematic errors of the two 
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Mean absolute bias score cards – northern hemisphere
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FIGURE 6  Scorecard summarising changes in mean absolute bias (MAB) for the northern hemisphere (30°N–90°N) for AIFS–Diffusion versus 
operational IFS (Cycle 48r1) sub‑seasonal hindcasts, calculated as 1 – MABAIFS/MABIFS as described in Roberts et al. (2021). MAB is shown 
estimated for all available dates (2003–2022; left) and three different 5‑year subsets, including data not used for training (2018–2022; right). 
Upward (blue) triangles indicate that absolute biases aggregated across all locations and start dates in AIFS–Diffusion are reduced compared 
to IFS Cycle 48r1. The variables shown are mean sea‑level pressure (msl) and zonal/meridional wind at 10 m (uas/vas); temperature (t) and 
zonal/meridional wind (u/v) at different pressure levels (850, 500, 200 and 50 hPa); and geopotential height (z) at 500 hPa. For both systems, 
MAB is calculated relative to ERA5 using 8‑member 46‑day ensemble forecasts initialised every Monday and Thursday within the re‑forecast 
period. Symbol areas are proportional to the fractional change in bias score and significance from the distribution created by block-bootstrap 
resampling of the available start dates. 

FIGURE 7  Bivariate correlations for an MJO index calculated from 200 hPa and 850 hPa zonal wind anomalies for AIFS–Diffusion (blue) and IFS 
Cycle 48r1 (red) calculated (a) using all available dates (2003–2022) and (b) data not used for training (2018–2022). Higher correlations mean 
better forecasts. The MJO index used here is an approximation for the full Wheeler and Hendon (2004) Real-time Multivariate MJO index as it 
excludes contributions from outgoing longwave radiation that are not available from AIFS–Diffusion. For both systems, correlations are calculated 
relative to ERA5 using 8‑member 46‑day ensemble forecasts initialised every Monday and Thursday within the re‑forecast period. Error bars 
represent the 2.5th and 97.5th percentiles of the distribution created by block-bootstrap resampling of the available start dates.
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probabilistic models described here are comparable to 
or smaller than the biases of the physics-based IFS, for 
a range of forecast parameters (see Figure 6 for 
AIFS–Diffusion vs the IFS). Notably, preliminary 
analyses of sub-seasonal AIFS–Diffusion ensembles 
show significant forecast skill, outperforming (weeks 1 
and 2) or matching (week 3 and later) the skill of the 
IFS when predicting the Madden–Julian Oscillation 
(MJO), as shown in Figure 7.

Outlook
Probabilistic training of data-driven models results in 
skilful ensemble forecasts that also overcome one of 
the main limitations of deterministically trained 
models: the over-smoothing of forecast fields. 
Ongoing research aims to further increase forecast 
skill, to improve the fine-tuning approaches of the 
ensemble models on operational IFS analyses, to 
increase the temporal resolution, and to decrease 
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horizontal grid spacing to 0.25 degrees. It is likely that 
higher-resolution ensembles will improve forecast 
scores for surface fields such as 2‑metre temperature, 
precipitation, and 10‑metre winds, as well as the 
representation of tropical cyclones. 

Because data-driven ensemble forecasts are much 
cheaper to produce than their physics-based 
counterparts, it will be possible to add an AIFS–CRPS 
ensemble configuration to the experimental real-time 
suite, running alongside the diffusion-based system. 
This will allow a comprehensive evaluation of the 
strengths and weaknesses of both approaches.

Meteograms along with mean and spread products from 
the experimental AIFS real-time ensemble are available 
as open charts (https://charts.ecmwf.int) under 
ECMWF’s open data policy. Further charts and data will 
be available in the near future.
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The Copernicus Interactive Climate Atlas: 
a tool to explore regional climate change
José Manuel Gutiérrez (Instituto de Física de Cantabria, Spain), Daniel San Martín (Predictia, Spain), 
András Horányi, Anca Brookshaw, Carlo Buontempo (all ECMWF), Javier Díez-Sierra (Instituto de 
Física de Cantabria, Spain), Christopher Goddard (ECMWF), Max Tuni (Predictia, Spain)

The Copernicus Interactive Climate Atlas (http://
atlas.climate.copernicus.eu, C3S Atlas in short) 
was released by the Copernicus Climate 

Change Service (C3S) in early 2024. It is a new C3S 
application (https://cds.climate.copernicus.eu/
applications) which enables an interactive exploration 
of the Earth's climate, from recent changes and 
trends to possible climate futures under different 
emission scenarios. It uses key datasets that are 
available in the C3S Climate Data Store (CDS), 
including observation-based datasets (E-OBS), 
reanalyses (ECMWF’s ERA5, ERA5-Land and 
ORAS5), and comprehensive global (CMIP5/6) and 
regional (CORDEX) climate projections. The goal is to 
produce authoritative climate change information for 
a wide range of physical variables. The variables 
characterise various types of climatic impact-driving 
conditions (heat and cold, wet and dry, wind and 
radiation, snow and ice, ocean, circulation) relevant 
for climate change risk assessments. The C3S Atlas 
is a new resource for policy makers wishing to 
formulate effective climate policy and for other users 
who need to visualise and analyse climate change 
information, particularly at the regional scale. This 
C3S tool is an evolution of the Intergovernmental 
Panel on Climate Change (IPCC) Interactive Atlas 
(IPCC-IA), which was frozen in 2021 with the 
publication of the Sixth Assessment Report’s (AR6) 
WGI (Working Group I) section (see https://www.ipcc.
ch/report/ar6/wg1). 

The AR7 cycle has just started, and so the scope of the 
new Atlas has not been defined yet. In that sense, there 
is no formal agreement with the IPCC regarding the 
future. At the same time, the C3S Atlas has consolidated 
its role to become the natural evolution of the AR6 Atlas, 
and we believe the IPCC (WGI/II) might be interested in 
building on the C3S Atlas for AR7, in combination with 
other tools. We look forward to continuing the dialogue 
with the IPCC to ensure C3S can support the evolution 
of the IPCC's report in the most useful and efficient way.

The C3S Atlas has additional datasets and more 
variables than the IPCC‑IA, and it will have further 

doi: 10.21957/ah52ufc369

enhancements in the future. One key additional feature 
is the possibility to select a country or multiple countries 
as predefined regions (e.g. a combination of Portugal 
and Spain is shown in Figure 1), or to compute regional 
products on-the-fly for any customised regions. This 
makes it possible, for instance, to select any 
transboundary regions, where the information provided 
by the C3S Atlas can support coordinated actions of 
multiple countries. In any of the predefined and user-
defined regions, the user can visualise regional 
information products, such as time series, climate stripe 
plots or annual cycles. The C3S Atlas provides different 
options to download the different products and the 
underlying data, including the monthly gridded dataset 
of the full set of variables across the different datasets 
underpinning the C3S Atlas. See https://doi.
org/10.24381/cds.h35hb680 for CDS access to the 
dataset. Figure 1 shows a screenshot of the C3S Atlas, 
illustrating its main components and some of the 
different products provided. Box A provides a summary 
of new features of the C3S Atlas.

Key variables for risk assessment
The C3S Atlas expands beyond the list of 21 variables/
indices included in the IPCC-IA in order to better 
characterise key hazards. It thus supports and expands 
the global and regional climate change assessment 
made in the AR6 WGI report. Besides near-surface air 
and sea temperatures, precipitation and wind, the C3S 
Atlas includes additional essential climate variables, 
such as near-surface humidity, surface radiation fluxes, 
soil moisture and runoff, as well as various indices 
characterising different types of climatic impact-drivers. 
The selection of such new variables is based on the 
IPCC experience and particularly on user feedbacks on 
the IPCC‑IA. For ease of navigation and to improve the 
user experience, all indices have been grouped around 
common themes: heat and cold, wet and dry, wind and 
radiation, snow and ice, ocean, and circulation. The first 
version of the C3S Atlas included a total of 30 variables 
and indices (Table 1). Periodic updates are planned to 
incorporate new variables and indices aligned with C3S 
needs and with key international initiatives, such as the 
IPCC. The full description of variables and indices is 
available in the user guidance for the underlying dataset 

http://atlas.climate.copernicus.eu
http://atlas.climate.copernicus.eu
https://cds.climate.copernicus.eu/applications
https://cds.climate.copernicus.eu/applications
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https://doi.org/10.24381/cds.h35hb680
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FIGURE 1  The top panel shows the landing page of the Copernicus Interactive Climate Atlas (C3S Atlas). It shows the mean temperature 
increase for global warming of 2°C, relative to the pre-industrial baseline 1850–1900. The left control panel enables users to configure the 
analysis dimensions (variable and dataset, season, periods, magnitudes: changes, trends, warming levels, etc.), and the right toolbar with 
buttons enables interactive exploration and figure/data exporting. Interactivity includes the selection of predefined (or customised) regions 
and the possibility to visualise regional information products, as shown in the bottom panel (selecting Spain and Portugal in the ‘European 
countries’ as predefined regions in the regional selector).

Regional information
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and Regional Climate Models (GCMs and RCMs). 
They are forced with historical conditions and 
different future emission scenarios over the period 
from 1850 to 2100. The Coupled Model 
Intercomparison Project Phase 6 (CMIP6) is the 
reference framework for global climate projections 
and was essential to the work of the IPCC AR6. 
The application also provides access to the fifth 
phase of CMIP, CMIP5, which was the basis for the 
IPCC Fifth Assessment Report (AR5) and the special 
report for 1.5º global warming. This is still widely used 
as an alternative line of evidence.

Besides the global projections, the C3S Atlas also 
gives access to the regional projections created by the 
Coordinated Regional Climate Downscaling 
Experiment (CORDEX) driven by CMIP5 global 
forcings; in particular, CORDEX-EUR-11 high-
resolution projections and CORDEX-CORE, 
complementing the CORDEX domain-by-domain 
information included in the IPCC Interactive Atlas. 
These two datasets provide the projections with the 
highest resolution available for the European domain 
(12.5 km) and for a global mosaic covering all land 
inhabited regions (25 km), respectively. 

Downloading the visual products and the 
underlying data
A variety of options exist to download the visual outputs 
and the underlying data in user-friendly formats. Maps 
can be downloaded as PNG files and the underlying 
data as NetCDF, commonly used by climate 
practitioners, or GeoTIFF, commonly used by the 

Summary information about the new features of the C3S Atlas

The new Copernicus Interactive Climate Atlas (C3S 
Atlas) is a C3S application which can be used to 
access and show authoritative datasets for 
monitoring and assessing the evolution of key climate 
variables and indices. This harmonised and 
processed information (common grids, calendars, 
etc.) is also published as an additional C3S dataset in 
the CDS. It ensures reproducibility and reusability and 
provides a generic dataset for climate change risk 
assessment. This data harmonisation, pre‑processing 
and quality control can help with the use of the data 
and can prevent any possible errors made in these 
steps by the users. It also facilitates downstream 
applications. Finally, it provides several new features 
with respect to any previously used tools in general 
and the IPCC‑IA in particular. Such features are:

•	 the possibility of selecting national and trans-
national regions, either predefined or user-defined, 

for detailed regional climate information

•	 periodic updates, including additional variables 
and indices (e.g. nine additional variables with 
respect to the IPCC‑IA in the first version: SPEI6, 
huss, evspsbl, mrsos, mrro, clt, rsds, rlds and psl 
– see Table 1 for the variable codes)

•	 using quality-assured datasets from the C3S CDS, 
such as ERA5-Land (in addition to ERA5 originally 
included in the IPCC‑IA) as a global reanalysis, the 
ORAS5 ocean reanalysis, CORDEX-CORE 
Regional Climate Model (RCM) simulations as well 
as regional EURO-CORDEX data, and Global 
Climate Models (GCMs from CMIP5 and CMIP6)

•	 the monthly dataset behind the C3S Atlas is fully 
available in the C3S Climate Data Store (CDS): 
https://doi.org/10.24381/cds.h35hb680.

a

under ‘2.2 Variables and indices’ at: https://confluence.
ecmwf.int/display/CKB/Gridded+data+underpinning 
+the+Copernicus+Interactive+Climate+Atlas%3A 
+Description+of+the+datasets+and+variables

This set of 30 indices has been systematically 
computed (where data are available) for a number of 
authoritative and quality-assured C3S datasets 
(Table 2). They provide information about the past and 
present climate (observations and reanalyses) and our 
possible climate futures (global and regional climate 
projections), with key complementary lines of evidence 
for climate change risk assessment. 

The C3S Atlas includes observation-based products, 
such as the E-OBS gridded observational database, 
which tracks temperature in Europe since 1950, as well 
as reanalyses like ERA5 and ERA5-Land. These 
reanalyses represent the state of our climate since 1940 
(1950 for ERA5-Land). The application shows the data 
until 2022 and will be updated regularly, for instance 
every March, when all the data for the previous year are 
consolidated. Meanwhile, the near-real time ERA5 
dataset ERA5T – up to five days before the current day 
– is available in the Climate Data Store. The C3S Atlas 
also includes ocean data (ORAS5 ocean reanalysis) 
from 1958 to 2014 to analyse the climatic conditions of 
different oceanic variables (sea-surface temperature and 
sea‑ice extent).

The Atlas includes state-of-the-art climate model 
projections to explore a variety of possible climate 
futures. They describe the evolution of the climate 
system based on simulations produced with Global 

https://doi.org/10.24381/cds.h35hb680
https://confluence.ecmwf.int/display/CKB/Gridded+data+underpinning+the+Copernicus+Interactive+Climate+Atlas%3A+Description+of+the+datasets+and+variables
https://confluence.ecmwf.int/display/CKB/Gridded+data+underpinning+the+Copernicus+Interactive+Climate+Atlas%3A+Description+of+the+datasets+and+variables
https://confluence.ecmwf.int/display/CKB/Gridded+data+underpinning+the+Copernicus+Interactive+Climate+Atlas%3A+Description+of+the+datasets+and+variables
https://confluence.ecmwf.int/display/CKB/Gridded+data+underpinning+the+Copernicus+Interactive+Climate+Atlas%3A+Description+of+the+datasets+and+variables
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Group 
category Code Index Units

heat and 
cold

T Monthly mean of daily mean temperature °C
TN Monthly mean of daily minimum temperature °C
TX Monthly mean of daily maximum temperature °C

TNn Monthly minimum of daily minimum temperature °C
TXx Monthly maximum of daily maximum temperature °C

TX35 Monthly count of days with maximum temperature above 35°C days
TX35ba Monthly bias adjusted TX35 days
TX40 Monthly count of days with maximum temperature above 40°C days

TX40ba Monthly bias adjusted TX40 days
FD Monthly count of frost days days
HD Annual heating degree-days °C day
CD Annual cooling degree-days °C day

wet and 
dry

PR Monthly mean of daily accumulated precipitation mm
RX1day Monthly maximum of 1-day accumulated precipitation mm
RX5day Monthly maximum of 5-day accumulated precipitation mm

CDD Annual consecutive dry days days
SPI6 Standardized Precipitation Index (SPI) for 6 months cumulation period 1

SPEI6 Standardized Precipitation Evaporation Index (SPEI) for 6 months 
cumulation period 1

huss Monthly near surface specific humidity 1
evspsbl Monthly evaporation including sublimation and transpiration mm
mrsos Monthly soil moisture in upper soil portion kg m-2

mrro Monthly total runoff kg m-2

snow and 
ice

prsn Monthly mean of daily accumulated snowfall precipitation mm
siconc Monthly mean of sea-ice area percentage %

wind and 
radiation

sfcwind Monthly mean of daily mean wind speed m s-1

clt Monthly fraction of cloud cover 1
rsds Monthly surface solar radiation downwards W m-2

rlds Monthly surface thermal radiation downwards W m-2

ocean sst Monthly mean of sea surface temperature °C
circulation psl Monthly sea level pressure Pa

TABLE 1  Description of the 30 climate variables and indices included in the C3S Atlas. 

Project C3S Atlas 
Subset Resolution CDS-catalogues

CMIP6 CMIP6 1° (*) Projections-cmip6 

CMIP5 CMIP5 2° (*) Projections-cmip5-daily-single-levels [daily]
Projections-cmip5-monthly-single-levels [monthly]

CORDEX
CORDEX-CORE 0.25° (*)

Projections-cordex-domains-single-levels [daily/monthly]
CORDEX-EUR-11 0.125° (*)

ERA5 ERA5 0.25° Reanalysis-era5-single-levels [hourly]
Reanalysis-era5-single-levels-monthly-means [monthly]

ERA5-Land ERA5-Land 0.1° Reanalysis-era5-land [hourly]
Reanalysis-era5-land-monthly-means [monthly]

E-OBS E-OBS 0.125° (*) Insitu-gridded-observations-europe [daily]
ORAS5 ORAS5 0.25° (*) Reanalysis-oras5 (consolidated, single levels) [daily]

TABLE 2  Descriptions of the datasets and CDS catalogues used for the C3S Atlas dataset. The column 
‘resolution’ indicates the horizontal resolution and an asterisk indicates that the original dataset from the CDS has 
been regridded to the common nested sub-grids: 2°, 1°, 0.5°, 0.25°, 0.125°.
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Geographical Information Systems (GIS) community. 
All regional information products can be exported in 
PDF and PNG formats, and the underlying data 
(numbers) as a CSV file. All these products are 
distributed with an open licence, facilitating reusability.

Moreover, the entire dataset underpinning the C3S Atlas 
has been published in the C3S CDS catalogue (‘Gridded 
dataset underpinning the Copernicus Interactive Climate 
Atlas’, https://doi.org/10.24381/cds.h35hb680). 

Discovering the C3S Atlas: an illustrative 
example
A selection panel with the main choices (see left in the 

top panel of Figure 1) is available to explore recent and 
future climate, including the selection of the variable, 
dataset, period of analysis, and part of the year 
(referred to as ‘season’, offering a choice between 
annual, seasonal or monthly). The selection of the 
dataset determines the details of analysis, which are 
different for observational and reanalysis datasets and 
for climate projections. The different options are 
described below using runoff as an illustrative 
example. Note that it is part of the set of variables 
(runoff, evaporation and soil moisture) included in the 
C3S Atlas to further characterise the hydrological cycle 
and hydrological droughts, thus extending and 
complementing the rainfall information originally 
included in the IPCC-IA. For observational and 

FIGURE 2  Different dimensions of analysis for the annual mean daily runoff variable (kg·m–2) for the ERA5-Land dataset, showing (a) the 
climatology of the reference period 1991–2020, and two alternative magnitudes of change: (b) change for 1991–2020 relative to the 
1961–1990 period and (c) the trend for the 1950–2020 period (showing non-significant trend regions with crosses). Besides the global map, 
the C3S Atlas makes it possible to zoom in to get full regional details, e.g. in the northern part of South America, as shown in the figures.
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reanalysis datasets, the C3S Atlas offers climatologies, 
changes relative to a baseline period, and trends, for a 
number of predefined historical periods. The resulting 
information is graphically represented in the form of a 
map showing gridded information for the selected 
analysis period. Each dataset is shown in its full spatial 
extent (global or regional), with its corresponding 
spatial resolution. For instance, Figure 2 illustrates the 
possibilities of the C3S Atlas to analyse present 
climate conditions and recent changes for the annual 
mean daily runoff variable (kg·m-2, corresponding to 
mm for water) from ERA5-Land, showing consistent 
change and trend patterns.

For the climate projection datasets, the C3S Atlas 
enables the display of climatologies and changes for 
historical periods, as in the previous case (see Figure 3).

Besides the historical periods, which can be used 
with observations and reanalysis, the ‘climatology and 
changes’ dimension makes it possible to explore 
future periods (near-, medium- and long-term, defined 
as 2021–40, 2041–60 and 2081–2100, respectively) 
across different emission scenarios: Representative 
Concentration Pathways (RCPs) for CMIP5 and 
CORDEX or the Shared-Socio-economic Pathways 
(SSPs) introduced for CMIP6. An additional dimension 
of analysis is the policy-relevant Global Warming 
Levels (GWL) used extensively in the IPCC AR6 
report. In particular, the C3S Atlas enables the 
selection of 1.5°C, 2°C, 3°C and 4°C. Global warming 
levels have been computed, following the 
methodology used in the IPCC AR6 WGI Atlas, using 
the 20‑year periods when models first reach a 
particular global warming level relative to the pre-
industrial 1850–1900 period. These periods are shown 
in the Atlas, as illustrated in Figure 4.

Figure 5 illustrates the use of the C3S Atlas to contrast 
different lines of evidence for future projections. 
It shows runoff changes according to the global CMIP6 
ensemble and the regional CORDEX-EUR‑11 one. They 
provide consistent information for the future changes in 

runoff under global warming of 2°C, with respect to 
conditions in 1991–2020.

Climate change maps include information on the 
robustness or uncertainty of the displayed signal. 
Following the AR6 WGI method, the C3S Atlas uses 
model agreement (with an 80% threshold) and signal 
emergence (relative to internal variability) to provide 
three robustness categories: (a) robust signal, (b) no 
change or no robust signal, and (c) conflicting signal.

Detailed regional information with a 
variety of visual products
Beyond spatial map information, the C3S Atlas makes it 
possible to explore regionally aggregated information for 
a number of predefined regions, shown in the ‘region set’ 
selector.  Single or multiple regions can be selected by 
clicking directly on the map. Predefined regions include:

•	 the IPCC AR6 reference regions, which were used in 
the AR6 WGI report for regional climate change 
assessment

•	 the EUCRA regions, which are used in the European 
Climate Risk Assessment, and

•	 European countries, including those countries 
covered by the regional European datasets: E‑OBS 
and CORDEX-EUR‑11.

The regionally averaged information shown by the C3S 
Atlas for these predefined regions is pre-computed and 
can be explored interactively by clicking the ‘regional 
information’ button, which becomes visible when a 
region is selected. The user can also select customised 
regions, which can be defined using the ‘user defined’ 
option in the region selector. A custom new region can 
be drawn directly on the map after clicking the ‘pencil’ 
button. This action creates an offline job which enters a 
queue system, passing through different states until 
completion, typically in a few seconds. 

Complementary aspects of regional information are 

FIGURE 3  Climatology of mean daily runoff from the CMIP6 ensemble mean for the reference period 1991–2020. Besides the global map, 
the C3S Atlas makes it possible to zoom in to get full regional details, e.g. in the northern part of South America, as shown in the right panel.

Units: kg•m-2

10

0
1
2
3
4
5
6
7
8
9



44

earth system science

ECMWF Newsletter 181  •  Autumn 2024

FIGURE 4  Different graphical products for regional information on runoff over a predefined region (selecting Spain and Portugal among the 
predefined European countries), including (a) a time series showing all ensemble members and (b) monthly climate stripes, showing the 
ensemble median monthly changes. Note that the time series plot includes light grey shading indicating the selected baseline (1991–2020) 
and darker grey shading for reference periods (2ºC global warming level). The latter are shown as 20‑year periods from the ensemble 
members, when the given global warming level is first reached. All regional graphical information products make it possible to export the 
results in PDF and PNG formats, and also to export the underlying data (numbers) as a CSV file. 
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shown using different graphical products (Figure 4). 
All these graphical elements are dynamically updated 
when changing the choices in the selection panel.

FAIR principles for reproducibility and 
reusability
The development of the IPCC Interactive Atlas 
embodied a pioneering effort to integrate FAIR data 
principles (for Findability, Accessibility, Interoperability 
and Reusability) into climate policy reports (such as 
IPCC reports), thereby significantly enhancing their 
transparency and reproducibility (Iturbide et al., 2022). 
These principles have been adopted and expanded in 

the C3S Atlas by publishing the underpinning dataset in 
the C3S catalogue as described above, thus facilitating 
findability, accessibility, and reusability, and thoroughly 
documenting the data sources and processes used to 
produce the climatic products shown by the C3S Atlas. 
These activities will be complemented in the future by 
providing reusable code in Jupyter notebooks. These 
notebooks will illustrate the workflow followed to 
produce the C3S Atlas dataset and graphical products. 
Additionally, machine-readable standard provenance 
information will be provided for reproducibility. This 
information comprises a comprehensive description of 
the main climate data sources (primarily CMIP5/6 and 
CORDEX subsets), post-processing methods (such as 
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FIGURE 5  Climatology of mean daily runoff from the CMIP6 ensemble mean for the reference period 1991–2020. Besides (a) the global 
map, the C3S Atlas makes it possible to zoom in to get full regional details, e.g. in (b) Europe, and show (c) the higher-resolution 
CORDEX‑EUR‑11 simulations. 

a CMIP6 runoff change for a 2ºC warming (relative to 1991–2020) 

b CMIP6 zoom-in c CORDEX-EUR-11
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temporal aggregation and regridding), calibration 
techniques (including bias adjustment), and graphical 
outputs (such as geographical extent, colour bars, and 
displayed entities and layers).

You can find all the practical navigation details of the 
C3S Atlas in the comprehensive User Guide:  
https://confluence.ecmwf.int/display/CKB/Copernicus+ 
Interactive+Climate+Atlas%3A+User+Guide
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