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Artificial intelligence (AI), and particularly machine learning 
(ML), is a mainstay of newspaper headlines, coffee 
conversations and everyday life across the world. Many fields 
and disciplines find themselves in the middle of a revolution, 
where the combination of data, algorithms and compute 
can provide low-cost solutions for a wide range of tasks. 
Weather forecasting is no exception to this, with this 50th 
ECMWF anniversary year seeing the operationalisation of the 
Artificial Intelligence Forecasting System (AIFS) at ECMWF. 
We will take a stroll through the history of machine learning 
at ECMWF, which starts earlier than one may expect, talk 
about the current state of play and gaze into a crystal ball 
in discussing the role of machine learning at ECMWF in the 
years to come.
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Machine learning (ML) is the use of statistical algorithms that can learn from data 
and generalise to unseen data without explicit instructions. It is a sub-class of 
artificial intelligence (AI), which is the capability of computer systems to perform 
tasks typically associated with human intelligence. Many of the statistical methods 
that have been used for decades in Earth sciences can be counted into the wider 
class of ML. Examples are multi-dimensional linear regression, or dimensionality 
reduction via principal components. Even deep learning – the use of neural networks 
to perform ML – was already applied at ECMWF for the emulation of the radiation 
scheme more than two decades ago (Chevallier et al., 1998). It may therefore 
surprise that many claim that we have seen an ML “revolution” during the last couple 
of years. What happened?

Beyond the domain of Earth system science, AI and ML have seen an enormous rise 
that was mainly fuelled by: 

•	 A massive increase in computational power with computer hardware customised 
towards the needs of deep learning, and deep learning being the ideal application 
for state-of-the-art supercomputers that excel for simple arithmetic and linear 
algebra. 

•	 The exponential increase of data in many domains – including weather and 
climate – and the ability of deep learning to learn systems of arbitrary complexity 
if enough data and compute capacity are available. 

•	 The availability of software libraries such as TensorFlow and PyTorch that allow 
a user to create complex deep learning architectures with very minimal Python 
code. 

•	 The massive amount of experience that was collected on how to design efficient 
deep learning methods with new neural network architectures and training 
procedures being invented, including convolutional neural networks, recurrent 
neural networks, generative adversarial networks, attention and transformers,  
and diffusion networks.

It became more obvious around 2018 that the developments in general machine 
learning would also impact data assimilation and Earth system modelling. Early 
success stories across ECMWF’s workflow included the use of neural networks for 
SMOS soil moisture data assimilation for the land surface (Rodríguez-Fernández 
et al., 2019) and the use of neural networks for bias correction learned within 
the 4D-Var data assimilation framework (Bonavita and Laloyaux, 2020). Deep 
learning has been used successfully for the emulation of the gravity wave drag 
parametrization schemes (Chantry et al., 2021a), and the deep learning emulators 
could be used to generate tangent linear and adjoint model code for 4D-Var data 
assimilation (Hatfield et al., 2021). Furthermore, decision trees have been used 
for the post-processing of ensemble predictions for precipitation (Hewson and 
Pillosu, 2020), and there have been plenty of links and similarities between data 
assimilation and deep learning (Geer, 2021). As ECMWF hosts more than one 
exabyte of weather and climate data, there were plenty of possible application areas 
for versatile, scalable tools that allow the extraction of complex information from 
data – such as deep learning. The potential applications were distributed across 
all parts of the numerical weather prediction (NWP) pipeline, from observation 
processing (Dahoui, 2023) to data assimilation, to the forecast model and the 
post-processing and dissemination of the forecasts. These included methods to 
improve our understanding of the Earth system such as unsupervised learning 
and causal discovery, uncertainty quantification, and AI powered visualisation; 
methods to speed-up conventional models such as emulators for parametrization 
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schemes including with low numerical precision, the optimisation of the high-
performance computing (HPC) and data workflow, and data compression; methods 
to improve the models such as bias correction tools, tools for quality control of 
observations, feature detection algorithms, and the learning of model components 
from observations; and methods that linked different datasets to weather and 
climate datasets that have interesting applications for health, energy, transport and 
pollution applications, as well as for extremes such as wildfires or flooding. 

To bring a bit more structure into the multitude of applications that could be 
explored and to quickly develop the infrastructure and know-how that was needed 
to move quickly in the developments, ECMWF published a Machine Learning 
Roadmap for the next ten years in 2021 (Dueben et al., 2021). This roadmap outlined 
five objectives for the developments in machine learning at ECMWF (see Figure 1).

For the community to fully embrace machine learning required the opportunity for 
existing domain scientists to learn about the methodologies. Since its inception 
ECMWF has had a rich history of providing training. In 2022 a first course on 
machine learning for weather forecasting was run at ECMWF’s Reading site. 
This has since been repeated most years, with each course being significantly 
oversubscribed. The topics covered in this course have evolved each year, to 
cover fresh communities in the field. In 2023 ECMWF introduced a Massive Open 
Online Course (MOOC) for machine learning in weather and climate, designed to 
help en-masse the weather forecasting community engage with the topics. The 
MOOC had 40 hours of content and was a great success attracting more than 9,000 
registered participants from 159 countries. It featured contributions from 60 experts 
around the globe, covering three tiers. 

In the first years after the awakening of deep learning for weather and climate, the 
community mostly focused on “Soft AI” to allow for improvements in computing 
efficiency via emulation, or “Medium AI” that incorporated machine learning into 
physics-based models e.g. via learning within data assimilation (Chantry et al., 
2021b). However, ECMWF has also written the first-ever paper for “Hard AI” for 
medium-range NWP. This work aimed to replace the entire forecast model based 
on a pure deep learning tool trained from reanalysis data (Dueben & Bauer, 2018). 
ECMWF has also contributed significantly to WeatherBench, the first benchmark 
dataset to train global weather prediction models from reanalysis data (Rasp et al., 
2020). However, at ECMWF and other meteorological centres, “Hard AI” approaches 
were treated rather as a testbed and scientific playground for new neutral network 
architectures and training mechanisms than as a serious alternative to physical 
models for operational predictions. This changed in 2022. 
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   Figure 1: Objectives for the  
ML activities at ECMWF as defined 
in the ML Roadmap in 2021. As 
described below, ECMWF has been 
very successful in following the 
objectives.
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In 2022 came new players and accelerated progress. The arXiv, a home for preprints 
before peer review, saw a succession of papers broadly following the problem as 
described in Dueben & Bauer (2018), but introducing new methodologies. First came 
work in February 2022 by Ryan Keisler, an individual without affiliation intrigued by 
the topic. He built on a literature of graph neural networks for science and trained a 
message-passing graph neural network (see Figure 2). This approach significantly 
increased the skill relative to previous efforts and outperformed the GFS model 
(Global Forecast System of the US National Centers for Environmental Prediction, 
NCEP). Just one week later came work from a team at NVIDIA, who were the first 
to train at ERA5’s full resolution, represented via 0.25 degree latitude-longitude 
grid (approximately 28 km), using a spectral approach which enabled the model 
to learn dynamics through a mix of neural networks operating in spectral and 
grid-point spaces. NVIDIA’s model marked the first of a series of large technology 
companies entering the domain of ML weather forecasting. November 2022 saw 
Pangu-Weather, a preprint by Huawei (Bi et al., 2023). Pangu introduced a novel 
timestepping approach, creating models optimised to make timesteps between 1 
and 24 hours, to be used in combination when delivering medium-range forecasts. 
Pangu was the first model to make claims of outperforming ECMWF’s Integrated 
Forecasting System (IFS) across the majority of variables. Perhaps even more 
eye-catching were results evaluating the skill of tropical cyclone tracks, where the 
authors claimed a significant skill gain. A month later, gifted to the community on 
Christmas Eve, came GraphCast, a preprint submission by Google Deepmind (Lam 
et al., 2023). It adopted a similar graph-based approach to Keisler but introduced 
multi-scale connections in its graph-based approach and worked on the 0.25 
degree grid. GraphCast provided more in-depth evaluation, inspired by the ECMWF 
scorecard, and argued for supremacy over the IFS across over 99% of variables and 
timescales. 2023 saw more papers, each claiming further increases in skill or utility, 
for example running at 9 km as seen in Aurora. A new sub-domain had emerged.

Perhaps even more arresting than the forecast skill were the energy costs to 
make a forecast. Once trained, the above systems could finish a ten-day forecast 
in a couple of minutes, on a single commercial-grade graphics processing unit 
(GPU) – to be contrasted with approximately 30 minutes on around 50 nodes for a 
forecast using the IFS. Roughly, these systems could reduce the energy costs of the 
forecasting piece of the chain by a factor of 1,000.
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   Figure 2: Reproduced from Keisler 
(2022). The figure shows a schematic 
for building a weather forecasting 
neural network. 1. The 3D state is 
encoded into a latent state on a 
coarser grid. 2. Information is then 
passed between nodes along edges 
in successive layers to calculate 
a latent estimate of the change 
in the atmospheric data. 3. This 
information is then decoded onto 
the state of atmospheric variables. 
4. The information is added to 
the starting time state to give a 
prediction 6 hours into the future.
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Common to all of these works were two aspects which draw sharp contrast with 
physics-based models and which are part of the explanation for the computational 
efficiency. One was the relatively minimal prognostic state of the atmosphere 
required for accurate forecasting. This featured approximately 13 pressure levels up 
to 50 hPa and only the basic atmospheric variables of humidity, winds, temperature 
and geopotential. This meant accurate forecasting without an explicit representation 
of clouds, and with a far coarser representation in the vertical dimension than the 
137 levels used by the IFS. The second was the huge timestep, typically 6 hours, 
made by the models, in contrast to 9 minutes for the IFS. A timestep this large 
would not be numerically stable for 30 km resolution physics-based models using 
conventional timestepping schemes.

Due to the preprint nature of contributions, and the work stemming from outside 
of the meteorological community, there was natural uncertainty to these results. 
Several features threatened to undercut the validity of the results and warranted 
closer investigation. Two examples were the spatial smoothing of forecasts induced 
by optimising root-mean-square errors, and the use of ERA5 as initial conditions, 
meaning incorporation of fresher observations. Both features are known to 
artificially inflate skill. To explore this, in early 2023, ECMWF became the first centre 
to start running these models in real time from the operational ECMWF analysis 
and it also showcased plots of live forecasts to users on ECMWF’s open charts. 
The goal was to help the whole community explore and understand these systems. 
Through in-house scoring, and verification of case studies, it became quickly clear 
that the results broadly held up to this further scrutiny (Ben Bouallègue et al., 2024). 
ERA5 initial conditions and forecast smoothing play a part in the skill gains but did 
not explain away significant improvements in forecasting skill. The open charts 
were popular on social media, with experienced meteorologists exploring live case 
studies and generally finding favourable results. 

Data-driven models were not a panacea. At that time, current challenges were 
estimation of small-scall extreme values, e.g. wind speeds in tropical cyclones, 
or intense small-scale precipitation. These challenges all had roots in the training 
approach. By minimising the mean-squared-error, models were not rewarded 
for making bold predictions for harder to predict events. The tool developed at 
ECMWF to enable this easy running of Pangu-Weather, FourCastNet, GraphCast 
and more from a single interface, named ai-models, was created as an open-source 
repository enabling the wider scientific community to run these models more easily 
and better understand their dynamics.

In the summer of 2023, with strong support from the ECMWF Council, ECMWF 
started the Machine Learning Project, a four-year project to embrace the disruption 
of machine learning and develop operational systems. This project has three 
strands (see Figure 3). The first focuses on hybrid combinations of machine 
learning and physics, as championed in the machine learning roadmap. The hybrid 
strand, already mature with elements in the operational pipeline, promises value to 
further improve the IFS. The second focuses on data-driven weather forecasting, 
trained on reanalysis and analysis data. Here the goal was to build on the scientific 
publications by first creating a system that matched the skill of these systems, 
before then aiming to be world-leading in this domain. One of the major targets  
was an operational ensemble system two years after the start of the project.  
The third strand is the use of observations to build forecasting systems, including 
forecasting directly from observations, i.e. building a system inclusive of  
data-assimilation and forecasting. 

ADOPTION:  2023–2025  →
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The first strand, hybridising the IFS with machine learning, explores many 
approaches to improve the skill and efficiency of the IFS. This includes learning 
properties of sea-ice state using deliberately minimal learning systems (Geer, 2024); 
bias correction of 4D-Var data assimilation (Bonavita and Laloyaux, 2020), which 
will feature in ERA6; and nudging the IFS towards a data-driven model, following 
Husain et al. (2025), aiming to combine the large-scale improvements of data-driven 
modelling with the enhanced small-scale details and expanded product set of  
the IFS. 

Prototype work for the Artificial Intelligence Forecasting System (AIFS), began 
immediately. The design choice of graph neural networks was made for the first 
implementation. This was chosen due the flexibility of data grid choices and natural 
encoding of the spherical geometry of the Earth. Building on the previous works 
by Keiser and GraphCast, rapid progress was made, with a first real-time running 
system in place by October 2023. After several further experimental model cycles 
(Lang et al., 2024a), the AIFS Single – named to capture a system designed to 
produce a single trajectory – was implemented as an operational system in February 
2025. AIFS Single 1 outperforms the IFS across the vast majority of scores, with 
tropical cyclone track accuracy a notable place of significant improvements in 
forecasting ability (see Figures 4 and 5 for examples). Tropical cyclone intensity 
estimates by contrast are a current weak point, with AIFS Single significantly 
underestimating intensity, comparable with other data-driven models. AIFS Single 
1 was made fully open source, including both data and model, enabling anyone 
to easily run the forecasting system themselves. The ability of users to easily run 
models themselves without HPC systems or extensive HPC knowledge is another 
advantage of these data-driven systems.

   Figure 3: The three strands 
of the machine learning project, 
which started at ECMWF in the 
summer of 2023. 

   Figure 4: Skill comparison 
of AIFS Single 1 and the IFS for 
temperature at 850 hPa in the 
northern hemisphere extratropics 
for the spring period MAM 2025.
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Next came the ensemble. Two methodological strands were explored in 
development towards the first AIFS ensemble system. One used the diffusion 
training methodology, state-of-the-art in image and video generation ML systems. 
The second directly targeted optimising the Continuous Ranked Probability Score 
(CRPS, Lang et al., 2024b). This latter approach proved the more accurate and 
computationally cheaper. A first ensemble system, AIFS ENS 1, was implemented in 
July 2025, two years after the start of the ML project. 

The CRPS-optimisation versions of the AIFS demonstrate skill not only on the 
medium-range timescale, but also at sub-seasonal timescales, outperforming the 
IFS sub-seasonal system across a number of key metrics. To engage the community 
in this developing field of sub-seasonal forecasting, ECMWF is organising the AI 
Weather Quest, a competition for sub-seasonal forecasting.1 At the beginning of the 
event, 55 models had been entered across 33 teams and 14 countries. Three AIFS 
variants are being submitted to this competition.

The third strand investigates whether it is possible to encompass the full forecasting 
system, from observations to predictions, with machine learning. Following the 
success of machine learning for forecasting from analysis, this is a natural question 
to ask, one with wide reaching impact if true. A number of groups have engaged 
with research in this fascinating topic, with different problem framings being tested. 
Some, like the work of Allen et al. (2025), seek to utilise ERA5 in training, but still 
produce an end-to-end system without real-time dependencies on ERA5 or similar 
products. At ECMWF, a novel approach – AI-DOP (Direct Observation Prediction) – 
was proposed by McNally et al. (2024), seeking to only use observations in building 
an end-to-end system capable of forecasting future observations from current 
ones. GraphDOP (Alexe et al., 2024), a prototype of this approach, was created 
(see Figure 6), building on some of the work for the AIFS. This model showed that 
accurate forecasting was possible. However, currently the forecast skill of this work 
lags behind that of the IFS but is continually improving. Whether these works are the 
equivalent to the work of Keisler, showing promise without yet being state of the art, 
or whether machine learning fails to surpass physics-based data assimilation, we 
will learn in the coming years.

   Figure 5: Skill comparison 
of AIFS Single 1 and the IFS for 
tropical cyclone track accuracy 
from July 2024 to June 2025.

1	 https://aiweatherquest.ecmwf.int/
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At the founding of the ECMWF ML project, opportunity was seen for ECMWF 
and its Member States to collaborate closely on the topic of data-driven weather 
forecasting. The ECMWF Member State ML Pilot Project was set up as a vehicle 
for organising this collaboration, featuring 14 partners across Europe at the time 
of writing, engaging in five work packages of data-driven modelling. ECMWF 
refactored the code underlying the AIFS to create a new open-source framework 
for data-driven modelling, dubbed Anemoi. This identified that the same code 
underlying a specific data-driven forecast system could also be used to develop 
global and regional forecasting systems for organisations across Europe, and this 
code could be co-developed by the European meteorological community, who 
could make rapid progress together. The first demonstration of this was Nipen et al. 
(2024), which built the first stretched-grid models, a forecasting system that featured 
higher spatial resolution over the Nordics but learnt from data around the globe. 
Anemoi was introduced in 2024 and in 2025 it won the European Meteorological 
Society (EMS) technology achievement award. The Anemoi community has grown to 
more than 12 Member States, who use and contribute to Anemoi.

Due to their superiority in deterministic and ensemble forecast scores, the ML 
models will become the default tool for most applications in NWP. However, it is 
also unlikely that physical models will disappear from the operational portfolio in 
the foreseeable future. Physics-based systems currently provide a much wider 
range of products for users. They can also serve as backup model configurations if 
unprecedented events are happening (how would an ML forecast model represent 
the impact of a volcanic eruption on NWP?). Physical models are the prime tool to 
generate training data when observational datasets are sparse or inconsistent.

While ML currently lags behind physics-based systems for data assimilation, we 
view that it is likely that there will be an end-to-end ML forecast suite in the future, 
covering observation ingestion, data assimilation, the forecast model, post-
processing and product generation. 

One open question is how many different ML models will be trained and used in 
parallel for operational NWP – one seamless model for all global predictions, or 
many specialised models for specific predictions, for example for tropical cyclones? 

As part of the EU Destination Earth initiative, ECMWF is already developing 
ML model components for the ocean, ocean waves, sea ice, land surface, and 
hydrology. ECMWF will, therefore, soon have a full machine-learned Earth system 
model. There are interesting questions about the coupling of model components 

   Figure 6: Schematic of the 
Graph-DOP approach developed in 
Alexe et al. (2024) which learns to 
predict future observations from 
current observations.

OUTLOOK →
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currently being explored – shall we couple ML models for the various components 
that have each been trained individually, or shall we train all components as a single 
model? A full machine-learned Earth system model that covers the coupled system 
will be much more useable for long-term and potentially even climate simulations 
when compared to the current AIFS NWP model.

A topic of active discussion is the role for ML models on seasonal to climate 
timescales, a problem fundamentally about extrapolation into unseen climate 
regimes. Training on present day alone teaches a model to predict the current 
climatology, as shown in a recent study by ECMWF and Alfred Wegener Institute 
(AWI) scientists (Rackow et al., 2024). Work outside of ECMWF has shown that 
indefinitely stable and conservative data-driven models can be built (Watt-Meyer et 
al., 2024) and can produce skilful seasonal forecasts (Kent et al., 2025). The ability 
to create huge ensembles at low cost is an enticing one, particularly on the seasonal 
timescale. However, building ML models for long-term predictions is challenging 
due to the finite dataset length that needs to be split into a training and a sufficiently 
large validation dataset to construct statistically robust results. ECMWF is actively 
exploring this topic of data-driven seasonal forecasting.

Across the full spectrum of ECMWF activities, close thought is being given 
to consider the opportunities offered by machine learning. For atmospheric 
composition, interesting reanalysis datasets and preliminary results from Aurora 
(Bodnar et al., 2025) have prompted the exploratory development of an AIFS 
system for atmospheric composition. For reanalysis, the AI-DOP approach is being 
explored for the construction of reanalysis products.

The ability to make a forecast using a single GPU in just a couple of minutes 
opens new opportunities for the democratisation of weather forecasting. Within 
Destination Earth, ECMWF is developing a “forecast-in-a-box” prototype, 
which packages initial condition retrieval, forecasting, product generation and 
visualisation into a single portable unit, capable of running locally or on cloud 
facilities. Alongside MET Norway, ECMWF is working with national forecasters in 
Malawi to test and further develop this prototype.

Another question about the future of ML for Earth system modelling is whether 
the domain will follow the developments of large language models (LLMs) towards 
larger and more generic ML tools that can then be used for multiple application 
areas – so-called foundation models. LLMs are trained to fill in gaps in huge 
amounts of text, rather than for a specific task such as the translation from language 
A to language B. The resulting tools can be used for diverse tasks beyond their 
training objective, which include translations but also the almost instantaneous 
creation of a Shakespearean poem about TikTok cat videos. Along this line, it may 
be possible that a foundation model trained from various Earth system datasets and 
with a huge latent space with many billions of trainable parameters may perform 
better in certain tasks when compared with a task-specific model. To explore 
foundation models for weather and climate applications, ECMWF and a number 
of Member States have started the WeatherGenerator EU Horizon project that will 
build such a foundation model and serve as an additional digital twin for Destination 
Earth (see Figure 7).
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Data is obviously a key ingredient in accurate forecasting using physics-based 
approaches. We view that the role of data will grow even larger with the rise of  
data-driven forecasting. Curating large, calibrated datasets will be vital to feed 
these models. Direct incorporation of surface observations into model training  
and inference will increase the value of sharing these datasets. Novel data sources, 
e.g. cameras measuring visibility, could be directly included in model pipelines. 

Representation of extreme, and particularly unprecedented, events remains a 
somewhat open question. Small-scale extreme events are typically not captured 
well in reanalysis and analysis datasets, and observation data sources for such 
events bring their own challenges. Unprecedented events can be categorised from 
a local or global perspective, i.e. events that have never been seen before in that 
region versus truly novel events that have never happened anywhere around the 
globe. Results so far suggest that for local extremes, machine learning models are 
able to surpass local climatologies significantly by learning to transfer lessons from 
other parts of the globe. Figure 8 shows an example of this for a case study in the 
UAE in April 2024. AIFS models confidently predicted record-breaking values well 
in advance of the event. For globally unprecedented events, researchers at the 
University of Chicago trained a data-driven forecasting system on ERA5 with all the 
strongest tropical cyclones removed from the training dataset (Sun et al., 2025). 
Without these events, the model was unable to produce these unseen strongest 
events. Further work is required to better understand the value for ML systems in 
extreme events. Live investigation through case studies will be vital to building trust.

   Figure 7: The WeatherGenerator 
will serve as foundation model for 
weather and climate applications. 
It will be able to digest datasets 
from various sources, including 
observations, local and global 
analysis products, and local and 
global models, and will be useful 
for many different application 
domains in weather and climate 
science. The input and output of 
the WeatherGenerator can be local 
or global, at a resolution between 
100 m and 100 km, and can be in the 
past, present and future.

   Figure 8: Showing the evolution 
of 24-hour rainfall forecasts on 
16 April 2024 over the grid box 
including Dubai. The model climate 
is about zero precipitation, with a 
maximum of less than 25 mm based 
on 1,800 forecasts (marked by 
the black triangle). Experimental 
versions of AIFS Single (blue dots) 
and AIFS Ensemble (green box and 
whisker) models both predicted 
precipitation values well-outside 
the model climatology and values  
in line with the IFS ensemble  
(blue box and whisker). All systems 
underestimated the observed value 
(purple hourglass).
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Without the explicit underpinning of physics in data-driven systems, an increased 
emphasis is being placed on building trust. Across the wide user-base of ECMWF 
products, approaches for building trust will differ. For some, extensive verification 
will be the most important thing, for others case studies. Some users will prioritise 
physical consistency as an important facet. A holistic view across these dimensions 
will be important.

What is hopefully clear to all readers is that the world of numerical weather 
prediction, and ECMWF itself, is amid a revolution. The fundamentals of weather 
prediction are changing. Machine learning is bringing new opportunities and 
interesting scientific questions to be answered. Data-driven forecasting offers an 
opportunity for the meteorological community, particularly in Europe, to work even 
more closely and benefit from shared tooling without coalescing on a single model. 
The outside world, including large technology companies, will seize this opportunity, 
and if ECMWF wants to maintain its position in the community, continued agility and 
adaptability will be required. The next few years will be key for continued community 
building and answering the remaining fundamental questions captured above. 
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