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↘

Over the past 50 years, data assimilation (DA) has been a 
cornerstone of ECMWF’s success in numerical weather 
prediction (NWP), enabling significant advancements in 
forecast accuracy and extending prediction lead times. 
Through pioneering research and strong collaborations 
with its Member States, European meteorological services, 
and space agencies such as the European Organisation for 
the Exploitation of Meteorological Satellites (EUMETSAT) 
and the European Space Agency (ESA), ECMWF has led 
the operational adoption of variational DA techniques, 
transitioning from early methods to the groundbreaking 
implementation of four-dimensional variational data 
assimilation (4D-Var). This transformation has allowed the 
direct assimilation of satellite radiances, unlocking the full 
potential of spaceborne observations and revolutionising 
modern data assimilation and forecasting.

Further developments, such as the introduction of the 
Ensemble of Data Assimilations (EDA), have provided a 
more robust representation of flow-dependent errors, 
improving uncertainty quantification in initial conditions. 
ECMWF continues to drive innovation through the evolution 
of coupled DA, integrating atmospheric, ocean, and land 
observations to enhance Earth system modelling. The 
“all-sky, all-surface” approach has further optimised satellite 
data assimilation in complex conditions, ensuring the best 
possible use of European and international investments in 
space programmes. These advancements are made possible 
through sustained collaboration with national meteorological 
services, research institutions, and operational programmes 
such as the European Union’s Copernicus programme.

Beyond weather forecasting, ECMWF’s world-class DA 
infrastructure underpins the production of high-impact 
climate reanalysis datasets, such as ERA5, which have 
become essential for climate monitoring and research. 
Looking ahead, artificial intelligence (AI) and machine 
learning (ML) are set to reshape the DA landscape, offering 
unprecedented opportunities to enhance observation 
processing, error correction, and computational efficiency. 
As ECMWF prepares for future observing systems 
and AI-driven forecasting, its commitment to scientific 
excellence, strong partnerships, and collaboration with its 
Member and Co-operating States ensures that it remains at 
the forefront of meteorology and climate monitoring science.
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The European Centre for Medium-Range Weather Forecasts (ECMWF) stands as  
a global leader in numerical weather prediction (NWP), renowned for its pioneering 
advancements and outstanding forecasting capabilities. Since its establishment 
50 years ago, ECMWF has been at the forefront of meteorological research, 
providing critical weather forecasts that inform decisions for its Member and 
Co-operating States across a multitude of sectors and applications. Numerical 
weather prediction, which involves the use of physics-based models to simulate the 
Earth’s atmosphere, has revolutionised our ability to predict weather, understand 
atmospheric dynamics and provide quantification of uncertainties about forecast 
products. At the heart of NWP lies data assimilation – a technique that seamlessly 
integrates observations from diverse sources into NWP models, ensuring that 
forecasts are optimally initialised to ensure best possible accuracy.

By incorporating observations from satellites, meteorological stations, buoys, 
aircraft and other platforms, data assimilation enables models to produce accurate 
initial conditions – a prerequisite for reliable weather forecasts. Throughout the 
last 50 years, ECMWF’s innovations in this domain have set the global standard, 
pioneering significant improvements in forecast skill and extending the lead time of 
high-confidence predictions. This cornerstone of NWP is an example of the Centre’s 
success in achieving scientific excellence and operational reliability (Rabier et al., 
2000; Bauer et al., 2015).

The success of ECMWF, however, has not been achieved in isolation. Partnerships 
with national meteorological services, space agencies, and research institutions 
around the world have played a crucial role in establishing ECMWF as a world 
leader of weather forecasting. These collaborations have facilitated the sharing 
of expertise and ideas, resources, and observational data, creating a synergistic 
environment that has driven innovation. Through initiatives such as the European 
Union’s Copernicus Earth observation programme and Destination Earth (DestinE), 
and the World Meteorological Organization’s (WMO’s) collaborative frameworks, 
ECMWF has greatly benefited from the power of international cooperation to push 
the boundaries of what is possible in NWP.

In this paper, we describe the fundamental role of data assimilation in ECMWF’s 
success, its evolution alongside advancements in NWP, and the critical importance 
of partnerships in shaping ECMWF’s trajectory as a global leader in meteorology.

INTRODUCTION →



ECMWF was founded in 1975 with the primary mission to produce ten-day weather 
forecasts using state-of-the-art NWP systems. From the outset, the Centre 
recognised the importance of data assimilation as the foundation for reliable model 
initialisation. In its early years, ECMWF implemented a basic three-dimensional 
optimal interpolation (OI) scheme (Lorenc, 1981), which provided a systematic 
approach to incorporating observational data into its models. This method, 
based on statistical interpolation, balanced observational data with prior forecast 
information (background data), weighting both sources of information according 
to their relative errors and spatial correlations and minimising the expected 
error variance of the resulting initial state to improve forecast accuracy. While OI 
was a significant step forward in data assimilation during its time, it had several 
shortcomings that limited its effectiveness compared to more advanced techniques 
like variational data assimilation. Significant limitations of the OI algorithm 
implemented at the time include the use of static, predefined error covariance 
matrices, the suboptimal use of observations not linearly related to the analysis 
variables (e.g. satellite radiances), the lack of model constraints in the analysis 
procedure, and the local nature of the solver, which can lead to numerical artefacts 
(e.g. discontinuities) in the resulting analysis fields. 

During the 1990s, ECMWF pioneered the use of variational data assimilation  
(Var) techniques, shifting from OI to more sophisticated approaches, in order to 
address the limitations described above. This effort was greatly facilitated by a 
proactive collaboration between ECMWF and Météo-France on what was called  
the Integrated Forecasting System (IFS)/ARPEGE project, which mobilised 
significant resources on both sides to address this new revolutionary (at the time) 
framework (Pailleux et al., 2014). Three-dimensional variational data assimilation 
(3D-Var) was operationally implemented at ECMWF in 1996 (following an earlier 
implementation at the US National Centers for Environmental Prediction (NCEP)  
in 1995). Worth noting is that prior to this implementation, and as described in Eyre 
et al. (2020), assimilating satellite observations as low-vertical-resolution retrieved 
profiles had at best a neutral impact in most NWP centres, exhibiting difficulties 
in specifying appropriate error statistics for the retrievals, contaminated by their 
climatological background. 

An important intermediate step towards direct radiance assimilation was the 
assimilation of 1D-Var retrievals which used NWP short-range forecasts as 
background information. This removed large components of the climatological 
background from the retrieved profiles and was much closer to direct radiance 
assimilation than the assimilation of retrievals based on climatological information 
(Eyre et al., 2020). Indeed, the 1D-Var retrieval scheme (Eyre, 1989) used profiles 
from a short-range forecast as background, whereas other retrieval schemes used 
statistical background information (Reale et al., 1986). Even with very sophisticated 
techniques, it is unavoidable that errors in the selected background contribute to 
the retrieval error. The problem shows up as very systematic air-mass-dependent 
biases in the retrieved data (Andersson et al., 1991). The errors introduced by the 
retrieval process are characterised by horizontal correlations that vary with the 
meteorological conditions and are therefore difficult to accurately account for in 
the analysis. This problem is fully eliminated by incorporating the retrieval process 
within the analysis: a combined retrieval/analysis approach enables a more accurate 
combination of the information contained in the background, in the radiances and in 
the conventional data (Andersson et al., 1994). All data are analysed simultaneously 
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HISTORICAL OVERVIEW 
OF  DATA ASSIMILATION 
AT ECMWF →

“  DURING THE 1990s,  ECMWF PIONEERED THE USE  OF  VARIATIONAL DATA 
ASSIMILATION TECHNIQUES,  SHIFTING FROM OPTIMAL INTERPOLATION WHICH 
HAD SIGNIFICANT LIMITATIONS.”
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in a single global inversion problem. The other major innovation of 3D-Var with 
respect to OI was the global nature of the solver of the analysis update equations, 
whose solution can be framed as an iterative minimum-finding algorithm of a global 
cost function. This allows certain issues (discontinuities, numerical artefacts) 
connected to the need to stitch together separate local analyses in OI to be avoided. 

The transition from 3D-Var to 4D-Var at ECMWF was driven by the need to better 
incorporate time-evolving observations and improve the dynamical consistency 
of the atmospheric state produced by the analysis update (Andersson et al., 
1994; Thépaut et al., 1996). While 3D-Var was a major advancement over OI, it still 
had at least two fundamental limitations. One is that it treated observations as if 
they all occurred at a single analysis time, ignoring the fact that weather systems 
evolve continuously. This meant that observations taken at different times within 
the assimilation window were not optimally used, leading to a less accurate initial 
state for the forecast model. The second, possibly more important, deficiency is 
that 3D-Var, like OI, is a purely statistical assimilation algorithm. This means that 
the forecast model plays no part in the solution of the analysis equations except 
for providing a background state. This means, among other things, that there is 
no guarantee that the resulting analyses are consistent with the model dynamics. 
This fact explains the importance at the time of “initialisation” techniques like 
Normal Mode Initialisation to suppress spurious high-frequency oscillations in the 
analysed fields (Temperton and Williamson, 1981). To address these problems, 
ECMWF implemented 4D-Var in 1997. Unlike 3D-Var, which only considers spatial 
relationships in the atmosphere, 4D-Var extends the assimilation process over a 
time window (initially 6 hours, later extended to 12 hours; see Figure 1). Instead 
of assuming the background state is static during this period, 4D-Var uses the 
numerical weather prediction model to evolve the atmospheric state forward in time.

One major advantage of 4D-Var over 3D-Var is its ability to extract more useful 
information from asynoptic (non-simultaneous) observations. Satellite and aircraft 
data, which are available at irregular times, could now be optimally incorporated 
by considering how they influenced the evolving atmospheric state. This resulted 
in more accurate initial conditions for forecasts, reducing errors and improving 
predictive skill, particularly for rapidly changing weather patterns.
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   Figure 1: In the case illustrated 
here, for a single parameter x the 
observations are compared with 
a short-range forecast from a 
previous analysis over a 12-hour 
assimilation window. The model 
state xb at the initial time is 
modified to achieve a statistically 
and dynamically based good 
compromise xa by minimising 
a penalty function. The most 
important penalty terms are Jb, 
representing the fit to the previous 
forecast xb, and Jo, representing 
the fit to all the observations 
within the assimilation window.
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Another key improvement in 4D-Var is its ability to better control dynamic 
imbalances in the analysis. Since it uses the forecast model itself as a constraint, 
the final analysis is dynamically consistent, reducing unrealistic adjustments  
to temperature, wind, and pressure fields that could occur in 3D-Var. This leads 
to a smoother transition between the analysis and forecast phases, improving  
medium-range prediction accuracy.

Despite these advantages, the transition to 4D-Var also came with challenges.  
One major drawback was the computational cost. This necessitated advances  
in high-performance computing (HPC) to make 4D-Var operational. However, this 
was not enough, and incremental 4D-Var at ECMWF was introduced to address 
the computational challenges associated with full 4D-Var. Indeed, its original 
formulation was computationally expensive, requiring multiple integrations of the 
forecast model and its adjoint, involved in the process of minimising the distance 
between the model trajectory and the observations over the assimilation time 
window. To make 4D-Var operationally feasible, ECMWF adopted an incremental 
approach, first proposed by Courtier et al. (1994). This method allowed for a more 
efficient optimisation process by splitting the assimilation into multiple lower-
resolution linear minimisation steps, known as outer and inner loops. Instead of 
solving the full nonlinear 4D-Var problem at once, incremental 4D-Var approximates 
it iteratively, first making a coarse-resolution estimate of how observations should 
be assimilated and then refining it through a series of linearised adjustments.

The implementation of incremental 4D-Var significantly reduced computational 
costs while maintaining the benefits of the full 4D-Var method. The outer loop 
operates at higher (finer) resolution, using the full nonlinear forecast model to update 
the control variables. The inner loop, where most of the optimisation occurs, uses a 
linearised (tangent-linear) version of the model at a reduced resolution to compute 
corrections more efficiently. This iterative refinement process ensures that the final 
analysis remains close to the optimal solution while avoiding the prohibitive expense 
of running a full-resolution nonlinear model at every iteration.

One of the primary advantages of incremental 4D-Var is its ability to make 4D-Var 
computationally affordable for operational use. Since the inner loop uses a reduced-
resolution model, the overall cost is significantly lower compared to that of a full 
nonlinear 4D-Var system. Additionally, this approach improves numerical stability, 
as the assimilation increments remain small and are applied gradually, reducing the 
risk of introducing unrealistic changes to the atmospheric state. By approximating 
the analysis solution through successive iterations at increasing spatial resolution, 
incremental 4D-Var retains the ability to capture large-scale atmospheric corrections 
and, as the assimilation progresses, resolve smaller-scale features more effectively 
than a single direct minimisation. This makes it particularly useful for global numerical 
weather prediction at high resolution, which is an inherently multi-scale problem.

A final aspect of incremental 4D-Var that has allowed the algorithm to pass the  
test of time is its ability to deal efficiently with nonlinearities in the data assimilation 
system (Bonavita et al., 2018). As the model resolution increases and more 
observations are ingested that are nonlinearly related to the analysis variables,  
this capability of incremental 4D-Var has become increasingly important.  

To deal with nonlinearities, an important development was related to incorporating 
increasingly sophisticated linearised physical parametrizations within the inner-loop 
minimisation process. In the standard formulation of 4D-Var, the inner loop uses 
a tangent-linear and adjoint model to propagate information about the state and 
its sensitivities. However, in early implementations, only the dynamical core of 



the forecast model was linearised, while physical processes such as radiation, 
convection, and boundary layer interactions were either ignored or represented 
in a very simplified manner (Mahfouf and Rabier, 2000). This limitation meant 
that some key atmospheric processes influencing cloud formation, precipitation, 
and turbulence were not properly accounted for in the assimilation, leading to 
suboptimal adjustments in the analysis.

To address this, ECMWF introduced linearised physics schemes within the tangent-
linear and adjoint models, allowing physical processes to be considered during 
the minimisation of the 4D-Var cost function (e.g. Janisková et al., 2002). These 
schemes ensured that physical processes could be consistently represented within 
the assimilation cycle while maintaining computational efficiency. The introduction 
of these linearised physics schemes was particularly beneficial for the assimilation 
of cloud- and precipitation-affected satellite radiances, as well as for improving the 
representation of boundary layer and convection-related processes.

The development and refinement of these linearised physical parametrizations 
have continued as ECMWF has increased model resolution and improved satellite 
data assimilation. In later years, Janisková and Lopez (2013) expanded the use 
of linearised physics for variational cloud and precipitation assimilation. A recent 
achievement is the successful assimilation of lidar backscatter observations from 
the EarthCARE platform (see Figure 2, by Fielding et al., 2025), which would not 
have been possible without these continual developments.

   Figure 2: Example for the 
assimilation of Atmospheric Lidar 
(ATLID) total backscatter on 3 
August 2024. (a) ATLID total lidar 
backscatter at native resolution, 
averaged to the model grid, (b) 
ATLID total lidar backscatter at 
30 km horizontal resolution, (c) 
first-guess total lidar backscatter, 
and (d) 4D-Var analysis total lidar 
backscatter. Backscatter is shown 
in units of 10 log10 (m-1 sr-1). The red 
line in the satellite image shows 
the path of the satellite. From 
Fielding et al., 2025.
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Incremental 4D-Var remains a cornerstone of ECMWF’s data assimilation system, 
continuously evolving to take advantage of new computational capabilities and 
improved observational data. By balancing accuracy and efficiency, it has enabled 
ECMWF to maintain high forecast skill while integrating an ever-growing number 
of satellite and in-situ observations. The method has proved to be a crucial 
advancement in numerical weather prediction, allowing for more reliable forecasts 
and better representation of atmospheric processes. 
 
 

 
Benefiting from this established infrastructure, the Copernicus Atmosphere 
Monitoring Service (CAMS; described in the ECMWF 50th anniversary paper  
on Copernicus), which ECMWF operates on behalf of the European Commission, 
is able to integrate vast amounts of satellite and in-situ observations into its 
atmospheric composition models. Using 4D-Var, CAMS produces high-quality 
global analyses of aerosols, greenhouse gases and reactive gases, improving  
air quality forecasts and environmental monitoring.

It is also worth noting that the 4D-Var framework has enabled the development 
of the Forecast Sensitivity to Observation Impact (FSOI) methodology to assess 
the impact of observations on forecast quality. FSOI measures how individual 
observations influence forecast error reduction. Using the adjoint model, FSOI 
quantifies the gradient of forecast error with respect to each observation, showing 
whether a given observation has improved or degraded the forecast. This technique 
enables convenient and inexpensive real-time assessment of the usefulness of 
different observing systems, helping optimise data assimilation strategies by 
prioritising observations that contribute most to forecast improvement. (Cardinali, 
2009; Dahoui et al., 2017).

This tool and others are widely used as what we call Observing System Experiments 
(OSEs) to inform observation providers (e.g. space agencies) about the usefulness 
of various observing systems, and ECMWF has played a crucial role in shaping 
the Global Observing System (GOS) through various contributions using its DA 
infrastructure. These include targeted observation experiments (Buizza et al., 2007) 
and the Concordiasi project (Rabier et al., 2013).

Since its implementation in 1997, many changes have been made in the  
4D-Var system, and some of the advances and challenges are described  
in the following section.
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“  THE  INCREMENTAL FORMULATION OF  FOUR-DIMENSIONAL VARIATIONAL 
DATA ASSIMILATION (4D-VAR)  HAS PROVED TO BE  A  CRUCIAL  ADVANCEMENT 
IN  NUMERICAL WEATHER PREDICTION,  MAKING THE METHOD ACCURATE AND 
AFFORDABLE,  AND ALLOWING FOR MORE RELIABLE  FORECASTS AND BETTER 
REPRESENTATION OF  ATMOSPHERIC  PROCESSES.”



The Ensemble of Data Assimilations (EDA) was introduced at ECMWF with two 
distinct but connected objectives. One was to provide improved initial conditions 
for the initialisation of the ECMWF Ensemble Prediction System (Buizza et al., 
2008). The other was as a means to better estimate flow-dependent background 
error covariances within the variational data assimilation system. Before these 
EDA developments, the original implementation of incremental 4D-Var relied on 
static background error covariances, which were derived from climatological 
statistics. While these were carefully tuned, they did not evolve dynamically 
with the atmospheric flow. This limitation meant that background errors were 
often misrepresented, particularly in rapidly changing conditions such as during 
cyclogenesis, tropical cyclone development, or sudden stratospheric warmings 
(Bonavita et al., 2012).

Recognising the need for a more adaptive approach, ECMWF began developing  
the EDA in collaboration with Météo-France, which had been conducting pioneering 
work on ensemble-based estimation of background errors (e.g. Raynaud et al., 
2008). Météo-France had explored the concept of using multiple realisations of the 
data assimilation cycle to diagnose errors dynamically, an approach that showed 
promise for improving the accuracy of background error covariance estimation. 
Inspired by these developments, ECMWF integrated the EDA into its operational 
4D-Var system, creating an ensemble of perturbed data assimilation cycles to 
explicitly represent the uncertainties in the background state (Isaksen et al., 2010).

The introduction of the EDA marked a major advancement over the original 
incremental 4D-Var framework. In its traditional form, incremental 4D-Var minimised 
a cost function that included a background error covariance matrix (B-matrix),  
which had been computed from long-term statistics rather than evolving 
dynamically with the atmosphere. While this approach worked well in many cases, 
it struggled to correctly weigh observations in regions with high uncertainty, such 
as areas of active convection, frontal zones, or dynamically unstable regions. By 
using EDA-generated background errors, ECMWF was able to account for the flow 
dependency of forecast uncertainty, making the assimilation system much more 
responsive to the current state of the atmosphere (Bonavita et al., 2016).

The EDA works by running multiple independent 4D-Var analyses, each with 
stochastically perturbed observations and model states. These perturbations  
mimic the uncertainties in the observational data and model representation, 
creating an ensemble of analyses that reflects the possible range of atmospheric 
states. By computing the spread across the ensemble members, the EDA provides 
an adaptive estimate of background error covariances, which is then used in the 
main high-resolution 4D-Var assimilation. This allows the variational system to 
adjust its weighting of observations dynamically, giving more weight to observations 
in regions of high uncertainty and less weight where confidence in the background 
field is stronger (Isaksen et al., 2010).

Figure 3 shows the case of tropical cyclone Aere (north-eastern part of the 
Philippines on 8/9 May 2011) and is an illustration of how the errors diagnosed by 
the EDA, here for mean sea-level pressure, are, by design, constructed to estimate 
the real analysis errors, thus implicitly taking into account the observation network 
distribution and the model instabilities. In the present case, they act to extrapolate 
the observational information from the land-based stations into the more uncertain 
areas to the north-east of the cyclone, thus helping achieve a better positioning of 
the analysed storm.
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A key benefit of incorporating the EDA into incremental 4D-Var was its impact on 
forecast sensitivity to observations. In a purely deterministic 4D-Var framework, 
the system assumes a fixed error distribution, which can lead to overconfidence in 
certain observations and underuse of others. With the EDA, the system continuously 
updates its understanding of error growth, leading to more accurate weighting 
of observational inputs (Bonavita et al., 2012). This proved particularly beneficial 
for satellite data assimilation, as it allowed ECMWF to assimilate more radiances 
dynamically, even in areas of high uncertainty, such as cloudy and precipitating 
regions (Geer et al., 2018). 

Beyond its immediate impact on data assimilation, the EDA also played a crucial role 
in ensemble forecasting at ECMWF. By using EDA-based perturbations to initialise 
the Ensemble Prediction System (EPS), ECMWF was able to create more realistic 
ensemble spread, leading to better probabilistic forecasts. This dual application 
– improving both deterministic analysis and ensemble forecasting – solidified the 
EDA’s place as a cornerstone of ECMWF’s modern assimilation framework.

As computing power has increased, ECMWF has continued to refine the EDA, 
increasing the number of ensemble members and improving the perturbation 
methodologies. This has further strengthened the system’s ability to represent 
uncertainty and make full use of the ever-expanding volume of satellite and in-situ 
observations (Lang et al., 2019). However, in recent years, increasing compute 
power at historical rates has become more challenging, and questions have been 
asked about the long-term future of investing so many compute resources in the 
EDA. The main justifications for running the EDA are i) not having to maintain a 
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   Figure 3: First line: Background 
mean sea-level pressure 
forecast valid on 9 May 2011 at 
00 UTC (solid line, units: hPa) 
superimposed on background 
error estimates for the logarithm 
of surface pressure (shaded 
contours). Second line: Surface 
pressure analysis increments 
valid on 9 May 2011 at 00 UTC 
(solid lines indicate positive 
increments, dashed lines negative 
increments; isolines of 50 Pa). 
First column shows fields from  
the operational ECMWF analysis 
cycle at the time, with no EDA 
error estimate, second column 
from an experiment using EDA 
error estimates. From Bonavita  
et al., 2012.
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dedicated ensemble DA system separate from 4D-Var, ii) the 4D-Var is well tested, 
and iii) the skill of 4D-Var. The Object-Oriented Prediction System (OOPS, Bonavita 
et al., 2017) was developed to maintain multiple DA methods easily. It creates the 
possibility to run Ensemble Kalman Filter (EnKF) or Ensemble 4D-Var (EnVAR) for the 
EDA, but running a completely independent DA system for the deterministic analysis 
and the EDA is not desirable. At present, the 4D-Var algorithm has a higher skill level 
than any other algorithm tested in realistic NWP configurations. But it remains an 
open question if we can use other methods to replicate the contribution the EDA 
currently makes at much lower cost, without creating overheads in future support 
and testing. There is also a broader open question about the future of 4D-Var: 
whether it is computationally feasible at km-scale. At the time of writing, the answer 
to this is not clear, but OOPS definitely facilitates the implementation of alternative 
DA methodologies should these be needed.

The implementation of weak-constraint 4D-Var at ECMWF was motivated by 
the need to address systematic model errors that limited the ability of 4D-Var to 
more effectively use various types of observations in the stratosphere and, more 
recently, at the surface. Traditional strong-constraint 4D-Var assumed that the 
numerical model used in data assimilation was perfect, neglecting the presence 
of conditional biases usually arising from deficiencies in model physics. However, 
systematic errors accumulated over time, particularly affecting stratospheric 
processes, boundary layer dynamics, and fast-evolving atmospheric phenomena. 
Weak-constraint 4D-Var allows the assimilation system to account for these errors 
dynamically, potentially leading to improved forecast accuracy and consistency 
(Trémolet, 2006).

One major improvement resulting from weak-constraint 4D-Var was the reduction  
in stratospheric temperature biases. Before its implementation, systematic biases  
in the stratosphere led to persistent temperature drifts, impacting the representation 
of the jet stream, planetary waves, and stratospheric circulation. Weak-constraint 
4D-Var corrected these errors, producing a more realistic depiction of upper-
atmospheric dynamics (Laloyaux et al., 2020). More recently, the development of 
a version of weak-constraint 4D-Var able to estimate time-varying error structures 
during the assimilation window has allowed its extension to the boundary layer and 
the surface, with tangible improvements in the use of surface observations (two-
metre temperature, surface pressure, scatterometer winds).

A particular enhancement of the data assimilation system at ECMWF is related to 
continual efforts to improve the observation operators (mapping the model into 
observation space) and the characterisation of observation errors, especially for 
satellite observations. These developments addressing better surface emissivity 
models, better representation of microphysics of snow and graupel particles in the 
microwave, inclusion of observation error correlation, etc. have led to a massive 
increase in satellite observation usage, in cloudy and rainy conditions, as well as 
over land, snow and sea-ice surfaces. 

An example is shown in Figure 4 from Geer (pers. comm.), representing the 
progressively increasing usage of microwave radiances (here Advanced 
Microwave Scanning Radiometer 2, AMSR2) in the DA system, including after 
the implementation of a new major cycle of the IFS (Cycle 49r1, implemented in 

“  THE  ENSEMBLE OF  DATA ASSIMILATIONS HAS IMPROVED BOTH ANALYSIS 
ACCURACY AND ENSEMBLE FORECASTING –  SOLIDIFYING ITS  PLACE AS  A 
CORNERSTONE OF  ECMWF’S  MODERN ASSIMILATION FRAMEWORK.”

WEAK-CONSTRAINT 4D-VAR

ALL-SK Y,  ALL-SURFACE 
SATELLITE  DATA 
ASSIMILATION



November 2024). This cycle expanded the use of surface-sensitive microwave 
channels, for which a lot of data had previously been screened out due to surface 
types that are harder to simulate. This figure (bottom right) also shows the potential 
of a high-resolution all-sky/all-surface assimilation approach. The generalisation of 
the “all-sky, all-surface” approach is not restricted to microwave instruments but 
includes infrared ones, with high potential from advanced hyperspectral sounders 
such as the Infrared Atmospheric Sounding Interferometer (IASI) (Geer et al., 2019). 
These developments have largely benefited from the close partnership between 
ECMWF and EUMETSAT (see later section). 
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Historically, ECMWF’s data assimilation systems for the atmosphere, ocean, and 
land operated independently, with the atmospheric 4D-Var system focusing on 
upper-air data, while ocean and land components were initialised separately. 

For the ocean, ECMWF’s ocean data assimilation began with the implementation 
of the NEMOVAR system, a variational data assimilation software developed 
collaboratively (CERFACS, ECMWF, Met Office, INRIA/Laboratoire Jean Kuntzmann) 
to integrate the NEMO ocean model. This system, operationalised in Ocean Analysis 
System 4 (Ocean-S4, implemented in 2011), used a multivariate three-dimensional 
variational (3D-Var) First Guess at Appropriate Time (FGAT) approach, assimilating 
temperature and salinity profiles alongside altimeter-derived sea level anomalies. 
Building upon this foundation, ECMWF introduced the Ocean ReAnalysis System 5 
(ORAS5, introduced in 2017), which incorporated an ensemble generation technique 
to better represent uncertainties in ocean observations and model physics. ORAS5 
provides improved initial conditions for coupled forecasts, thereby enhancing 
the skill of medium-range weather predictions and seasonal forecasts, the latter 
being used as an important component of the Copernicus Climate Change Service 
(C3S) offer. ORAS6 (to be implemented in 2025) further refines ocean reanalysis 

Clear−sky ocean All−sky ocean

Cycle 49r1 All−surface, all−sky, high res

200                 220                 240                 260                280                300
Observed brightness temperature (K) 

   Figure 4: AMSR2 observed 
brightness temperatures in the 37 
GHz v-polarised channel for the 
12-hour DA window around 12 UTC, 
17 November 2024, simulating the 
data coverage at earlier stages of 
DA development (clear-sky, all-sky, 
all-sky over sea ice/land after 
implementation of IFS Cycle 49r1). 
The bottom-right panel shows all 
data at the 40 km superobbing 
scale. In the other panels, the data 
has been thinned to 1 in every 8 
superobs, giving effectively a 100 
km spacing between observations. 
Data from multiple orbits has been 
allowed to overlap/superimpose.

TOWARDS A  COUPLED DATA 
ASSIMILATION SCHEME
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capabilities. ORAS6 is based on an ocean ensemble-based variational data 
assimilation system, offering flow-dependent background error variances and 
vertical correlation scales.

For the land, initially, the assimilation scheme was a two-dimensional Optimal 
Interpolation (2D OI) method for analysing screen-level parameters and snow depth, 
while soil moisture and temperature analyses used a one-dimensional OI (1D OI) 
approach. This framework, though foundational, had limitations in capturing the 
complex interactions between land surface variables and atmospheric processes. 
ECMWF introduced a simplified Extended Kalman Filter (EKF) for soil moisture 
analysis. This advancement allowed for a more dynamic and responsive assimilation 
of soil moisture data, improving the representation of land–atmosphere feedbacks 
(de Rosnay et al., 2013). The EKF approach facilitated the integration of various 
observational data sources, including satellite-derived soil moisture measurements 
such as those from the Soil Moisture and Ocean Salinity (SMOS) mission and 
Advanced Scatterometer (ASCAT) data.

The transition towards a fully coupled DA system at ECMWF involves several 
methodological advancements. One approach is the development of outer-loop 
coupling, where the coupled model is introduced at the outer-loop level of the 
assimilation process. This method allows for the simultaneous adjustment of 
atmospheric and oceanic states, ensuring consistency across the coupled system. 
Additionally, efforts are being made to enhance the assimilation of surface-sensitive 
observations, such as sea-surface temperatures and soil moisture, which are 
critical for accurately capturing the interactions between different Earth system 
components (de Rosnay et al., 2022).

Data assimilation for operational NWP is a computationally intensive task that 
needs to be run daily within strict timeframes on available hardware. This set 
of requirements poses challenges for DA system developers. Currently, most 
operational DA systems are run in a hybrid configuration with a high-resolution 
control analysis based on a global variational solver (either adjoint-based, 4D-Var,  
or ensemble based, EnVar) and an ensemble DA component for error estimation  
and cycling (again, either adjoint-based, Ensemble of Data Assimilations (see 
previous section), or ensemble based, EnKF and its variants). This schematic 
description already makes it apparent that while DA is conceptually a probabilistic 
estimation problem, the dimension of the control space for global NWP at current 
spatial resolutions (O(109)) limits the choice of viable algorithms to those that 
assume Gaussian errors and only weak nonlinearities in both the observations  
and the model evolution during the assimilation window (Bonavita et al., 2018).

From a computational perspective, ensemble-based methods (EnVar, EnKF) 
tend to have better scaling properties than adjoint-based methods, as the 
analysis sensitivities to observations are directly sampled from the ensemble 
background forecasts and the solver can be parallelised efficiently. On the other 
hand, localisation is a known performance limiter for these systems, and the need 
to sample from the ensemble forecasts requires their storage with fast memory 
access, which can become impractical for increasing spatial/temporal resolutions 
and ensemble size.    

The adjoint-based methods (4D-Var and its ensemble DA system, EDA) use their 
ensemble component for background error covariance estimation, but the error 
evolution in the assimilation window is achieved through running their linearised  
and adjoint models. This means that for variational methods the main computational 

OPERATIONAL CHALLENGES



constraint comes from the requirement to run the forecast model and its linearised 
and adjoint versions efficiently and quickly at ever-increasing resolutions.  
This problem is compounded by the fact that solvers used in variational DA are 
intrinsically sequential and there is little scope for domain parallelisation. Ten years 
ago, this state of affairs led people to question the long-term viability of 4D-Var. 
However, new ideas have changed the picture in the last few years. One of these 
is continuous DA (Lean et al., 2019). Continuous DA is based on the incremental 
implementation of 4D-Var and the concept of letting fresh observations into the 
assimilation system while 4D-Var is running. In practice, this reduces the time-
critical portion of 4D-Var to the duration of the last minimisation update instead of 
the duration of the whole algorithm (which currently runs with four minimisations). 
This concept will be further developed in the extending-window DA framework, 
where the length of the assimilation window itself will vary as a function of 
observation cutoff time, thus ensuring a more continuous update of the analysis  
and thus even better ability to describe and forecast fast-evolving weather events.

Another important aspect is that of computational efficiency. In the ECMWF DA 
system, the EDA is the most computationally demanding component, and efforts 
have been focused on reducing its cost while maintaining or even improving 
performance. A recent example of these developments is the soft-centred EDA 
concept (Hólm et al., 2022). This implementation of the EDA differs from the original 
one as the perturbed members are simplified, lower-resolution 4D-Var updates 
and the mean background forecast is re-centred on the unperturbed member 
background. In addition, the minimisations in the perturbed members start from an 
initial control vector and preconditioning that is inherited from the output of the first 
minimisation of the unperturbed member. The resulting EDA is approximately 30% 
cheaper to run and its performance is superior to that of the original version. 
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As described in the previous sections, a driver for improved data assimilation at 
ECMWF has been the goal to make best use of the growing spaceborne observing 
system. This would not be possible without a very close partnership with space 
agencies, such as the European Organisation for the Exploitation of Meteorological 
Satellites (EUMETSAT) and the European Space Agency (ESA).

In particular, ECMWF and EUMETSAT have built a very efficient collaborative 
framework which is critical to enhance the use of satellite data in NWP and 
environmental monitoring. A key component of this partnership is ECMWF’s active 
participation in EUMETSAT’s Satellite Application Facilities (SAFs). These SAFs are 
specialised centres of excellence that focus on processing satellite data for specific 
applications, such as numerical weather prediction, climate monitoring, radio 
occultation and atmospheric composition, to name a few. By engaging with these 
facilities, ECMWF contributes its expertise in NWP to improve the processing and 
assimilation of satellite observations, thereby enhancing the accuracy of weather 
forecasts and climate analyses. Another significant aspect of this collaboration 
is the EUMETSAT Research Fellowship Programme, which places early-career 
scientists at institutions like ECMWF to develop innovative applications of  
satellite data. These seconded Fellows work on projects aimed at advancing  
the assimilation of satellite observations into ECMWF’s forecasting models. 

IMPACT OF  ECMWF’S 
DATA ASSIMILATION ON 
WEATHER FORECASTING 
AND CLIMATE 
MONITORING →

“  A  DRIVER FOR IMPROVED DATA ASSIMILATION AT  ECMWF HAS BEEN 
THE GOAL TO MAKE BEST USE  OF  THE GROWING SPACEBORNE OBSERVING 
SYSTEM –  MADE POSSIBLE  THROUGH A  VERY CLOSE PARTNERSHIP  WITH 
SPACE AGENCIES,  SUCH AS  EUMETSAT AND ESA.”
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   Figure 5: Relative impact of 
observing systems on the quality of 
the operational 24-hour forecast, 
estimated using their Forecast 
Sensitivity to Observation Impact 
(FSOI), and aggregated over the 
calendar years 2020 to 2024. The 
impact of microwave and infrared 
radiance sensors is separated by 
channel based on primary sensitivity 
to temperature or water vapour. 
Ground-based observations are 
separated into conventional (no 
aircraft) and aircraft. (Geer,  
pers. comm.)
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For example, past Fellows have focused on improving the use of atmospheric motion 
vectors, radiances from geostationary satellites, and microwave radiance data from 
polar-orbiting satellites – all activities dedicated to maximising the impact of these 
observations in the ECMWF NWP suite. Furthermore, ECMWF and EUMETSAT jointly 
regularly conduct various flavours of OSEs (as mentioned in the previous section) to 
assess and optimise the impact of various satellite data on NWP (see Figure 5).

The insights gained from OSEs inform decisions on future satellite mission designs 
and data assimilation strategies, ensuring that ECMWF’s models effectively exploit 
available satellite data and prepare for future missions (Healy et al., 2022). An 
advantage of this close cooperation with EUMETSAT is also the speed at which 
provision of feedback on data quality and evaluation of impact of data on the 
ECMWF system can be done. For example, EUMETSAT’s polar-orbiting MetOp-C 
satellite was launched on 7 November 2018, and the EUMETSAT radio occultation 
(RO) team produced high-quality bending angle profiles by 13 November 2018, 
within only six days of launch, and made them available to the EUMETSAT Radio 
Occultation Meteorology Satellite Application Facility (ROM SAF) for evaluation. 
Within days, ECMWF was able to provide quality assessment of these new data in 
comparison with both the Metop-A and B measurements, by comparing them with 
NWP information mapped to observation space (see Figure 6, from Healy et al., 2019).

Im
pa

ct
 h

ei
gh

t

Normalised O–B statistics
0.500

0

10

20

30

40

50

60

1 1.5

Metop-A, mean Metop-A, standard deviation
Metop-B, mean Metop-B, standard deviation
Metop-C, mean Metop-C, standard deviation

   Figure 6: Observation-
minus-background departure 
statistics. The bending angle 
observation-minus-background 
(O–B) departure statistics 
(standard deviation and mean) 
as a function of impact height 
for the three Metop satellites. 
The departures are normalised 
by dividing them by the bending 
angle noise values used when 
assimilating the data.  
The statistics are computed  
for the period 27 November  
to 2 December 2018.



As a result, ECMWF has been a world leader at monitoring and assimilating satellite 
observations. Figure 7 shows how the data assimilation and model developments 
over nearly 30 years have enabled the number and diversity of satellite data 
instruments used to be massively increased.

Forecast skill improvements over the last 45 years have been achieved primarily 
through improvements to the forecast model, the quality and number of observations 
and the accuracy of the data assimilation method (Magnusson and Källen, 2013).  
It is challenging to attribute the contribution of each of these elements, but it is 
common to compare long-term trends in the performance of forecasts from the 
reanalysis system with trends in the forecasts from the operational system (see  
Figure 8). As a first approximation, we can say the reanalysis system shows 
improvements arising from changes to the observation system, and the trend in  
the operational system shows improvements from all components, so the difference 
in trends is an approximation of the combined contribution of model and data 
assimilation methodology changes. 

The lead time at which the anomaly correlation of the 500 hPa geopotential height 
fell below 85% was 5 days in 2002 and 6.3 days in 2022, so a gain of 0.65 days per 
decade in this period, a drop from the 1 day per decade improvement reported by 
Magnusson and Källen (2013). The equivalent change for ERA5 was an increase 
from 5.5 days in 2002 to 5.9 days in 2022, so an increase of 0.2 days per decade. 
Therefore, in this 20-year period, we can say, approximately, that a gain of 0.2 days 
per decade arose from improvements in the Global Observing System, and a gain of 
0.45 days per decade arose from improvements in the model and data assimilation. 
In this context, it is also worth noting ECMWF’s current Artificial Intelligence 
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IMPROVED FORECAST 
ACCURACY

   Figure 7: Increase in satellite 
sensors monitored at ECMWF from 
1996 to 2024.
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   Figure 8: Forecast skill 
changes of various models, 
including ECMWF’s IFS, AIFS  
and ERA5. The figure shows  
the lead time at which the 
anomaly correlation of  
500 hPa geopotential height 
over the northern hemisphere 
extratropics falls below 85%.

Forecasting System (AIFS; see ECMWF 50th anniversary paper on machine learning 
(in preparation)) configuration gains around 0.35 days over the best physics-based 
models in 2023–24, only marginally less than the model and data assimilation 
improvements for the last decade. 

In considering these changes, the rapid changes in forecast skill of the IFS in 
2005–2007, 2015–2017 and 2018–2020 with respect to ERA5 stand out. The main 
contributor to the forecast skill gain for the latter change was the introduction 
of continuous DA, which allowed for the ingestion of observations which arrived 
after the first minimisation in subsequent minimisations in the outer-loop 4D-Var 
configuration. Therefore, this gain can be attributed mainly to a change in DA 
methodology, though there were a number of other changes in this period. In 
2015–2017, the changes were a mix of model, most notably increased horizontal 
resolution, and DA changes (and observation changes, but these would also 
impact ERA5, whose skill also rose during this period). For the older period, it is 
difficult now to attribute with high confidence, but a major change in background 
error formulation (Fisher, 2005) was introduced in 2005 and may have contributed 
to the large improvement seen in this period. Going further back, the transition 
to variational assimilation and direct radiance assimilation resulted in the largest 
changes to operational forecast scores at the end of the 1990s (see Figure 3 in  
the ECMWF 50th anniversary paper on Earth system modelling).  

In addition to monitoring the impact of data assimilation developments and 
improved observations on global scores, there have also been attempts to measure 
progress for high-impact and extreme weather. This is harder to study objectively, 
because by definition extreme events are rare and, therefore, it is challenging to test 
changes in a statistically robust way. The assimilation of satellite observations has 
repeatedly been shown to play a critical role in the accurate forecasting of individual 
severe weather cases, most notably that of Hurricane Sandy in October 2012 
(McNally et al., 2014). Tropical cyclones (TCs) have been studied, most recently by 
Magnusson et al. (2025). They concluded that near TCs, observations are important 

“   FORECAST SKILL  IMPROVEMENTS OVER THE LAST 45  YEARS HAVE BEEN 
ACHIEVED PRIMARILY  THROUGH IMPROVEMENTS TO THE FORECAST MODEL, 
THE  QUALIT Y  AND NUMBER OF  OBSERVATIONS AND ENHANCEMENTS OF  THE 
DATA ASSIMILATION METHOD.”

HIGH-IMPACT AND 
EXTREME WEATHER



for forecasts mainly up to one day ahead, with the dropsondes particularly helpful 
to reduce central pressure errors. However, at longer lead times, it is the microwave 
satellite radiances that are critical to the TC position, and also central pressure up 
to two days ahead. It was also shown that the development of all-sky microwave 
assimilation (see section on ‘Major data assimilation enhancements’ above 
and Geer et al., 2018) is increasing the impact of microwave radiances further, 
demonstrating that it is not just the observations, but the maturity of the data 
assimilation method which is important, especially in areas with persistent cloud 
cover such as TCs. Scatterometer observations were also shown to be of value,  
with increasing impact as data thinning is reduced. However, other observation 
types were not shown to have a strong impact on TC forecasts.

ECMWF also engages with partners to examine the impact of observations on 
forecasts of atmospheric river (AR) events (Lavers et al., 2024). These studies 
have examined the impact of targeted observations on forecasts of AR events, 
particularly through the Atmospheric River Reconnaissance (AR Recon) programme, 
which involves ECMWF and its Member States. In particular, they explore the 
value of field campaign dropsonde datasets, in the AR Recon seasons 2022/23 
and 2023/24. These show where the dropsondes have value, which can be up to 
four days’ lead time. ECMWF also played a pivotal role in supporting other field 
campaign experiments, particularly through its involvement in the THORPEX (The 
Observing System Research and Predictability Experiment) programme. ECMWF’s 
contributions included providing targeted model runs and assimilating observations 
from these campaigns to enhance weather prediction accuracy in polar regions. 
ECMWF participated in the Concordiasi project, with data from Concordiasi being 
assimilated into ECMWF models, improving weather forecasts and reanalysis 
efforts in polar regions as well as evaluation of satellite data over difficult surfaces, 
particularly from the IASI on the MetOp-A satellite (Rabier et al., 2013). 

Both ERA-Interim and ERA5 reanalysis datasets, produced by ECMWF, rely on the 
4D-Var system to integrate large volumes of observational data into a consistent, 
long-term dataset. ERA-Interim (Dee at al., 2011), covering the years 1979 to 2019, 
was based on an earlier version of 4D-Var with a 12-hour assimilation window and  
a coarser spatial resolution of approximately 79 km. In contrast, ERA5, the 
production of which was funded under the Copernicus programme, and covering 
from 1950 to the present, benefits from a more advanced weak-constraint 
4D-Var, a higher resolution of approximately 31 km, and hourly output, providing 
a more detailed and accurate representation of atmospheric, land, and oceanic 
conditions (Hersbach et al., 2020). ERA5 also assimilates a broader range of 
satellite observations, including hyperspectral infrared and microwave radiances, 
with improved bias correction and error representation techniques. These 
enhancements result in a better depiction of stratospheric processes, and long-
term climate trends for screen-level parameters (Simmons et al., 2021). Through the 
combination of state-of-the-art data assimilation and continuous improvements 
in observational data usage, 4D-Var in ERA5 continues to enhance the accuracy 
and reliability of climate reanalysis products, supporting a wide range of scientific, 
policy and business applications, generating a wide user base, as described in the 
ECMWF 50th anniversary paper on Copernicus. ERA5 is also crucial for initialising 
AI-based weather forecasting systems. It provides high-resolution, historical hourly 
atmospheric data used to train and initialise AI models, including ECMWF’s AIFS. 
The AIFS leverages Graph Neural Networks (GNNs) trained on ERA5 and operational 
analyses to learn atmospheric patterns and improve predictions. By using ERA5  
as initial conditions, AI models generate accurate forecasts of surface weather  
and extreme events which compete with forecasts from traditional models. 
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CLIMATE AND 
ENVIRONMENTAL 
MONITORING
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Last but not least, the CAMS reanalysis (EAC4) also benefits from ECMWF’s 
advanced data assimilation infrastructure by integrating a vast array of satellite 
and in-situ observations into a consistent 20-year-long global dataset. This system 
ensures high-quality atmospheric composition reanalysis, improving accuracy in 
pollutants, greenhouse gases, and aerosols. Here also, the 4D-Var technique refines 
temporal consistency. This reanalysis is used for computing climatologies, studying 
trends, evaluating models, benchmarking other reanalyses, and most importantly, 
serving as boundary conditions for regional models covering past periods. These 
applications support policy-making and environmental monitoring efforts.

 
The development of ECMWF’s data assimilation (DA) system will continue to be 
driven by the need for accurate initial conditions in Earth system modelling and 
optimal use of present and future observations to improve forecasts and climate 
data records. Over the next decade, the DA system will also support the training 
and initialisation of ECMWF’s Artificial Intelligence Forecasting System (AIFS) 
and national forecasting efforts via the Anemoi initiative (Dramsch et al., 2024), 
consolidating ECMWF’s collaborative efforts with its Member and Co-operating 
States on this critical issue. The focus will expand beyond initial conditions,  
using the DA system and observations to directly enhance forecast performance.

An important game changer in the next decade will be that AI and ML applications 
in DA will continue to rapidly evolve. ECMWF is already integrating ML to correct 
systematic model errors dynamically, extending beyond the capabilities of weak-
constraint 4D-Var. Initial studies (Bonavita and Laloyaux, 2020) showed ML-based 
corrections can improve forecasts significantly. Recent results (Farchi et al., 2025) 
confirm forecasts based on this hybrid approach can match state-of-the-art data-
driven models while retaining physical realism.

 
 
 
 
Machine learning also enhances hybrid observation modelling. As demonstrated 
by Geer (2024a and 2024b), ML supplements physics-based modelling of complex 
satellite observations, including radiative properties, hydrometeors, and surface 
interactions. Additional applications include monitoring observation systems (Dahoui, 
2023) and developing latent spaces for variational DA (Melinc and Zaplotnik, 2024). 
These developments confirm ML’s growing role in enhancing analysis accuracy and 
forecast skill within mathematically robust DA methodologies.

Within this likely revolution, it remains certainly true that the 4D-Var assimilation 
system (in a broad sense, and with all its peripheral components) will remain central 
to NWP and atmospheric composition. Efforts will therefore continue to improve 
observation and background error covariances while pushing computational 
resolution limits, leveraging experience from DestinE (Sandu, 2024). Extending 
assimilation windows will optimise performance and workflow efficiency, with 
potential benefits for time-critical boundary conditions in regional modelling.

The forthcoming transition to a hybrid HPC system with central processing units 
(CPUs) and graphical processing units (GPUs) will require code adaptation. Possible 
avenues could be the enhancement of tangent linear and adjoint calculations using 
machine-learned emulators to reduce computational costs in 4D-Var. The Ensemble 
of Data Assimilations, another cost-intensive system, will also benefit from these 
efficiency gains.

“   AN  IMPORTANT GAME CHANGER IN  THE  NEXT DECADE WILL  BE  THE  INCREASING 
ROLE OF  ARTIFICIAL  INTELLIGENCE AND MACHINE LEARNING IN  RESHAPING THE 
DATA ASSIMILATION LANDSCAPE.”

FUTURE DIRECTIONS 
AND PROSPECTS →



A key priority is improving consistency and efficiency across Earth system 
components, particularly through interface observations from satellites. The 
methodology successfully applied to ocean and sea ice observations will be 
expanded to land surfaces. Beyond initial conditions, DA will be used to learn 
meteorology-dependent errors for machine-learning-based corrections in  
medium-range forecasts, optimising model parametrizations, and training  
data-driven neural network models of the atmosphere. 

Copernicus Services (CAMS and C3S) will continue to benefit from DA 
developments, and efforts to estimate emissions and surface fluxes of greenhouse 
gases and pollutants will intensify, leveraging satellite data such as Sentinel-5P 
for CH₄ and NO₂. In the context of the Paris Agreement and the monitoring of CO2 
emissions from space, the operational implementation is being prepared for the 
Copernicus CO₂ Monitoring (CO2M) mission, set for launch in 2027. The climate 
(ERA6) and atmospheric composition (EAC5) reanalyses will enter full production 
within the next few years, integrating scientific advancements with automated 
quality monitoring, while discussions on future reanalysis activities will begin, 
emphasising data-driven forecasting applications.

Maximising observational data usage remains a top priority and requires a proactive 
collaborative approach. Existing satellite observations will be assimilated in more 
challenging environments, such as complex land/sea ice surfaces and cloudy 
regions, in collaboration with EUMETSAT, ESA and Member and Co-operating 
States. Assimilation spatial and temporal resolution will increase, leveraging  
DestinE experience, and new methodologies will be developed to estimate spatial 
error correlations crucial for 4D-Var and EDA. The coupled DA framework will 
extract additional insights from observations at the interfaces between Earth  
system components.

Infrastructure enhancements will ensure the rapid adoption of new satellite 
observing systems. Early in the next decade, ECMWF aims for operational 
use of data from the Meteosat Third Generation Imaging (MTG-I) satellite 
Flexible Combined Imager (FCI) and Lightning Imager (LI) and from EarthCARE, 
working closely with EUMETSAT and ESA. The Centre will continue supporting 
EUMETSAT’s mission advisory groups for MTG-S and EPS-SG, while expanding 
ESA collaborations through the DANTEX initiative (Bormann et al., 2025). Efficient 
integration of newly launched continuity satellites from the US, China, and Japan 
and evolving in-situ networks will maintain forecasting system performance.

ECMWF will continue engaging with private sector observation providers, 
particularly in radio occultation data, while working with EUMETSAT, ESA and 
the US National Oceanic and Atmospheric Administration (NOAA) to validate and 
acquire these datasets. Future Observing System Experiments and EDA impact 
assessments will guide network planning, including optimised conventional 
observation networks optimised as a result of the Systematic Observations 
Financing Facility (SOFF) initiative of WMO. This exemplifies the increasingly  
critical role of partnerships in the data assimilation strategy at ECMWF.  
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CONCLUSION

ECMWF has established itself as a global leader in data assimilation, 
consistently pioneering methodologies that have significantly improved 
numerical weather prediction. The transition from optimal interpolation to 4D-Var 
has been instrumental in enhancing forecast accuracy and extending lead times. 
The implementation of the Ensemble of Data Assimilations (EDA) has further 
strengthened uncertainty representation, refining initial conditions for both 
deterministic and ensemble forecasts. Advances in satellite data assimilation, 
particularly the integration of all-sky and all-surface observations, have 
maximised the use of spaceborne data, improving forecasts for extreme weather 
events. Continuous developments in weak-constraint 4D-Var have addressed 
systematic model errors, yielding more reliable analyses, especially in the 
stratosphere and at the surface. The coupled data assimilation framework is 
another milestone, promising enhanced Earth system modelling through the 
simultaneous assimilation of atmospheric, oceanic, and land observations. 

Crucially, ECMWF’s success is underpinned by the contributions of its Member 
and Co-operating States and strong partnerships with national meteorological 
services, space agencies, and research institutions. Collaborations with 
EUMETSAT, ESA and other agencies have ensured optimal use of satellite 
observations, while joint initiatives such as Copernicus as well as with  
the WMO have expanded the impact of ECMWF’s advancements. 

Looking ahead, ECMWF is at the forefront of integrating AI into data 
assimilation, exploring ML-based corrections to model biases and advanced 
observation handling. ECMWF is even pioneering radical research into producing 
forecasts directly from observations (Alexe et al., 2024 and McNally et al., 2024), 
essentially incorporating the DA step in a fully end-to-end AI-based forecasting 
system (called AI-DOP). The next decade will see increasing reliance on hybrid 
CPU-GPU architectures to optimise computational efficiency, ensuring that 
advanced DA techniques remain viable at higher resolutions. ECMWF’s expertise 
will continue to shape future reanalysis products such as ERA6, reinforcing its 
role in climate monitoring and forecasting.

The Centre’s commitment to international collaboration, particularly through its 
Member and Co-operating States and strategic partnerships, remains essential 
for optimising global observing networks. Additionally, ongoing research into 
continuous data assimilation and extended-window DA will further refine forecast 
initialisation, particularly for fast-evolving weather systems. With the impending 
launch of next-generation satellites and increased observational capabilities, 
ECMWF is well positioned to harness new data sources for even greater forecast 
improvements. As numerical weather prediction enters the AI era, ECMWF’s data 
assimilation strategy ensures that both traditional physics-based models and 
emerging AI-driven approaches benefit from the most accurate initial conditions. 
By maintaining its focus on accuracy, efficiency, and scientific rigour, ECMWF is 
well positioned to define the next chapter in data assimilation and Earth system 
prediction, working hand in hand with its partners to push the boundaries of 
meteorological science.
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