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Fifty years of data assimilation

at ECMWF

ABSTRACT
N

Over the past 50 years, data assimilation (DA) has been a
cornerstone of ECMWF’s success in numerical weather
prediction (NWP), enabling significant advancements in
forecast accuracy and extending prediction lead times.
Through pioneering research and strong collaborations
with its Member States, European meteorological services,
and space agencies such as the European Organisation for
the Exploitation of Meteorological Satellites (EUMETSAT)
and the European Space Agency (ESA), ECMWEF has led
the operational adoption of variational DA techniques,
transitioning from early methods to the groundbreaking
implementation of four-dimensional variational data
assimilation (4D-Var). This transformation has allowed the
direct assimilation of satellite radiances, unlocking the full
potential of spaceborne observations and revolutionising
modern data assimilation and forecasting.

Further developments, such as the introduction of the
Ensemble of Data Assimilations (EDA), have provided a

more robust representation of flow-dependent errors,
improving uncertainty quantification in initial conditions.
ECMWEF continues to drive innovation through the evolution
of coupled DA, integrating atmospheric, ocean, and land
observations to enhance Earth system modelling. The
“all-sky, all-surface” approach has further optimised satellite
data assimilation in complex conditions, ensuring the best
possible use of European and international investments in
space programmes. These advancements are made possible
through sustained collaboration with national meteorological
services, research institutions, and operational programmes
such as the European Union’s Copernicus programme.

Beyond weather forecasting, ECMWEF’s world-class DA
infrastructure underpins the production of high-impact
climate reanalysis datasets, such as ERA5, which have
become essential for climate monitoring and research.
Looking ahead, artificial intelligence (Al) and machine
learning (ML) are set to reshape the DA landscape, offering
unprecedented opportunities to enhance observation
processing, error correction, and computational efficiency.
As ECMWEF prepares for future observing systems

and Al-driven forecasting, its commitment to scientific
excellence, strong partnerships, and collaboration with its
Member and Co-operating States ensures that it remains at
the forefront of meteorology and climate monitoring science.



INTRODUCTION -

The European Centre for Medium-Range Weather Forecasts (ECMWF) stands as
a global leader in numerical weather prediction (NWP), renowned for its pioneering
advancements and outstanding forecasting capabilities. Since its establishment
50 years ago, ECMWF has been at the forefront of meteorological research,
providing critical weather forecasts that inform decisions for its Member and
Co-operating States across a multitude of sectors and applications. Numerical
weather prediction, which involves the use of physics-based models to simulate the
Earth’s atmosphere, has revolutionised our ability to predict weather, understand
atmospheric dynamics and provide quantification of uncertainties about forecast
products. At the heart of NWP lies data assimilation — a technique that seamlessly
integrates observations from diverse sources into NWP models, ensuring that
forecasts are optimally initialised to ensure best possible accuracy.

By incorporating observations from satellites, meteorological stations, buoys,
aircraft and other platforms, data assimilation enables models to produce accurate
initial conditions — a prerequisite for reliable weather forecasts. Throughout the

last 50 years, ECMWF’s innovations in this domain have set the global standard,
pioneering significant improvements in forecast skill and extending the lead time of
high-confidence predictions. This cornerstone of NWP is an example of the Centre’s
success in achieving scientific excellence and operational reliability (Rabier et al.,
2000; Bauer et al., 2015).

The success of ECMWEF, however, has not been achieved in isolation. Partnerships
with national meteorological services, space agencies, and research institutions
around the world have played a crucial role in establishing ECMWF as a world
leader of weather forecasting. These collaborations have facilitated the sharing

of expertise and ideas, resources, and observational data, creating a synergistic
environment that has driven innovation. Through initiatives such as the European
Union’s Copernicus Earth observation programme and Destination Earth (DestinE),
and the World Meteorological Organization’s (WMQ’s) collaborative frameworks,
ECMWEF has greatly benefited from the power of international cooperation to push
the boundaries of what is possible in NWP.

In this paper, we describe the fundamental role of data assimilation in ECMWF’s
success, its evolution alongside advancements in NWP, and the critical importance
of partnerships in shaping ECMWF’s trajectory as a global leader in meteorology.



HISTORICAL OVERVIEW
OF DATA ASSIMILATION
AT ECMWF -

ECMWEF was founded in 1975 with the primary mission to produce ten-day weather
forecasts using state-of-the-art NWP systems. From the outset, the Centre
recognised the importance of data assimilation as the foundation for reliable model
initialisation. In its early years, ECMWF implemented a basic three-dimensional
optimal interpolation (Ol) scheme (Lorenc, 1981), which provided a systematic
approach to incorporating observational data into its models. This method,

based on statistical interpolation, balanced observational data with prior forecast
information (background data), weighting both sources of information according

to their relative errors and spatial correlations and minimising the expected

error variance of the resulting initial state to improve forecast accuracy. While Ol
was a significant step forward in data assimilation during its time, it had several
shortcomings that limited its effectiveness compared to more advanced techniques
like variational data assimilation. Significant limitations of the Ol algorithm
implemented at the time include the use of static, predefined error covariance
matrices, the suboptimal use of observations not linearly related to the analysis
variables (e.g. satellite radiances), the lack of model constraints in the analysis
procedure, and the local nature of the solver, which can lead to numerical artefacts
(e.g. discontinuities) in the resulting analysis fields.

B DURING THE 1990s, ECMWF PIONEERED THE USE OF VARIATIONAL DATA
ASSIMILATION TECHNIQUES, SHIFTING FROM OPTIMAL INTERPOLATION WHICH

HAD SIGNIFICANT LIMITATIONS.”

During the 1990s, ECMWEF pioneered the use of variational data assimilation

(Var) techniques, shifting from OI to more sophisticated approaches, in order to
address the limitations described above. This effort was greatly facilitated by a
proactive collaboration between ECMWF and Météo-France on what was called
the Integrated Forecasting System (IFS)/ARPEGE project, which mobilised
significant resources on both sides to address this new revolutionary (at the time)
framework (Pailleux et al., 2014). Three-dimensional variational data assimilation
(8D-Var) was operationally implemented at ECMWF in 1996 (following an earlier
implementation at the US National Centers for Environmental Prediction (NCEP)

in 1995). Worth noting is that prior to this implementation, and as described in Eyre
et al. (2020), assimilating satellite observations as low-vertical-resolution retrieved
profiles had at best a neutral impact in most NWP centres, exhibiting difficulties

in specifying appropriate error statistics for the retrievals, contaminated by their
climatological background.

An important intermediate step towards direct radiance assimilation was the
assimilation of 1D-Var retrievals which used NWP short-range forecasts as
background information. This removed large components of the climatological
background from the retrieved profiles and was much closer to direct radiance
assimilation than the assimilation of retrievals based on climatological information
(Eyre et al., 2020). Indeed, the 1D-Var retrieval scheme (Eyre, 1989) used profiles
from a short-range forecast as background, whereas other retrieval schemes used
statistical background information (Reale et al., 1986). Even with very sophisticated
techniques, it is unavoidable that errors in the selected background contribute to
the retrieval error. The problem shows up as very systematic air-mass-dependent
biases in the retrieved data (Andersson et al., 1991). The errors introduced by the
retrieval process are characterised by horizontal correlations that vary with the
meteorological conditions and are therefore difficult to accurately account for in

the analysis. This problem is fully eliminated by incorporating the retrieval process
within the analysis: a combined retrieval/analysis approach enables a more accurate
combination of the information contained in the background, in the radiances and in
the conventional data (Andersson et al., 1994). All data are analysed simultaneously



in a single global inversion problem. The other major innovation of 3D-Var with
respect to Ol was the global nature of the solver of the analysis update equations,
whose solution can be framed as an iterative minimum-finding algorithm of a global
cost function. This allows certain issues (discontinuities, numerical artefacts)
connected to the need to stitch together separate local analyses in Ol to be avoided.

The transition from 3D-Var to 4D-Var at ECMWF was driven by the need to better
incorporate time-evolving observations and improve the dynamical consistency
of the atmospheric state produced by the analysis update (Andersson et al.,
1994; Thépaut et al., 1996). While 3D-Var was a major advancement over Ol, it still
had at least two fundamental limitations. One is that it treated observations as if
they all occurred at a single analysis time, ignoring the fact that weather systems
evolve continuously. This meant that observations taken at different times within
the assimilation window were not optimally used, leading to a less accurate initial
state for the forecast model. The second, possibly more important, deficiency is
that 3D-Var, like Ol, is a purely statistical assimilation algorithm. This means that
the forecast model plays no part in the solution of the analysis equations except
for providing a background state. This means, among other things, that there is
no guarantee that the resulting analyses are consistent with the model dynamics.
This fact explains the importance at the time of “initialisation” techniques like
Normal Mode Initialisation to suppress spurious high-frequency oscillations in the
analysed fields (Temperton and Williamson, 1981). To address these problems,
ECMWEF implemented 4D-Var in 1997. Unlike 3D-Var, which only considers spatial
relationships in the atmosphere, 4D-Var extends the assimilation process over a
time window (initially 6 hours, later extended to 12 hours; see Figure 1). Instead

of assuming the background state is static during this period, 4D-Var uses the
numerical weather prediction model to evolve the atmospheric state forward in time.

One major advantage of 4D-Var over 3D-Var is its ability to extract more useful
information from asynoptic (non-simultaneous) observations. Satellite and aircraft
data, which are available at irregular times, could now be optimally incorporated
by considering how they influenced the evolving atmospheric state. This resulted
in more accurate initial conditions for forecasts, reducing errors and improving
predictive skill, particularly for rapidly changing weather patterns.

Figure 1: In the case illustrated
here, for a single parameter x the
observations are compared with

a short-range forecast from a

previous analysis over a 12-hour Corrected
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Another key improvement in 4D-Var is its ability to better control dynamic
imbalances in the analysis. Since it uses the forecast model itself as a constraint,
the final analysis is dynamically consistent, reducing unrealistic adjustments

to temperature, wind, and pressure fields that could occur in 3D-Var. This leads
to a smoother transition between the analysis and forecast phases, improving
medium-range prediction accuracy.

Despite these advantages, the transition to 4D-Var also came with challenges.
One major drawback was the computational cost. This necessitated advances

in high-performance computing (HPC) to make 4D-Var operational. However, this
was not enough, and incremental 4D-Var at ECMWF was introduced to address
the computational challenges associated with full 4D-Var. Indeed, its original
formulation was computationally expensive, requiring multiple integrations of the
forecast model and its adjoint, involved in the process of minimising the distance
between the model trajectory and the observations over the assimilation time
window. To make 4D-Var operationally feasible, ECMWF adopted an incremental
approach, first proposed by Courtier et al. (1994). This method allowed for a more
efficient optimisation process by splitting the assimilation into multiple lower-
resolution linear minimisation steps, known as outer and inner loops. Instead of
solving the full nonlinear 4D-Var problem at once, incremental 4D-Var approximates
it iteratively, first making a coarse-resolution estimate of how observations should
be assimilated and then refining it through a series of linearised adjustments.

The implementation of incremental 4D-Var significantly reduced computational
costs while maintaining the benefits of the full 4D-Var method. The outer loop
operates at higher (finer) resolution, using the full nonlinear forecast model to update
the control variables. The inner loop, where most of the optimisation occurs, uses a
linearised (tangent-linear) version of the model at a reduced resolution to compute
corrections more efficiently. This iterative refinement process ensures that the final
analysis remains close to the optimal solution while avoiding the prohibitive expense
of running a full-resolution nonlinear model at every iteration.

One of the primary advantages of incremental 4D-Var is its ability to make 4D-Var
computationally affordable for operational use. Since the inner loop uses a reduced-
resolution model, the overall cost is significantly lower compared to that of a full
nonlinear 4D-Var system. Additionally, this approach improves numerical stability,

as the assimilation increments remain small and are applied gradually, reducing the
risk of introducing unrealistic changes to the atmospheric state. By approximating
the analysis solution through successive iterations at increasing spatial resolution,
incremental 4D-Var retains the ability to capture large-scale atmospheric corrections
and, as the assimilation progresses, resolve smaller-scale features more effectively
than a single direct minimisation. This makes it particularly useful for global numerical
weather prediction at high resolution, which is an inherently multi-scale problem.

A final aspect of incremental 4D-Var that has allowed the algorithm to pass the
test of time is its ability to deal efficiently with nonlinearities in the data assimilation
system (Bonavita et al., 2018). As the model resolution increases and more
observations are ingested that are nonlinearly related to the analysis variables,
this capability of incremental 4D-Var has become increasingly important.

To deal with nonlinearities, an important development was related to incorporating
increasingly sophisticated linearised physical parametrizations within the inner-loop
minimisation process. In the standard formulation of 4D-Var, the inner loop uses

a tangent-linear and adjoint model to propagate information about the state and

its sensitivities. However, in early implementations, only the dynamical core of



Figure 2: Example for the
assimilation of Atmospheric Lidar
(ATLID) total backscatter on 3
August 2024. (a) ATLID total lidar
backscatter at native resolution,
averaged to the model grid, (b)
ATLID total lidar backscatter at
30 km horizontal resolution, (c)
first-guess total lidar backscatter,
and (d) 4D-Var analysis total lidar
backscatter. Backscatter is shown
in units of 10 log,, (m™ sr'). The red
line in the satellite image shows
the path of the satellite. From
Fielding et al., 2025.

the forecast model was linearised, while physical processes such as radiation,
convection, and boundary layer interactions were either ignored or represented
in a very simplified manner (Mahfouf and Rabier, 2000). This limitation meant
that some key atmospheric processes influencing cloud formation, precipitation,
and turbulence were not properly accounted for in the assimilation, leading to
suboptimal adjustments in the analysis.

To address this, ECMWEF introduced linearised physics schemes within the tangent-
linear and adjoint models, allowing physical processes to be considered during

the minimisation of the 4D-Var cost function (e.g. Janiskova et al., 2002). These
schemes ensured that physical processes could be consistently represented within
the assimilation cycle while maintaining computational efficiency. The introduction
of these linearised physics schemes was particularly beneficial for the assimilation
of cloud- and precipitation-affected satellite radiances, as well as for improving the
representation of boundary layer and convection-related processes.

The development and refinement of these linearised physical parametrizations
have continued as ECMWF has increased model resolution and improved satellite
data assimilation. In later years, Janiskova and Lopez (2013) expanded the use

of linearised physics for variational cloud and precipitation assimilation. A recent
achievement is the successful assimilation of lidar backscatter observations from
the EarthCARE platform (see Figure 2, by Fielding et al., 2025), which would not
have been possible without these continual developments.

a ATLID lidar backscatter, native resolution
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Incremental 4D-Var remains a cornerstone of ECMWF’s data assimilation system,
continuously evolving to take advantage of new computational capabilities and
improved observational data. By balancing accuracy and efficiency, it has enabled
ECMWEF to maintain high forecast skill while integrating an ever-growing number
of satellite and in-situ observations. The method has proved to be a crucial
advancement in numerical weather prediction, allowing for more reliable forecasts
and better representation of atmospheric processes.

B THE INCREMENTAL FORMULATION OF FOUR-DIMENSIONAL VARIATIONAL
DATA ASSIMILATION (4D-VAR) HAS PROVED TO BE A CRUCIAL ADVANCEMENT
IN NUMERICAL WEATHER PREDICTION, MAKING THE METHOD ACCURATE AND
AFFORDABLE, AND ALLOWING FOR MORE RELIABLE FORECASTS AND BETTER
REPRESENTATION OF ATMOSPHERIC PROCESSES.”

Benefiting from this established infrastructure, the Copernicus Atmosphere
Monitoring Service (CAMS; described in the ECMWF 50th anniversary paper

on Copernicus), which ECMWF operates on behalf of the European Commission,
is able to integrate vast amounts of satellite and in-situ observations into its
atmospheric composition models. Using 4D-Var, CAMS produces high-quality
global analyses of aerosols, greenhouse gases and reactive gases, improving
air quality forecasts and environmental monitoring.

It is also worth noting that the 4D-Var framework has enabled the development

of the Forecast Sensitivity to Observation Impact (FSOI) methodology to assess

the impact of observations on forecast quality. FSOI measures how individual
observations influence forecast error reduction. Using the adjoint model, FSOI
quantifies the gradient of forecast error with respect to each observation, showing
whether a given observation has improved or degraded the forecast. This technique
enables convenient and inexpensive real-time assessment of the usefulness of
different observing systems, helping optimise data assimilation strategies by
prioritising observations that contribute most to forecast improvement. (Cardinali,
2009; Dahoui et al., 2017).

This tool and others are widely used as what we call Observing System Experiments
(OSEs) to inform observation providers (e.g. space agencies) about the usefulness
of various observing systems, and ECMWF has played a crucial role in shaping

the Global Observing System (GOS) through various contributions using its DA
infrastructure. These include targeted observation experiments (Buizza et al., 2007)
and the Concordiasi project (Rabier et al., 2013).

Since its implementation in 1997, many changes have been made in the
4D-Var system, and some of the advances and challenges are described
in the following section.



MAJOR DATA
ASSIMILATION
ENHANCEMENTS
AT ECMWF -

ENSEMBLE OF DATA
ASSIMILATIONS

The Ensemble of Data Assimilations (EDA) was introduced at ECMWF with two
distinct but connected objectives. One was to provide improved initial conditions
for the initialisation of the ECMWF Ensemble Prediction System (Buizza et al.,
2008). The other was as a means to better estimate flow-dependent background
error covariances within the variational data assimilation system. Before these
EDA developments, the original implementation of incremental 4D-Var relied on
static background error covariances, which were derived from climatological
statistics. While these were carefully tuned, they did not evolve dynamically

with the atmospheric flow. This limitation meant that background errors were
often misrepresented, particularly in rapidly changing conditions such as during
cyclogenesis, tropical cyclone development, or sudden stratospheric warmings
(Bonavita et al., 2012).

Recognising the need for a more adaptive approach, ECMWF began developing

the EDA in collaboration with Météo-France, which had been conducting pioneering
work on ensemble-based estimation of background errors (e.g. Raynaud et al.,
2008). Météo-France had explored the concept of using multiple realisations of the
data assimilation cycle to diagnose errors dynamically, an approach that showed
promise for improving the accuracy of background error covariance estimation.
Inspired by these developments, ECMWEF integrated the EDA into its operational
4D-Var system, creating an ensemble of perturbed data assimilation cycles to
explicitly represent the uncertainties in the background state (Isaksen et al., 2010).

The introduction of the EDA marked a major advancement over the original
incremental 4D-Var framework. In its traditional form, incremental 4D-Var minimised
a cost function that included a background error covariance matrix (B-matrix),
which had been computed from long-term statistics rather than evolving
dynamically with the atmosphere. While this approach worked well in many cases,

it struggled to correctly weigh observations in regions with high uncertainty, such
as areas of active convection, frontal zones, or dynamically unstable regions. By
using EDA-generated background errors, ECMWF was able to account for the flow
dependency of forecast uncertainty, making the assimilation system much more
responsive to the current state of the atmosphere (Bonavita et al., 2016).

The EDA works by running multiple independent 4D-Var analyses, each with
stochastically perturbed observations and model states. These perturbations

mimic the uncertainties in the observational data and model representation,
creating an ensemble of analyses that reflects the possible range of atmospheric
states. By computing the spread across the ensemble members, the EDA provides
an adaptive estimate of background error covariances, which is then used in the
main high-resolution 4D-Var assimilation. This allows the variational system to
adjust its weighting of observations dynamically, giving more weight to observations
in regions of high uncertainty and less weight where confidence in the background
field is stronger (Isaksen et al., 2010).

Figure 3 shows the case of tropical cyclone Aere (north-eastern part of the
Philippines on 8/9 May 2011) and is an illustration of how the errors diagnosed by
the EDA, here for mean sea-level pressure, are, by design, constructed to estimate
the real analysis errors, thus implicitly taking into account the observation network
distribution and the model instabilities. In the present case, they act to extrapolate
the observational information from the land-based stations into the more uncertain
areas to the north-east of the cyclone, thus helping achieve a better positioning of
the analysed storm.
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Figure 3: First line: Background
mean sea-level pressure

forecast valid on 9 May 2011 at
00 UTC (solid line, units: hPa)
superimposed on background
error estimates for the logarithm
of surface pressure (shaded
contours). Second line: Surface
pressure analysis increments
valid on 9 May 2011 at 00 UTC
(solid lines indicate positive
increments, dashed lines negative
increments; isolines of 50 Pa).
First column shows fields from
the operational ECMWF analysis
cycle at the time, with no EDA
error estimate, second column
from an experiment using EDA
error estimates. From Bonavita

et al., 2012.
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A key benefit of incorporating the EDA into incremental 4D-Var was its impact on
forecast sensitivity to observations. In a purely deterministic 4D-Var framework,

the system assumes a fixed error distribution, which can lead to overconfidence in
certain observations and underuse of others. With the EDA, the system continuously
updates its understanding of error growth, leading to more accurate weighting

of observational inputs (Bonavita et al., 2012). This proved particularly beneficial

for satellite data assimilation, as it allowed ECMWF to assimilate more radiances
dynamically, even in areas of high uncertainty, such as cloudy and precipitating
regions (Geer et al., 2018).

Beyond its immediate impact on data assimilation, the EDA also played a crucial role
in ensemble forecasting at ECMWF. By using EDA-based perturbations to initialise
the Ensemble Prediction System (EPS), ECMWF was able to create more realistic
ensemble spread, leading to better probabilistic forecasts. This dual application
—improving both deterministic analysis and ensemble forecasting - solidified the
EDA’s place as a cornerstone of ECMWF’s modern assimilation framework.

As computing power has increased, ECMWF has continued to refine the EDA,
increasing the number of ensemble members and improving the perturbation
methodologies. This has further strengthened the system’s ability to represent
uncertainty and make full use of the ever-expanding volume of satellite and in-situ
observations (Lang et al., 2019). However, in recent years, increasing compute
power at historical rates has become more challenging, and questions have been
asked about the long-term future of investing so many compute resources in the
EDA. The main justifications for running the EDA are i) not having to maintain a




dedicated ensemble DA system separate from 4D-Var, ii) the 4D-Var is well tested,
and iii) the skill of 4D-Var. The Object-Oriented Prediction System (OOPS, Bonavita
et al., 2017) was developed to maintain multiple DA methods easily. It creates the
possibility to run Ensemble Kalman Filter (EnKF) or Ensemble 4D-Var (EnVAR) for the
EDA, but running a completely independent DA system for the deterministic analysis
and the EDA is not desirable. At present, the 4D-Var algorithm has a higher skill level
than any other algorithm tested in realistic NWP configurations. But it remains an
open question if we can use other methods to replicate the contribution the EDA
currently makes at much lower cost, without creating overheads in future support
and testing. There is also a broader open question about the future of 4D-Var:
whether it is computationally feasible at km-scale. At the time of writing, the answer
to this is not clear, but OOPS definitely facilitates the implementation of alternative
DA methodologies should these be needed.

B THE ENSEMBLE OF DATA ASSIMILATIONS HAS IMPROVED BOTH ANALYSIS
ACCURACY AND ENSEMBLE FORECASTING - SOLIDIFYING ITS PLACE AS A
CORNERSTONE OF ECMWF’S MODERN ASSIMILATION FRAMEWORK.”

WEAK-CONSTRAINT 4D-VAR

ALL-SKY, ALL-SURFACE
SATELLITE DATA
ASSIMILATION

The implementation of weak-constraint 4D-Var at ECMWF was motivated by

the need to address systematic model errors that limited the ability of 4D-Var to
more effectively use various types of observations in the stratosphere and, more
recently, at the surface. Traditional strong-constraint 4D-Var assumed that the
numerical model used in data assimilation was perfect, neglecting the presence
of conditional biases usually arising from deficiencies in model physics. However,
systematic errors accumulated over time, particularly affecting stratospheric
processes, boundary layer dynamics, and fast-evolving atmospheric phenomena.
Weak-constraint 4D-Var allows the assimilation system to account for these errors
dynamically, potentially leading to improved forecast accuracy and consistency
(Trémolet, 2006).

One major improvement resulting from weak-constraint 4D-Var was the reduction

in stratospheric temperature biases. Before its implementation, systematic biases

in the stratosphere led to persistent temperature drifts, impacting the representation
of the jet stream, planetary waves, and stratospheric circulation. Weak-constraint
4D-Var corrected these errors, producing a more realistic depiction of upper-
atmospheric dynamics (Laloyaux et al., 2020). More recently, the development of

a version of weak-constraint 4D-Var able to estimate time-varying error structures
during the assimilation window has allowed its extension to the boundary layer and
the surface, with tangible improvements in the use of surface observations (two-
metre temperature, surface pressure, scatterometer winds).

A particular enhancement of the data assimilation system at ECMWF is related to
continual efforts to improve the observation operators (mapping the model into
observation space) and the characterisation of observation errors, especially for
satellite observations. These developments addressing better surface emissivity
models, better representation of microphysics of snow and graupel particles in the
microwave, inclusion of observation error correlation, etc. have led to a massive
increase in satellite observation usage, in cloudy and rainy conditions, as well as
over land, snow and sea-ice surfaces.

An example is shown in Figure 4 from Geer (pers. comm.), representing the
progressively increasing usage of microwave radiances (here Advanced
Microwave Scanning Radiometer 2, AMSR2) in the DA system, including after
the implementation of a new major cycle of the IFS (Cycle 49r1, implemented in



Figure 4: AMSR2 observed
brightness temperatures in the 37
GHz v-polarised channel for the
12-hour DA window around 12 UTC,
17 November 2024, simulating the
data coverage at earlier stages of
DA development (clear-sky, all-sky,
all-sky over sea ice/land after
implementation of IFS Cycle 49r1).
The bottom-right panel shows all
data at the 40 km superobbing

scale. In the other panels, the data

has been thinned to 1 in every 8
superobs, giving effectively a 100
km spacing between observations.
Data from multiple orbits has been
allowed to overlap/superimpose.

TOWARDS A COUPLED DATA
ASSIMILATION SCHEME

12

November 2024). This cycle expanded the use of surface-sensitive microwave
channels, for which a lot of data had previously been screened out due to surface
types that are harder to simulate. This figure (bottom right) also shows the potential
of a high-resolution all-sky/all-surface assimilation approach. The generalisation of
the “all-sky, all-surface” approach is not restricted to microwave instruments but
includes infrared ones, with high potential from advanced hyperspectral sounders
such as the Infrared Atmospheric Sounding Interferometer (IASI) (Geer et al., 2019).
These developments have largely benefited from the close partnership between
ECMWF and EUMETSAT (see later section).
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Historically, ECMWF’s data assimilation systems for the atmosphere, ocean, and
land operated independently, with the atmospheric 4D-Var system focusing on
upper-air data, while ocean and land components were initialised separately.

For the ocean, ECMWF’s ocean data assimilation began with the implementation

of the NEMOVAR system, a variational data assimilation software developed
collaboratively (CERFACS, ECMWF, Met Office, INRIA/Laboratoire Jean Kuntzmann)
to integrate the NEMO ocean model. This system, operationalised in Ocean Analysis
System 4 (Ocean-S4, implemented in 2011), used a multivariate three-dimensional
variational (3D-Var) First Guess at Appropriate Time (FGAT) approach, assimilating
temperature and salinity profiles alongside altimeter-derived sea level anomalies.
Building upon this foundation, ECMWF introduced the Ocean ReAnalysis System 5
(ORASS5, introduced in 2017), which incorporated an ensemble generation technique
to better represent uncertainties in ocean observations and model physics. ORAS5
provides improved initial conditions for coupled forecasts, thereby enhancing

the skill of medium-range weather predictions and seasonal forecasts, the latter
being used as an important component of the Copernicus Climate Change Service
(C3S) offer. ORASE (to be implemented in 2025) further refines ocean reanalysis



OPERATIONAL CHALLENGES

capabilities. ORASG6 is based on an ocean ensemble-based variational data
assimilation system, offering flow-dependent background error variances and
vertical correlation scales.

For the land, initially, the assimilation scheme was a two-dimensional Optimal
Interpolation (2D Ol) method for analysing screen-level parameters and snow depth,
while soil moisture and temperature analyses used a one-dimensional Ol (1D Ol)
approach. This framework, though foundational, had limitations in capturing the
complex interactions between land surface variables and atmospheric processes.
ECMWEF introduced a simplified Extended Kalman Filter (EKF) for soil moisture
analysis. This advancement allowed for a more dynamic and responsive assimilation
of soil moisture data, improving the representation of land—atmosphere feedbacks
(de Rosnay et al., 2013). The EKF approach facilitated the integration of various
observational data sources, including satellite-derived soil moisture measurements
such as those from the Soil Moisture and Ocean Salinity (SMOS) mission and
Advanced Scatterometer (ASCAT) data.

The transition towards a fully coupled DA system at ECMWF involves several
methodological advancements. One approach is the development of outer-loop
coupling, where the coupled model is introduced at the outer-loop level of the
assimilation process. This method allows for the simultaneous adjustment of
atmospheric and oceanic states, ensuring consistency across the coupled system.
Additionally, efforts are being made to enhance the assimilation of surface-sensitive
observations, such as sea-surface temperatures and soil moisture, which are
critical for accurately capturing the interactions between different Earth system
components (de Rosnay et al., 2022).

Data assimilation for operational NWP is a computationally intensive task that
needs to be run daily within strict timeframes on available hardware. This set

of requirements poses challenges for DA system developers. Currently, most
operational DA systems are run in a hybrid configuration with a high-resolution
control analysis based on a global variational solver (either adjoint-based, 4D-Var,
or ensemble based, EnVar) and an ensemble DA component for error estimation
and cycling (again, either adjoint-based, Ensemble of Data Assimilations (see
previous section), or ensemble based, EnKF and its variants). This schematic
description already makes it apparent that while DA is conceptually a probabilistic
estimation problem, the dimension of the control space for global NWP at current
spatial resolutions (O(109)) limits the choice of viable algorithms to those that
assume Gaussian errors and only weak nonlinearities in both the observations
and the model evolution during the assimilation window (Bonavita et al., 2018).

From a computational perspective, ensemble-based methods (EnVar, EnKF)

tend to have better scaling properties than adjoint-based methods, as the
analysis sensitivities to observations are directly sampled from the ensemble
background forecasts and the solver can be parallelised efficiently. On the other
hand, localisation is a known performance limiter for these systems, and the need
to sample from the ensemble forecasts requires their storage with fast memory
access, which can become impractical for increasing spatial/temporal resolutions
and ensemble size.

The adjoint-based methods (4D-Var and its ensemble DA system, EDA) use their
ensemble component for background error covariance estimation, but the error
evolution in the assimilation window is achieved through running their linearised
and adjoint models. This means that for variational methods the main computational
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constraint comes from the requirement to run the forecast model and its linearised
and adjoint versions efficiently and quickly at ever-increasing resolutions.

This problem is compounded by the fact that solvers used in variational DA are
intrinsically sequential and there is little scope for domain parallelisation. Ten years
ago, this state of affairs led people to question the long-term viability of 4D-Var.
However, new ideas have changed the picture in the last few years. One of these
is continuous DA (Lean et al., 2019). Continuous DA is based on the incremental
implementation of 4D-Var and the concept of letting fresh observations into the
assimilation system while 4D-Var is running. In practice, this reduces the time-
critical portion of 4D-Var to the duration of the last minimisation update instead of
the duration of the whole algorithm (which currently runs with four minimisations).
This concept will be further developed in the extending-window DA framework,
where the length of the assimilation window itself will vary as a function of
observation cutoff time, thus ensuring a more continuous update of the analysis
and thus even better ability to describe and forecast fast-evolving weather events.

Another important aspect is that of computational efficiency. In the ECMWF DA
system, the EDA is the most computationally demanding component, and efforts
have been focused on reducing its cost while maintaining or even improving
performance. A recent example of these developments is the soft-centred EDA
concept (HéIm et al., 2022). This implementation of the EDA differs from the original
one as the perturbed members are simplified, lower-resolution 4D-Var updates

and the mean background forecast is re-centred on the unperturbed member
background. In addition, the minimisations in the perturbed members start from an
initial control vector and preconditioning that is inherited from the output of the first
minimisation of the unperturbed member. The resulting EDA is approximately 30%
cheaper to run and its performance is superior to that of the original version.

As described in the previous sections, a driver for improved data assimilation at
ECMWEF has been the goal to make best use of the growing spaceborne observing
system. This would not be possible without a very close partnership with space
agencies, such as the European Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT) and the European Space Agency (ESA).

In particular, ECMWF and EUMETSAT have built a very efficient collaborative
framework which is critical to enhance the use of satellite data in NWP and
environmental monitoring. A key component of this partnership is ECMWF’s active
participation in EUMETSAT’s Satellite Application Facilities (SAFs). These SAFs are
specialised centres of excellence that focus on processing satellite data for specific
applications, such as numerical weather prediction, climate monitoring, radio
occultation and atmospheric composition, to name a few. By engaging with these
facilities, ECMWEF contributes its expertise in NWP to improve the processing and
assimilation of satellite observations, thereby enhancing the accuracy of weather
forecasts and climate analyses. Another significant aspect of this collaboration

is the EUMETSAT Research Fellowship Programme, which places early-career
scientists at institutions like ECMWEF to develop innovative applications of

satellite data. These seconded Fellows work on projects aimed at advancing

the assimilation of satellite observations into ECMWF’s forecasting models.

B A DRIVER FOR IMPROVED DATA ASSIMILATION AT ECMWF HAS BEEN
THE GOAL TO MAKE BEST USE OF THE GROWING SPACEBORNE OBSERVING
SYSTEM - MADE POSSIBLE THROUGH A VERY CLOSE PARTNERSHIP WITH
SPACE AGENCIES, SUCH AS EUMETSAT AND ESA.”
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Figure 5: Relative impact of
observing systems on the quality of
the operational 24-hour forecast,
estimated using their Forecast
Sensitivity to Observation Impact
(FSOI), and aggregated over the
calendar years 2020 to 2024. The
impact of microwave and infrared
radiance sensors is separated by
channel based on primary sensitivity
to temperature or water vapour.
Ground-based observations are
separated into conventional (no
aircraft) and aircraft. (Geer,

pers. comm.)

Figure 6: Observation-
minus-background departure
statistics. The bending angle
observation-minus-background
(O-B) departure statistics
(standard deviation and mean)
as a function of impact height
for the three Metop satellites.
The departures are normalised
by dividing them by the bending
angle noise values used when
assimilating the data.

The statistics are computed
for the period 27 November

to 2 December 2018.
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For example, past Fellows have focused on improving the use of atmospheric motion
vectors, radiances from geostationary satellites, and microwave radiance data from
polar-orbiting satellites — all activities dedicated to maximising the impact of these
observations in the ECMWF NWP suite. Furthermore, ECMWF and EUMETSAT jointly
regularly conduct various flavours of OSEs (as mentioned in the previous section) to
assess and optimise the impact of various satellite data on NWP (see Figure 5).

The insights gained from OSEs inform decisions on future satellite mission designs
and data assimilation strategies, ensuring that ECMWF’s models effectively exploit
available satellite data and prepare for future missions (Healy et al., 2022). An
advantage of this close cooperation with EUMETSAT is also the speed at which
provision of feedback on data quality and evaluation of impact of data on the
ECMWEF system can be done. For example, EUMETSAT’s polar-orbiting MetOp-C
satellite was launched on 7 November 2018, and the EUMETSAT radio occultation
(RO) team produced high-quality bending angle profiles by 13 November 2018,
within only six days of launch, and made them available to the EUMETSAT Radio
Occultation Meteorology Satellite Application Facility (ROM SAF) for evaluation.
Within days, ECMWF was able to provide quality assessment of these new data in
comparison with both the Metop-A and B measurements, by comparing them with
NWP information mapped to observation space (see Figure 6, from Healy et al., 2019).
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Figure 7: Increase in satellite

sensors monitored at ECMWF from

1996 to 2024.

120

As a result, ECMWF has been a world leader at monitoring and assimilating satellite
observations. Figure 7 shows how the data assimilation and model developments
over nearly 30 years have enabled the number and diversity of satellite data
instruments used to be massively increased.
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Forecast skill improvements over the last 45 years have been achieved primarily
through improvements to the forecast model, the quality and number of observations
and the accuracy of the data assimilation method (Magnusson and Kéllen, 2013).

It is challenging to attribute the contribution of each of these elements, but it is
common to compare long-term trends in the performance of forecasts from the
reanalysis system with trends in the forecasts from the operational system (see
Figure 8). As a first approximation, we can say the reanalysis system shows
improvements arising from changes to the observation system, and the trend in

the operational system shows improvements from all components, so the difference
in trends is an approximation of the combined contribution of model and data
assimilation methodology changes.

The lead time at which the anomaly correlation of the 500 hPa geopotential height
fell below 85% was 5 days in 2002 and 6.3 days in 2022, so a gain of 0.65 days per
decade in this period, a drop from the 1 day per decade improvement reported by
Magnusson and Kéllen (2013). The equivalent change for ERA5 was an increase
from 5.5 days in 2002 to 5.9 days in 2022, so an increase of 0.2 days per decade.
Therefore, in this 20-year period, we can say, approximately, that a gain of 0.2 days
per decade arose from improvements in the Global Observing System, and a gain of
0.45 days per decade arose from improvements in the model and data assimilation.
In this context, it is also worth noting ECMWF’s current Artificial Intelligence




Figure 8: Forecast skill
changes of various models,
including ECMWF’s IFS, AIFS
and ERABL. The figure shows
the lead time at which the
anomaly correlation of

500 hPa geopotential height
over the northern hemisphere
extratropics falls below 85%.
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Bl FORECAST SKILL IMPROVEMENTS OVER THE LAST 45 YEARS HAVE BEEN
ACHIEVED PRIMARILY THROUGH IMPROVEMENTS TO THE FORECAST MODEL,
THE QUALITY AND NUMBER OF OBSERVATIONS AND ENHANCEMENTS OF THE

DATA ASSIMILATION METHOD.”

HIGH-IMPACT AND
EXTREME WEATHER

Forecasting System (AIFS; see ECMWF 50th anniversary paper on machine learning
(in preparation)) configuration gains around 0.35 days over the best physics-based
models in 2023-24, only marginally less than the model and data assimilation
improvements for the last decade.

In considering these changes, the rapid changes in forecast skill of the IFS in
2005-2007, 2015-2017 and 2018-2020 with respect to ERAS stand out. The main
contributor to the forecast skill gain for the latter change was the introduction

of continuous DA, which allowed for the ingestion of observations which arrived
after the first minimisation in subsequent minimisations in the outer-loop 4D-Var
configuration. Therefore, this gain can be attributed mainly to a change in DA
methodology, though there were a number of other changes in this period. In
2015-2017, the changes were a mix of model, most notably increased horizontal
resolution, and DA changes (and observation changes, but these would also
impact ERA5, whose skill also rose during this period). For the older period, it is
difficult now to attribute with high confidence, but a major change in background
error formulation (Fisher, 2005) was introduced in 2005 and may have contributed
to the large improvement seen in this period. Going further back, the transition
to variational assimilation and direct radiance assimilation resulted in the largest
changes to operational forecast scores at the end of the 1990s (see Figure 3 in
the ECMWEF 50th anniversary paper on Earth system modelling).

In addition to monitoring the impact of data assimilation developments and
improved observations on global scores, there have also been attempts to measure
progress for high-impact and extreme weather. This is harder to study objectively,
because by definition extreme events are rare and, therefore, it is challenging to test
changes in a statistically robust way. The assimilation of satellite observations has
repeatedly been shown to play a critical role in the accurate forecasting of individual
severe weather cases, most notably that of Hurricane Sandy in October 2012
(McNally et al., 2014). Tropical cyclones (TCs) have been studied, most recently by
Magnusson et al. (2025). They concluded that near TCs, observations are important
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for forecasts mainly up to one day ahead, with the dropsondes particularly helpful
to reduce central pressure errors. However, at longer lead times, it is the microwave
satellite radiances that are critical to the TC position, and also central pressure up
to two days ahead. It was also shown that the development of all-sky microwave
assimilation (see section on ‘Major data assimilation enhancements’ above

and Geer et al., 2018) is increasing the impact of microwave radiances further,
demonstrating that it is not just the observations, but the maturity of the data
assimilation method which is important, especially in areas with persistent cloud
cover such as TCs. Scatterometer observations were also shown to be of value,
with increasing impact as data thinning is reduced. However, other observation
types were not shown to have a strong impact on TC forecasts.

ECMWEF also engages with partners to examine the impact of observations on
forecasts of atmospheric river (AR) events (Lavers et al., 2024). These studies

have examined the impact of targeted observations on forecasts of AR events,
particularly through the Atmospheric River Reconnaissance (AR Recon) programme,
which involves ECMWF and its Member States. In particular, they explore the

value of field campaign dropsonde datasets, in the AR Recon seasons 2022/23

and 2023/24. These show where the dropsondes have value, which can be up to
four days’ lead time. ECMWF also played a pivotal role in supporting other field
campaign experiments, particularly through its involvement in the THORPEX (The
Observing System Research and Predictability Experiment) programme. ECMWF’s
contributions included providing targeted model runs and assimilating observations
from these campaigns to enhance weather prediction accuracy in polar regions.
ECMWEF participated in the Concordiasi project, with data from Concordiasi being
assimilated into ECMWF models, improving weather forecasts and reanalysis
efforts in polar regions as well as evaluation of satellite data over difficult surfaces,
particularly from the IASI on the MetOp-A satellite (Rabier et al., 2013).

Both ERA-Interim and ERA5 reanalysis datasets, produced by ECMWEF, rely on the
4D-Var system to integrate large volumes of observational data into a consistent,
long-term dataset. ERA-Interim (Dee at al., 2011), covering the years 1979 to 2019,
was based on an earlier version of 4D-Var with a 12-hour assimilation window and
a coarser spatial resolution of approximately 79 km. In contrast, ERA5, the
production of which was funded under the Copernicus programme, and covering
from 1950 to the present, benefits from a more advanced weak-constraint

4D-Var, a higher resolution of approximately 31 km, and hourly output, providing

a more detailed and accurate representation of atmospheric, land, and oceanic
conditions (Hersbach et al., 2020). ERA5 also assimilates a broader range of
satellite observations, including hyperspectral infrared and microwave radiances,
with improved bias correction and error representation techniques. These
enhancements result in a better depiction of stratospheric processes, and long-
term climate trends for screen-level parameters (Simmons et al., 2021). Through the
combination of state-of-the-art data assimilation and continuous improvements

in observational data usage, 4D-Var in ERA5 continues to enhance the accuracy
and reliability of climate reanalysis products, supporting a wide range of scientific,
policy and business applications, generating a wide user base, as described in the
ECMWEF 50th anniversary paper on Copernicus. ERA5 is also crucial for initialising
Al-based weather forecasting systems. It provides high-resolution, historical hourly
atmospheric data used to train and initialise Al models, including ECMWEF’s AIFS.
The AIFS leverages Graph Neural Networks (GNNs) trained on ERA5 and operational
analyses to learn atmospheric patterns and improve predictions. By using ERA5

as initial conditions, Al models generate accurate forecasts of surface weather

and extreme events which compete with forecasts from traditional models.



FUTURE DIRECTIONS
AND PROSPECTS -

Last but not least, the CAMS reanalysis (EAC4) also benefits from ECMWF’s
advanced data assimilation infrastructure by integrating a vast array of satellite

and in-situ observations into a consistent 20-year-long global dataset. This system
ensures high-quality atmospheric composition reanalysis, improving accuracy in
pollutants, greenhouse gases, and aerosols. Here also, the 4D-Var technique refines
temporal consistency. This reanalysis is used for computing climatologies, studying
trends, evaluating models, benchmarking other reanalyses, and most importantly,
serving as boundary conditions for regional models covering past periods. These
applications support policy-making and environmental monitoring efforts.

The development of ECMWF’s data assimilation (DA) system will continue to be
driven by the need for accurate initial conditions in Earth system modelling and
optimal use of present and future observations to improve forecasts and climate
data records. Over the next decade, the DA system will also support the training
and initialisation of ECMWF’s Artificial Intelligence Forecasting System (AIFS)
and national forecasting efforts via the Anemoi initiative (Dramsch et al., 2024),
consolidating ECMWEF’s collaborative efforts with its Member and Co-operating
States on this critical issue. The focus will expand beyond initial conditions,
using the DA system and observations to directly enhance forecast performance.

An important game changer in the next decade will be that Al and ML applications
in DA will continue to rapidly evolve. ECMWEF is already integrating ML to correct
systematic model errors dynamically, extending beyond the capabilities of weak-
constraint 4D-Var. Initial studies (Bonavita and Laloyaux, 2020) showed ML-based
corrections can improve forecasts significantly. Recent results (Farchi et al., 2025)
confirm forecasts based on this hybrid approach can match state-of-the-art data-
driven models while retaining physical realism.

B AN IMPORTANT GAME CHANGER IN THE NEXT DECADE WILL BE THE INCREASING
ROLE OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN RESHAPING THE
DATA ASSIMILATION LANDSCAPE.”

Machine learning also enhances hybrid observation modelling. As demonstrated

by Geer (2024a and 2024b), ML supplements physics-based modelling of complex
satellite observations, including radiative properties, hydrometeors, and surface
interactions. Additional applications include monitoring observation systems (Dahoui,
2023) and developing latent spaces for variational DA (Melinc and Zaplotnik, 2024).
These developments confirm ML's growing role in enhancing analysis accuracy and
forecast skill within mathematically robust DA methodologies.

Within this likely revolution, it remains certainly true that the 4D-Var assimilation
system (in a broad sense, and with all its peripheral components) will remain central
to NWP and atmospheric composition. Efforts will therefore continue to improve
observation and background error covariances while pushing computational
resolution limits, leveraging experience from DestinE (Sandu, 2024). Extending
assimilation windows will optimise performance and workflow efficiency, with
potential benefits for time-critical boundary conditions in regional modelling.

The forthcoming transition to a hybrid HPC system with central processing units
(CPUs) and graphical processing units (GPUs) will require code adaptation. Possible
avenues could be the enhancement of tangent linear and adjoint calculations using
machine-learned emulators to reduce computational costs in 4D-Var. The Ensemble
of Data Assimilations, another cost-intensive system, will also benefit from these
efficiency gains.
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A key priority is improving consistency and efficiency across Earth system
components, particularly through interface observations from satellites. The
methodology successfully applied to ocean and sea ice observations will be
expanded to land surfaces. Beyond initial conditions, DA will be used to learn
meteorology-dependent errors for machine-learning-based corrections in
medium-range forecasts, optimising model parametrizations, and training
data-driven neural network models of the atmosphere.

Copernicus Services (CAMS and C3S) will continue to benefit from DA
developments, and efforts to estimate emissions and surface fluxes of greenhouse
gases and pollutants will intensify, leveraging satellite data such as Sentinel-5P
for CH, and NOx. In the context of the Paris Agreement and the monitoring of CO,
emissions from space, the operational implementation is being prepared for the
Copernicus CO, Monitoring (CO2M) mission, set for launch in 2027. The climate
(ERAB) and atmospheric composition (EAC5) reanalyses will enter full production
within the next few years, integrating scientific advancements with automated
quality monitoring, while discussions on future reanalysis activities will begin,
emphasising data-driven forecasting applications.

Maximising observational data usage remains a top priority and requires a proactive
collaborative approach. Existing satellite observations will be assimilated in more
challenging environments, such as complex land/sea ice surfaces and cloudy
regions, in collaboration with EUMETSAT, ESA and Member and Co-operating
States. Assimilation spatial and temporal resolution will increase, leveraging
DestinE experience, and new methodologies will be developed to estimate spatial
error correlations crucial for 4D-Var and EDA. The coupled DA framework will
extract additional insights from observations at the interfaces between Earth
system components.

Infrastructure enhancements will ensure the rapid adoption of new satellite
observing systems. Early in the next decade, ECMWF aims for operational

use of data from the Meteosat Third Generation Imaging (MTG-I) satellite
Flexible Combined Imager (FCI) and Lightning Imager (LI) and from EarthCARE,
working closely with EUMETSAT and ESA. The Centre will continue supporting
EUMETSAT’s mission advisory groups for MTG-S and EPS-SG, while expanding
ESA collaborations through the DANTEX initiative (Bormann et al., 2025). Efficient
integration of newly launched continuity satellites from the US, China, and Japan
and evolving in-situ networks will maintain forecasting system performance.

ECMWEF will continue engaging with private sector observation providers,
particularly in radio occultation data, while working with EUMETSAT, ESA and
the US National Oceanic and Atmospheric Administration (NOAA) to validate and
acquire these datasets. Future Observing System Experiments and EDA impact
assessments will guide network planning, including optimised conventional
observation networks optimised as a result of the Systematic Observations
Financing Facility (SOFF) initiative of WMO. This exemplifies the increasingly
critical role of partnerships in the data assimilation strategy at ECMWF.



CONCLUSION

ECMWF has established itself as a global leader in data assimilation,
consistently pioneering methodologies that have significantly improved
numerical weather prediction. The transition from optimal interpolation to 4D-Var
has been instrumental in enhancing forecast accuracy and extending lead times.
The implementation of the Ensemble of Data Assimilations (EDA) has further
strengthened uncertainty representation, refining initial conditions for both
deterministic and ensemble forecasts. Advances in satellite data assimilation,
particularly the integration of all-sky and all-surface observations, have
maximised the use of spaceborne data, improving forecasts for extreme weather
events. Continuous developments in weak-constraint 4D-Var have addressed
systematic model errors, yielding more reliable analyses, especially in the
stratosphere and at the surface. The coupled data assimilation framework is
another milestone, promising enhanced Earth system modelling through the
simultaneous assimilation of atmospheric, oceanic, and land observations.

Crucially, ECMWF’s success is underpinned by the contributions of its Member
and Co-operating States and strong partnerships with national meteorological
services, space agencies, and research institutions. Collaborations with
EUMETSAT, ESA and other agencies have ensured optimal use of satellite
observations, while joint initiatives such as Copernicus as well as with

the WMO have expanded the impact of ECMWF’s advancements.

Looking ahead, ECMWF is at the forefront of integrating Al into data
assimilation, exploring ML-based corrections to model biases and advanced
observation handling. ECMWF is even pioneering radical research into producing
forecasts directly from observations (Alexe et al., 2024 and McNally et al., 2024),
essentially incorporating the DA step in a fully end-to-end Al-based forecasting
system (called AI-DOP). The next decade will see increasing reliance on hybrid
CPU-GPU architectures to optimise computational efficiency, ensuring that
advanced DA techniques remain viable at higher resolutions. ECMWF’s expertise
will continue to shape future reanalysis products such as ERAG, reinforcing its
role in climate monitoring and forecasting.

The Centre’s commitment to international collaboration, particularly through its
Member and Co-operating States and strategic partnerships, remains essential
for optimising global observing networks. Additionally, ongoing research into
continuous data assimilation and extended-window DA will further refine forecast
initialisation, particularly for fast-evolving weather systems. With the impending
launch of next-generation satellites and increased observational capabilities,
ECMWF is well positioned to harness new data sources for even greater forecast
improvements. As numerical weather prediction enters the Al era, ECMWF’s data
assimilation strategy ensures that both traditional physics-based models and
emerging Al-driven approaches benefit from the most accurate initial conditions.
By maintaining its focus on accuracy, efficiency, and scientific rigour, ECMWF is
well positioned to define the next chapter in data assimilation and Earth system
prediction, working hand in hand with its partners to push the boundaries of
meteorological science.

CONTRIBUTORS ECMWEF would like to thank the contributors to this paper:

Jean-Noél Thépaut, Massimo Bonavita, Niels Bormann,
Matthew Chantry, Stephen English, Alan Geer and Tony McNally.

21



REFERENCES -

22

Alexe, M., E. Boucher, P. Lean, E. Pinnington,
P. Laloyaux, A. McNally, S. Lang, M.
Chantry, C. Burrows, M. Chrust, F. Pinault,

E. Villeneuve, N. Bormann & S. Healy, 2024:
GraphDOP: Towards skilful data-driven
medium-range weather forecasts learnt

and initialised directly from observations.
arXiv e-prints, arXiv:2412.15687.
https://doi.org/10.48550/arXiv.2412.15687

Andersson, E., A. Hollingsworth, G. Kelly,
P. Lénnberg, J. Pailleux & Z. Zhang, 1991:
Global observing system experiments on
operational statistical retrievals of satellite
sounding data. Mon. Wea. Rev., 119,
1851-1865. https://doi.org/10.1175/1520-
0493(1991)119<1851:GOSEOQ0>2.0.CO;2

Andersson, E., J. Pailleux., J.-N. Thépaut,
J. R. Eyre, A. P. McNally, G. A. Kelly &

P. Courtier, 1994: Use of cloud-cleared
radiances in three/four-dimensional

variational data assimilation. Q.J.R. Meteorol.

Soc., 120, 627-653.
https://doi.org/10.1002/qj.49712051707

Bauer, P., A. Thorpe & G. Brunet, 2015:
The quiet revolution of numerical weather
prediction. Nature, 525, 47-55.
https://doi.org/10.1038/nature14956

Bonavita, M., L. Isaksen & E. H6Im, 2012:
On the use of EDA background error
variances in the ECMWF 4D-Var. ECMWF
Technical Memorandum No. 664.
https://doi.org/10.21957/3msfrh5zm

Bonavita, M., E.HOIm, L. Isaksen & M. Fisher,
2016: The evolution of the ECMWF hybrid
data assimilation system. Q.J.R. Meteorol.
Soc., 142, 287-303.
https://doi.org/10.1002/qj.2652

Bonavita, M., Y. Trémolet, E. H6Im, S.
Lang, M. Chrust, M. Janiskova, P. Lopez,
P. Laloyaux, P. de Rosnay, M. Fisher, M.
Hamrud & S. English, 2017: A strategy
for data assimilation. ECMWF Technical
Memorandum No. 800.
https://doi.org/10.21957/tx1epjd2p

Bonavita, M., P. Lean & E. H6Im, 2018:
Nonlinear effects in 4D-Var. Nonlin.
Processes Geophys., 25, 713-729.
https://doi.org/10.5194/npg-25-713-2018

Bonavita, M. & P. Laloyaux, 2020: Machine
learning for model error inference and
correction. Journal of Advances in Modeling
Earth Systems, 12, e2020MS002232.
https://doi.org/10.1029/2020MS002232

Bormann, N., P. de Rosnay, S. Healy, H. Zuo,
S. E. English & F. Catapan, 2025: ECMWF

and ESA start project to better exploit Earth
system satellite data. ECMWF Newsletter No.
182, 10-12.
https://doi.org/10.21957/m32jp51ad6

Buizza, R., M. Leutbecher & L. Isaksen, 2008:
Potential use of an ensemble of analyses in
the ECMWF Ensemble Prediction System.
Q.J.R. Meteorol. Soc., 134, 2051-2066.
https://doi.org/10.1002/qj.346

Cardinali, C., 2009: Monitoring the
observation impact of the short-range
forecast. Q.J.R. Meteorol. Soc., 135,
239-250. https://doi.org/10.1002/qj.366

Courtier, P., J.-N. Thépaut & A.
Hollingsworth, 1994: A strategy for
operational implementation of 4D-Var, using
an incremental approach. Q.J.R. Meteorol.
Soc., 120, 1367-1387.
https://doi.org/10.1002/qj.49712051912

Dahoui, M., L. Isaksen & G. Radnoti, 2017:
Assessing the impact of observations using
observation-minus-forecast residuals.
ECMWEF Newsletter No. 152, 27-31.
https://doi.org/10.21957/51j3sa

Dahoui, M., 2023: Use of machine learning
for the detection and classification of
observation anomalies. ECMWF Newsletter
No. 174, 23-27.
https://doi.org/10.21957/n64md0xa5d

Dee, D. P., S. M. Uppala, A. J. Simmons, P.
Berrisford, P. Poli, S. Kobayashi, U. Andrae,
M. A. Balmaseda, G. Balsamo, P. Bauer, P.
Bechtold, A. C. M. Beljaars, L. van de Berg,
J. Bidlot, N. Bormann, C. Delsol, R. Dragani,
M. Fuentes, A. J. Geer, L. Haimberger, S. B.
Healy, H. Hersbach, E. V. HoIm, L. Isaksen,
P. Kallberg, M. Kohler, M. Matricardi, A. P.
McNally, B. M. Monge-Sanz, J.-J. Morcrette,
B.-K. Park, C. Peubey, P. de Rosnay, C.
Tavolato, J.-N. Thépaut & F. Vitart, 2011: The
ERA-Interim reanalysis: configuration and
performance of the data assimilation system.
Q.J.R. Meteorol. Soc., 137, 553-597.
https://doi.org/10.1002/q;.828

de Rosnay, P., M. Drusch, D. Vasiljevic, G.
Balsamo, C. Albergel & L. Isaksen: 2013:

A simplified Extended Kalman Filter for the
global operational soil moisture analysis
at ECMWEF. Q.J.R. Meteorol. Soc., 139,
1199-1213. https://doi.org/10.1002/qj.2023

de Rosnay et al., 2022: Coupled data
assimilation at ECMWEF: current status,
challenges and future developments.
Q.J.R. Meteorol. Soc., 148, 2672-2702.
https://doi.org/10.1002/qj.4330



https://doi.org/10.1175/1520-0493(1991)119<1851:GOSEOO>2.0.CO;2
https://doi.org/10.1175/1520-0493(1991)119<1851:GOSEOO>2.0.CO;2

Dramsch, J., B. Raoult, M. Chantry, T. Garcia,
L. Denby, F. Prill, N. Sokka, A. Vocino, J.
Wijnands, T. Nipen, C. Osuna, S. Akodad, M.
Van Ginderachter, D. Van den Bleeken, 2024:
Introducing Anemoi: a new collaborative
framework for ML weather forecasting.
ECMWEF Newletter No. 181, 6-8. https:/
www.ecmwf.int/en/newsletter/181/news/
introducing-anemoi-new-collaborative-
framework-ml-weather-forecasting

Eyre, J. R., 1989: Inversion of cloudy satellite
sounding radiances by nonlinear optimal
estimation. I: Theory and simulation for
TOVS. Q.J.R. Meteorol. Soc., 115, 1001-1026.
https://doi.org/10.1002/qj.49711548902

Eyre, J.R., S.J. English & M. Forsythe, 2020:
Assimilation of satellite data in numerical
weather prediction. Part |: The early years.
Q.J.R. Meteorol. Soc., 146, 49-68.
https://doi.org/10.1002/qj.3654

Farchi, A., M. Chrust, M. Bocquet & M.
Bonavita, 2025: Development of an offline
and online hybrid model for the Integrated
Forecasting System. Q.J.R. Meteorol. Soc.,
e€4934. https://doi.org/10.1002/qj.4934

Fielding, M., M. Janiskova, S. Mason, R.
Hogan, W. McLean & A. Benedetti, 2025:
EarthCARE data begin to make an impact.
ECMWF Newsletter No. 183, in preparation.

Fisher, M., 2005: “Wavelet” Jb — A new way
to model the statistics of background errors.
ECMWF Newsletter No. 106, 23-28.
https://doi.org/10.21957/ef5601ak43

Geer, A. J., K. Lonitz, P. Weston, M.
Kazumori, K. Okamoto, Y. Zhu, E. H. Liu,

A. Collard, W. Bell, S. Migliorini, P. Chambon,
N. Fourrié, M.-J. Kim, C. Képken-Watts

& C. Schraff, 2018: All-sky satellite data
assimilation at operational weather
forecasting centres. Q.J.R. Meteorol.

Soc., 144, 1191-1217.
https://doi.org/10.1002/qj.3202

Geer, A. J., S. Migliorini & M. Matricardi,
2019: All-sky assimilation of infrared
radiances sensitive to mid- and upper-
tropospheric moisture and cloud. Atmos.
Meas. Tech., 12, 4903-4929. https://doi.
org/10.5194/amt-12-4903-2019

Geer, A. J., 2024a: Combining machine
learning and data assimilation to estimate
sea ice concentration. ECMWF Newsletter
No. 177, 14-21.
https://doi.org/10.21957/agh93vs26

Geer, A. J., 2024b: Simultaneous inference
of sea ice state and surface emissivity model

using machine learning and data assimilation.
Journal of Advances in Modeling Earth
Systems, 16, €2023MS004080. https://doi.
org/10.1029/2023MS004080

Healy, S., N. Bormann & K. Lean, 2019:
Operational assimilation of Metop-C data.
ECMWF Newsletter No. 159, 3-5. https:/
www.ecmwf.int/en/newsletter/159/news/
operational-assimilation-metop-c-data

Healy, S., N. Bormann, A. Geer, E. HéIm,
B. Ingleby, K. Lean, K. Lonitz & C. Lupu,
2022: Methods for assessing the impact
of current and future components of the
global observing system. ECMWF
Technical Memorandum No. 916.
https://doi.org/10.21957/2f240fe55f

Hersbach, H., B. Bell, P. Berrisford, S.
Hirahara, A. Horanyi, J. Muiioz-Sabater, J.
Nicolas, C. Peubey, R. Radu, D. Schepers, A.
Simmons, C. Soci, S. Abdalla, X. Abellan, G.
Balsamo, P. Bechtold, G. Biavati, J. Bidlot,
M. Bonavita, G. D. Chiara, P. Dahigren,

D. Dee, M. Diamantakis, R. Dragani, J.
Flemming, R. Forbes, M. Fuentes, A. Geer,

L. Haimberger, S. Healy, R. J. Hogan, E. V.
Holm, M. Janiskova, S. Keeley, P. Laloyaux,
P. Lopez, G. Radnoti, P. de Rosnay, |. Rozum,
F. Vamborg, S. Villaume & J.-N. Thépaut,
2020: The ERAS5 global reanalysis. Q.R.J.
Meteorol. Soc., 146, 1999-2049.
https://doi.org/10.1002/qj.3803

HoéIm, E., M. Bonavita & S. Lang, 2022: Soft
re-centring Ensemble of Data Assimilations,
ECMWF Newsletter No. 171, 6-8. https:/
www.ecmwf.int/en/newsletter/171/news/soft-
re-centring-ensemble-data-assimilations

Isaksen, L., M. Bonavita, R. Buizza, M. Fisher,
J. Haseler, M. Leutbecher & L. Raynaud,
2010: Ensemble of Data Assimilations at
ECMWF. ECMWEF Technical Memorandum
No. 636. https://doi.org/10.21957/obke4k60

Janiskova, M., J.-F. Mahfouf, J.-J. Morcrette
& F. Chevallier, 2002: Linearized radiation
and cloud schemes in the ECMWF model:
Development and evaluation. Q.J.R.
Meteorol. Soc., 128, 1505-1527.
https://doi.org/10.1002/qgj.200212858306

Janiskova, M. & P. Lopez, 2013: Linearized
physics for data assimilation at ECMWF.
In: Park, S., L. Xu (eds) Data Assimilation
for Atmospheric, Ocean and Hydrological
Applications (Vol. Il). Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-
642-35088-7_11

Laloyaux, P., M. Bonavita, M. Dahoui
& E. HéIm, 2020: Towards an unbiased

stratospheric analysis. |, 146, 2392-2409.
https://doi.org/10.1002/qj.3798

Lang, S., E. H6Im, M. Bonavita & Y. Trémolet,
2019. A 50-member Ensemble of Data
Assimilations. ECMWF Newsletter No.

158, 27-29. https:/www.ecmwf.int/en/
newsletter/158/meteorology/50-member-
ensemble-data-assimilations

Lavers, D. A. et al., 2024: Advancing
Atmospheric River Science and Inspiring
Future Development of the Atmospheric
River Reconnaissance Program. Bull. Amer.
Meteor. Soc., 105, E75-E83. https://doi.
org/10.1175/BAMS-D-23-0278.1

Lean, P., M. Bonavita, E. H6Im et al., 2019:
Continuous data assimilation for the IFS.
ECMWF Newsletter No. 158, 21-26.
https://doi.org/10.21957/9pl|5fc37it

Lorenc, A. C., 1981: A global three-
dimensional multivariate statistical
interpolation scheme. Mon. Wea. Rev.,
109, 701-721. https://doi.org/10.1175/1520-
0493(1981)109<0701:AGTDMS>2.0.CO;2

Magnusson, L. & E. Kéllén, 2013: Factors
Influencing Skill Improvements in the
ECMWEF Forecasting System. Mon.

Wea. Rev., 141, 3142-3153,
https://doi.org/10.1175/MWR-D-12-00318.1

Magnusson, L., S.J. Majumdar, M.L. Dahoui,
N. Bormann, M. Bonavita, P.A. Browne et al.,
2025: The role of observations in ECMWF
tropical cyclone initialisation and forecasting.
Q.J.R. Meteorol. Soc., 1-23.
https://doi.org/10.1002/qj.4924

Mahfouf, J.-F. & F. Rabier, 2000: The
ECMWEF operational implementation of
four-dimensional variational assimilation. II:
Experimental results with improved physics.
Q.J.R. Meteorol. Soc., 126(564), 1171-1190.
https://doi.org/10.1002/qj.49712656416

McNally, T., M. Bonavita & J. Thépaut,
2014: The Role of Satellite Data in the
Forecasting of Hurricane Sandy. Mon.
Wea. Rev., 142, 634-646.
https://doi.org/10.1175/MWR-D-13-00170.1

McNally, T., C. Lessig, P. Lean, M. Chantry,
M. Alexe & S. Lang, 2024: Red sky at night...
producing weather forecasts directly from
observations. ECMWF Newsletter No. 178,
30-34. https://doi.org/10.21957/tmc81jo4c7

Melinc, B. & Z. Zaplotnik, 2024: 3D-Var data
assimilation using a variational autoencoder.
Q.J.R. Meteorol. Soc., 150(761), 2273-2295.
https://doi.org/10.1002/qj.4708

23



Pailleux, J., J.-F. Geleyn, M. Hamrud,

P. Courtier, J.-N. Thépaut, F. Rabier, E.
Andersson, D. M. Burridge, A. J. Simmons,
D. Salmond, R. El Khatib & C. Fischer, 2014:
Twenty-five years of IFS/ARPEGE. ECMWF
Newsletter No. 141, 22-30.
https://doi.org/10.21957/ftubmfvy

Rabier, F., H. Jarvinen, E. Klinker, J.-F.
Mahfouf & A. Simmons, 2000: The ECMWF
operational implementation of four-
dimensional variational assimilation. I:
Experimental results with simplified physics.
Q.J.R. Meteorol. Soc., 126, 1143-1170.
https://doi.org/10.1002/qj.49712656415

Rabier, F., A. Bouchard, E. Brun, A.
Doerenbecher, S. Guedj, V. Guidard, F.
Karbou, V.-H. Peuch, L. E. Amraoui, D.
Puech, C. Genthon, G. Picard, M. Town,
A. Hertzog, F. Vial, P. Cocquerez, S. Cohn,
T. Hock, H. Cole, J. Fox, D. Parsons, J.
Powers, K. Romberg, J. VanAndel, T.
Deshler, J. Mercer, J. Haase, L. Avallone,
L. Kalnajs, C. R. Mechoso, A. Tangborn,
A. Pellegrini, Y. Frenot, A. McNally, J.-N.
Thépaut, G. Balsamo and P. Steinle, 2013:
The Concordiasi infield Experiment over
Antarctica: First Results from Innovative
Atmospheric Measurements. Bull. Amer.
Meteor. Soc., 94, ES17-ES20. https://doi.
org/10.1175/BAMS-D-12-00005.1

Raynaud, L., L. Berre & G. Desroziers,
2008: Spatial averaging of ensemble-based
background-error variances. Q.J.R.
Meteorol. Soc., 134, 1003-1014.
https://doi.org/10.1002/qj.245

Reale, A., D. Gray, M. Chalfant, A. Swaroop
& A. Nappi, 1986: Higher resolution
operational satellite retrievals. In Conference
on Satellite Meteorology/Remote Sensing
and Applications, 2nd, Williamsburg, VA

(pp- 16-19).

Sandu, |., 2024: Destination Earth’s digital
twins and Digital Twin Engine — state of play.
ECMWF Newsletter No. 180, 22-29.
https://doi.org/10.21957/is1fc736jx

Simmons, A. J., H. Hersbach, J. Muhoz-
Sabater, J. Nicolas, F. Vamborg, P. Berrisford,
P. de Rosnay, K. Willett & J. Woollen, 2021:
Low frequency variability and trends in
surface air temperature and humidity from
ERA5 and other datasets. ECMWF

Technical Memorandum No. 881.
https://doi.org/10.21957/ly5vbtbfd

Temperton, C. & D. L. Williamson, 1981:
Normal Mode Initialization for a Multilevel
Grid-Point Model. Part I: Linear Aspects.
Mon. Wea. Rev., 109, 729-743.

24

https://doi.org/10.1175/1520-
0493(1981)109<0729:NMIFAM>2.0.CO;2

Thépaut, J.-N., P. Courtier, G. Belaud &

G. Lemaitre, 1996: Dynamical structure
functions in a four-dimensional variational
assimilation: A case study. Q.J.R. Meteorol.
Soc., 122, 535-561.
https://doi.org/10.1002/qj.49712253012

Trémolet, Y., 2006: Accounting for an
imperfect model in 4D-Var. Q.J.R.
Meteorol. Soc., 132, 2483-2504.
https://doi.org/10.1256/qj.05.224

© Copyright 2025

European Centre for Medium Range
Weather Forecasts, Shinfield Park,
Reading, RG2 9AX, UK

Literary and scientific copyrights belong
to ECMWEF and are reserved in all countries.

The content of this document is available for
use under a Creative Commons Attribution
4.0 International Public License. See the
terms at https://creativecommons.org/
licenses/by/4.0/.

The information within this publication is
given in good faith and considered to be
true, but ECMWEF accepts no liability for
error or omission or for loss or damage
arising from its use.



Find out more about ECMWEF at 50

I N
e N N N N N N I T I W N NN N N N N N N N N
S N N N N T I Y N N NP NN S S N N N N N N SR NN
% N N N N N N 1 I S N N N N N ¥ N N N N N N N N N N N N X
S N N N NI N N N N N N N N N Y 2 NI N N N NI N S N N N N NP NP N
I N NP PN N NI NP NN N N N N NN
o N N N S o N N N e N N N NN
EEE T NP T NI NP NP N NI NI NI NN
T N N I NI NI N T S N N
E N T N N N N N N N NN P B+
E N N N N N I T S N N N NP N NI N NP N N N NP NP
e N N N N N N N N NI N N N N 2 I N N N N e N N N
E N N N N N N N N N N N S N N N E N N NN N Y N N
N NN PN NI NP NP NP NI NP PN N N NP NP
PN N N N N N N N N N N N T T e N N N
N N N N N NI N N E N N N N
E N N N N N NN F N N NP NP
N N NN I NN e T N N
SNE NN 1 N S N NN I N e I N N
NP NP NN N N N NN T NI NP NP N F NI NP NP PN
2 N N N NN TN N N N S I N NN N N N NN
F N N NN PN NI NP PN P N NP PN N N N N PN
N N N N N N N N N N N S S N N E N N N N N N N N N N N N NN
I N N N N N N N N N N MU NN I N S N N N N N N N N X
S N N N N N I N S N NP N S N N N N N N N
N 7 N N N N N N N N N N N N N N N
N N N N N N

THROUGH COLLABORATION S ECMWF |50


https://www.ecmwf.int/en/about/media-centre/stories/anniversary



