
www.ecmwf.int/en/about/media-centre/media-resources

METEOROLOGYCOMPUTING

doi: 10.21957/m5gl27f96m

from Newsletter Number 182 – Winter 2024/25

ECMWF Sites:
websites as a service

COMPUTING

2	 doi: 10.21957/m5gl27f96m

Manuel Martins	 ECMWF Sites: websites as a service

This article appeared in the Computing section of ECMWF Newsletter No. 182 – Winter 2024/25, pp. 33–41

ECMWF Sites: websites as a service
Manuel Martins

ECMWF’s web presence is pivotal not only in disseminating its forecast products, but in collaborating
and communicating research findings to a diverse audience, including scientists, policymakers, and the
general public.

ECMWF Sites is a service that enables ECMWF staff and visiting scientists to effortlessly create and
publish websites, providing a basis for collaboration, communication and fast prototyping. It ensures
appropriate control and communication about the quality of ECMWF websites or publications outside
our main website, www.ecmwf.int, meeting a minimum quality bar for our web presence. ECMWF Sites
provides mainly private websites for use by our scientists, but websites can also be made publicly
available, subject to an approval process.

The platform is built using Kubernetes, an open-source system for automating the deployment, scaling,
and management of containerised applications (https://kubernetes.io). It leverages the use of the
Kubernetes operator pattern to manage the lifecycle of a website. The platform and all websites are
hosted in the ECMWF data centre, running in Kubernetes on a dedicated virtual infrastructure.

This article presents the service and provides an overview of the platform’s architecture along with
insights on the past, present and future of the platform.

Background and inception
At ECMWF, collaboration is ingrained in our operational framework: scientists, researchers, and engineers
work together, leveraging their diverse backgrounds to improve weather forecasting models and climate
prediction tools. ECMWF actively collaborates with external entities, including national meteorological
services, academic institutions, and other international organisations. Web‑based collaboration tools
play a crucial role in facilitating communication and cooperation. These platforms enable real-time data
sharing, collaborative editing of documents, and the ability to provide feedback on ongoing projects,
regardless of geographical location.

ECMWF Sites is a web platform that was planned with this in mind. It provides a simple way for users to
create a space, manage content and share it with others, internally or externally. It was initially designed
as an HTTP hosting service for static content, with simple and straightforward requirements:

•	 enough disk space

•	 easy content management

•	 accessible with or without authentication.

These requirements were gathered throughout the years from real use cases. Some simple solutions were
previously available, but they were complex to use, creating confusion and frustration for users. These
solutions also did not reflect a modern service-oriented way of working for users.

Designed and released to pre-production by the end of 2019, as a proof of concept on Kubernetes native
applications, ECMWF Sites served as the experimental model for a controlled service fully integrated with
Kubernetes. This offered a solid understanding of the platform and provided insights into how the team
could leverage the Kubernetes platform at ECMWF, running production containers at scale.

The use of containers for production services was first implemented at ECMWF in mid‑2018, with the
re‑architecture of the Atlassian suite of products. These products were deployed in Docker containers,
on dedicated virtual machine infrastructure, managed by systemd and provisioned with Puppet.
We soon realised the need for a container orchestration platform. By the beginning of 2019, ECMWF was
running the first production Kubernetes cluster and started to migrate small applications. A huge shift in
technologies happened during this period, which meant some effort to ensure a smooth transition for all
teams using the infrastructure.

ECMWF Sites was then released to production in April 2020, with less than 1,000 lines of Python code
and around 25 websites published.

http://www.ecmwf.int
https://kubernetes.io

doi: 10.21957/m5gl27f96m	 3

Manuel Martins	 ECMWF Sites: websites as a service

From the outset, the potential of the service was evident. Soon after, user feedback brought many
additional requirements to light. The service became more customisable to the point that users can
now build and run their own containerised applications as part of a website. Some of the requirements
introduced later are:

•	 content retention control

•	 web analytics and reporting

•	 multi-factor authentication

•	 support for caching, web robots and cross-origin resource sharing (CORS)

•	 running custom applications (containers).

Almost five years later, ECMWF Sites is about 10,000 lines of code, and it is written in Python, Golang
and Lua. At the time of writing, it hosts around 300 websites (see Figure 1).

2019 2020 2021 2022 2023 2024

Sites created Total number

4 20 17 91 90 804
24

41

132

222

302

0

50

100

150

200

250

300

350

Figure 1  This chart shows the evolution of websites created and their overall number by the end of 2024.

Overview of the service
ECMWF Sites is a web platform accessible through https://sites.ecmwf.int. Accessing this sends the user
to the Sites Hub, which serves as the central entry point, providing a list of all available websites, along
with their details and URLs. Each website is part of a ‘space’, typically the user’s username, and has a
unique name within that space. Users can view and configure their websites through the Hub’s site view
page (accessible through the first column on https://sites.ecmwf.int/hub/list/all/). Websites are accessible
via specific URLs, and administrators can manage all content through a web-based file browser or
programmatically via a Representational State Transfer (REST) application programming interface (API).

Websites can be either private or public. Owners of private websites can share access with specific
users or groups, who must authenticate to view the content. In addition to the web interface, users can
interact with the platform using a Python Software Development Kit (SDK) or a Command Line Interface
(CLI). A unique authentication token is generated for each website, enabling secure API interactions for
automated tasks, without linking to specific user credentials.

https://sites.ecmwf.int
https://sites.ecmwf.int/hub/list/all/

4	 doi: 10.21957/m5gl27f96m

Manuel Martins	 ECMWF Sites: websites as a service

Use cases
The service is being used for many different purposes by users with different backgrounds. Figures 2
and 3 show the distribution of websites per type and use case.

Verification and validation assessment plots are a very common use case of websites. The Iver private
websites are used by scientists and researchers to access Iver verification tool results. This is done
to assess the improvement their research provides over the current version of ECMWF’s Integrated
Forecasting System (IFS). During new IFS Cycle implementations, these websites are responsible for more
than 1 TB of ingress traffic and 0.5 TB of egress traffic, per week. As ECMWF scientist Alan Geer describes:

	 “ECMWF Sites has revolutionised the way we share diagnostic plots with ECMWF scientists both
within and outside ECMWF premises. My example is the Iver forecast verification tool, which has
around 100 users across ECMWF and is one of the main ways in which the research department
assesses the impact of upgrades to the IFS. When comparing the forecast and analysis quality of two
experiments, Iver generates at least 14,000 plot panels, and these are summarised in a web page.
Scientists run lots of experiments, meaning possibly hundreds of separate web pages. In the past,

Documen-
tation, 11Iver verification tool, 95

Quaver verification
scores, 20

Ver0d verification tool, 20

Intranet, 8

Charts, 4Others, 144

Figure 2  This chart shows the distribution of websites per use case at the end of 2024.

Figure 3  This chart shows the distribution of
websites per type (private or public) at the end
of 2024.

12%

86%

2%

Public Private Private (custom application)

doi: 10.21957/m5gl27f96m	 5

Manuel Martins	 ECMWF Sites: websites as a service

these web pages were only accessible within ECMWF, but now they are also accessible externally.
To achieve this, each Iver user’s workstation had to be turned into a mini web server to share the plots
with others. Sites now deals with all of this and allows us to share these plots easily both inside and
outside the organisation. It is comfortably hosting as many as 100 million plots from Iver users alone.”

ECMWF Sites has been used as a fast-prototyping platform, allowing seamless integration with other
web services. With its API-driven model, it allows easy uploads and it is often used as a repository for
data, images, JavaScript and other static content, allowing other services to make these accessible,
mainly to internal staff. As Helen Setchell, senior content architect and user experience coordinator at
ECMWF, describes:

	 “As ECMWF’s senior content architect and UX coordinator, I work with a variety of platforms to
support our online presence, and while they each serve their purpose, they come with certain
limitations – whether it’s in development flexibility or optimising user experience. That’s where Sites
has made a real difference for ECMWF. We now have the freedom to create custom websites and
experimental pages that break free from the constraints of our traditional platforms. It’s given us a
way to innovate without worrying about disrupting our core systems or forcing those platforms to
do things they weren’t designed for. One of the standout benefits is the ability to create solutions to
share content seamlessly between platforms. This has allowed us to design user interfaces that truly
cater to our audience’s needs, instead of bending to the limitations of the platforms we use. Overall,
ECMWF Sites has been a game-changer, offering the flexibility and control we’ve been looking for.”

The ECMWF Sites platform supports many other public-facing web portals, such as https://pulse.climate.
copernicus.eu, which uses data and charts constantly updated through the API. Furthermore, it is used to
distribute monthly communication bulletins through media channels. As Julien Nicolas, a climate scientist
at ECMWF, describes:

	 “Since 2023, ECMWF Sites has emerged as an indispensable tool for the C3S Climate Intelligence
(CI) team, serving two key functions: file sharing with users external to ECMWF and back-end storage
for web applications. For its monthly Climate Bulletins, the CI team relies on Sites to share a variety
of graphics and data files. These are initially shared with web content collaborators (pre‑publication)
and later with journalists (post-publication). Additionally, each report includes embargoed content,
for which access is securely restricted via password protection. ECMWF Sites has significantly
streamlined this entire process, effectively replacing Dropbox, which was previously in use.
The second major application of sites within the CI team is file storage for web applications. A notable
example is Climate Pulse, where all maps, CSV, and JSON files are stored and updated daily using
the sites API, driven by an ecFlow suite. This ensures that data is kept up to date seamlessly. The CI
team’s overall experience with ECMWF Sites has been excellent. Its combination of a file browser and
API offers great flexibility, supporting both manual and automated workflows. Based on our feedback,
several enhancements were introduced, making the platform even more user friendly.”

Custom Applications is a feature introduced in early 2022 and allows users to run a Docker container as
part of their website. This is useful when users want to run some processing as part of their website, or
access internal data from other systems. As Martin Janousek, an analyst at ECMWF, describes:

	 “I very much welcomed the implementation of ECMWF Sites as I had been calling for some sort of
internal HTTP server to present various raw HTML documents since the early 2010s. Before ECMWF
Sites, sharing of HTML documents was rather cumbersome. For example, one important product
of every new model cycle evaluation, the scorecard, made as an HTML file with included JavaScript
objects, was distributed either as an email attachment or put to a shared directory. That was rather
impractical as staff started to work increasingly remotely. With ECMWF Sites a scorecard is shared as
just a URL, conveniently accessible in users’ local browsers. ECMWF Sites became even more useful
when it offered an option to create dynamic applications. Step-by‑step instructions and support from
the team on how to build, test and deploy a docker container to ECMWF Sites were very helpful. It is
also very important that, although website content can be conveniently accessed from anywhere,
editing is managed by ECMWF Sites, limiting it to internal staff. I consider ECMWF Sites to be a
key asset of ECMWF’s IT systems, and I use it as a go‑to solution for the implementation of future
applications, in particular for data visualisation and access.”

A wide range of websites is available and can be accessed at https://sites.ecmwf.int/hub/list/all/.

https://pulse.climate.copernicus.eu
https://pulse.climate.copernicus.eu
https://sites.ecmwf.int/hub/list/all/

6	 doi: 10.21957/m5gl27f96m

Manuel Martins	 ECMWF Sites: websites as a service

Architecture
This section details the architecture of the main components of the system. With reference to the
schematics shown in Figure 4, the system is divided into four main components: Hub, Operator, Site,
and Jobs.

Network File System
Storage

Network File System
Storage

read / writeuses

Hub uses

read

read / write

invalidate

events

Operator

write

uses

uses

Jobs

Site

read / write

uses uses

ingress ingress

Redis Cache

Notifications

Jira
Email

 OpenIDConnect

Kubernetes
Server API

Logging & Analytics

Splunk Enterprise

Figure 4  This diagram shows the high-level architecture of the platform with all the interactions between internal
and external components.

The Hub component allows users to interact with the system through a web interface or a REST API.
It is essentially an enhanced proxy to the Kubernetes API server. It aggregates all the websites from all
the users and allows users not only to explore the available websites, but to manage their own websites.
Users can also access all sorts of information, such as configurations, server logs and web analytics.
The Hub is open to all users with an ECMWF account, but only ECMWF staff and visiting scientists are
configured to create websites. The Sites Hub is accessible through:

•	 Web UI (https://sites.ecmwf.int/hub/)

•	 REST API (https://sites.ecmwf.int/hub/api/v1/spec/).

The Operator component is the most important of the four. This component follows the operator pattern,
which is a design approach that extends the functionality of Kubernetes. It does so by automating the
management of complex applications, acting as a custom controller encapsulating the operational
knowledge needed to deploy, manage, and scale the applications. Specifically, this component is
responsible for ensuring the desired state of each individual website. A CRD (Custom Resource Definition)
in Kubernetes is a way to extend the Kubernetes API by defining custom resources. The Sites Operator

https://sites.ecmwf.int/hub/
https://sites.ecmwf.int/hub/api/v1/spec/

doi: 10.21957/m5gl27f96m	 7

Manuel Martins	 ECMWF Sites: websites as a service

takes these Site CRD events and makes sure the necessary components composing a website are
aligned with the CRD configuration. These resources allow the management of new types of objects,
specific to an application or infrastructure needs, just like the built‑in Kubernetes objects (like Pods,
Services, etc.). Figure 5 shows an example of a Site CRD object.

Figure 5  A sample Site CRD object definition.

The Site component is essentially a set of built‑in Kubernetes objects that, when composed, will host and
expose an individual website. These objects are specified by an individual Site CRD, and its lifecycle is
managed by the Sites Operator. The Kubernetes objects that compose a website are:

1.	 One StatefulSet running four container applications, or five when users specify a custom application,
where each of these applications is responsible for a specific task:

a.	 Oauth2 Proxy – responsible for the authentication part and integrated with ECMWF’s authentication
system. Will ensure users are logged in on private websites.

b.	Nginx Proxy (OpenResty) – responsible for proxying requests accordingly and serving files as part
of the web server. It is responsible for the authorisation as well, ensuring only configured users can
access private websites.

c.	 Admin File Browser – this is the administration File Browser, which allows administrators to manage
website contents.

d.	Admin REST API – this is the administration REST API, which also allows administrators to manage
website contents.

e.	 Custom Application – if users specified their own application to run as part of the website, then this
will be served as the main application. It will not replace the Nginx Proxy. Instead, it will be proxied
by the Nginx Proxy.

2.	 Two ConfigMaps, one with the global website configurations as environment variables and another
with configuration files.

3.	 One Secret containing sensitive information to be used for authentication and authorisation purposes.

8	 doi: 10.21957/m5gl27f96m

Manuel Martins	 ECMWF Sites: websites as a service

4.	 One PersistentVolumeClaim with the storage amount requested.

5.	 One Ingress to access the website through the main domain on a specific path: https://sites.ecmwf.int/
space/name/

The Jobs component is composed by a set of packages to execute global administrative tasks such as:
configurations backup, web analytics pre‑loading, website storage quota, and retention date expiration
notifications. These are essentially CronJobs running on intervals on the system.

ECMWF Sites is integrated with a few other systems to provide some of its functionality.

•	 All the components that are accessible to users, Site and Hub, use OpenIDConnect for authentication
and authorisation.

•	 Network File System (NFS) volumes from TrueNAS are used as storage, and each individual website
has its own volume.

•	 Redis is used for caching the Hub data, allowing users to interact with the system without overloading
the Kubernetes Server API.

•	 Splunk is used for ingestion and extraction of log information, which is then used to produce web analytics.

•	 Jira and Email are used for notifications, such as when a website retention date expires, or a website
storage is almost full, or to request access to a website, etc.

Security considerations
In order to ensure a high degree of compliance with security best practices, ECMWF Sites implements
various strategies to minimise the attack surface of the platform and of other internal systems, and to
prevent leakage of information.

In terms of infrastructure, the platform runs on a Kubernetes cluster which is deployed on Virtual
Infrastructure within a specific network security zone. From within this security zone, it is only possible to
access a set of standard ports running on other specific security zones, where other forecasting services
run. Even though our internal Network Architecture has a high degree of segmentation and segregation, a
set of NetworkPolicies further enforces internal traffic rules, blocking all traffic connections from and into
each website, other namespaces and components within the Kubernetes cluster. This provides internal
isolation between websites, and between other services running within the same Kubernetes cluster.

The Kubernetes API server is only accessible internally, from within a set of VLANs, within the ECMWF
network. A ServiceAccount with a token is created for the internal communication between the Hub and
Operator with the Kubernetes cluster server API. Role Based Access Control (RBAC) is then configured
for this ServiceAccount, allowing access to a few cluster-wide resources for the management of the
system. The ServiceAccount token is not mounted on individual websites, meaning custom applications
will not be able to use it to exploit the system. It is worth noting that the aforementioned NetworkPolicies
would block this traffic anyway.

In terms of authentication and authorisation, all endpoints use OpenIDConnect for authentication,
relying on the JWT access_token, using the preferred_username and entitlements for authorisation.
A 64 characters Hex token is randomly generated for each website. This token is used as an
administration token and allows anyone holding it to manage all the contents of the website. It is useful
for automated pipelines, and in case tokens are compromised they can be revoked by generating new
ones. Only one token is usable at any time for a specific website, until it is revoked.

CPU and Memory are limited by a ResourceQuota object. This ensures a global limit for resources that
the platform can take from the Kubernetes cluster. Every website is configured with a sensible number of
resources that can be used. These are configurable per website within three resource levels, defined as
Normal, Medium, and High. This is very relevant for websites running custom applications, since these
run code out of our control; we can limit and protect the system from misbehaving containers:

•	 Normal – this is ideal for most use cases and is the default setting for all websites.

•	 Medium – this is ideal for websites that are integrated with other web services and require a bit more
throughput.

•	 High – this is for high load traffic websites, including content management using the web file browser
or REST API that might require additional memory or CPU.

doi: 10.21957/m5gl27f96m	 9

Manuel Martins	 ECMWF Sites: websites as a service

Custom applications can only be configured on private websites. Custom application containers
run in unprivileged mode and with a specific user ID and group ID. This means that users cannot
configure Docker images where processes run with the root user, thereby decreasing the risk if using a
compromised Docker image.

A set of PriorityClasses defines three priority levels: Normal, Medium, and High. These ensure that critical
workloads receive the resources they need even in times of contention, maintaining the stability and
reliability of essential websites and core components:

•	 Normal – by default, all websites get this priority class.

•	 Medium – websites that are monitored, usually public websites, get this priority instead of the low
priority class.

•	 High – all the platform components, i.e.: Hub, Operator, Redis and all Jobs, get this priority class.

Websites can only be configured as public by Hub administrators, ensuring users need to go through
an approval process. This decreases the risk of sensitive content exposure or non-compliant ECMWF
design. Private websites can be configured with two-factor authentication, ensuring that users must enter
a temporary one-time token (TOTP) before accessing the website, providing an extra level of security.
Each website has a renewable retention date of one year from creation.

Ecosystem
ECMWF Sites offers a Command Line Interface (CLI) and a Software Development Kit (SDK).

These tools significantly enhance the platform ecosystem by providing users with powerful, flexible,
and efficient ways to interact with the platform. They take full advantage of the Hub and the websites’
REST APIs. Both the CLI and the SDK allow users to automate tasks, manage resources, and perform
operations directly from the command line, streamlining workflows and improving productivity. Together,
these tools empower users to fully leverage the platform’s features, driving greater adoption and
facilitating its usage.

Performance and load testing
To illustrate the performance of the system, a set of test scenarios was created. These tests consist in
measuring the performance of a website in terms of content management, by uploading a set of static
HTML and plot data of around 1.5 GB, and then accessing the website and navigating to a second
location within that same website. The website is configured as Public and with Resource Limits set to
High, in what we consider the ideal condition. These tests were executed from the three locations where
ECMWF is based, Bologna (Italy), Bonn (Germany), and Reading (UK). They provide a good insight into
the overall performance of the service across Europe.

The results of the test runs can be seen in Table 1 and Table 2, while Figure 6 and Figure 7 show the
consumption of resources throughout the duration of these tests (circa 1 hour and 30 minutes per
run). These results show that the website performs at the highest level under the tested load. In these
performance tests, while the website is configured with High resources, CPU is not limited, hence
leading to the highest throughput. Memory consumption is very low for these operations, due to a great
optimisation of the REST API. Usually, high memory consumption comes from the use of either custom
applications or the web file browser open-source application: https://github.com/filebrowser/filebrowser.

These and other performance tests can be found in detail at https://sites.ecmwf.int/performance/results/.

https://github.com/filebrowser/filebrowser
https://sites.ecmwf.int/performance/results/

10	 doi: 10.21957/m5gl27f96m

Manuel Martins	 ECMWF Sites: websites as a service

Reference
(Local)

Italy
(Bologna)

Germany
(Bonn)

UK
(Reading)

50 Users

Apdex (Application
Performance Index) 0.998 1,000 0.885 0.994

90% (milliseconds) 84 99 892 237
Throughput (requests/second) 73 74 69 76

25 Users

Apdex (Application
Performance Index) 1,000 1,000 0.979 0.997

90% (milliseconds) 32 77 275 177
Throughput (requests/second) 76 83 57 64

10 Users

Apdex (Application
Performance Index) 1,000 1,000 0.999 0.997

90% (milliseconds) 13 73 96 157
Throughput (requests/second) 65 51 40 32

Reference
(Local)

Italy
(Bologna)

Germany
(Bonn)

UK
(Reading)

250 Users

Apdex (Application
Performance Index) 1,000 1,000 0.999 1,000

90% (milliseconds) 10 36 55 138
Throughput (requests/second) 190 190 190 190

110 Users

Apdex (Application
Performance Index) 1,000 1,000 0.999 1,000

90% (milliseconds) 10 46 57 138
Throughput (requests/second) 190 190 190 190

50 Users

Apdex (Application
Performance Index) 1,000 1,000 0.999 1,000

90% (milliseconds) 10 32 62 137
Throughput (requests/second) 50 50 50 50

Table 1  This table shows performance test results for the websites’ content management under different load and
different locations. Website content management performs very well, with 90% of the requests being served in
237 ms or less in the UK and in 892 ms or less in Germany. Content management is normally performed by a single
user at a time, so these results show great REST API performance at scale.

Table 2  This table shows the performance test results for website access under different load and different
locations. Website access performs very well, with 90% of the requests being served in 138 ms or less in the UK and
in 62 ms or less in Germany.

Figure 6  This figure shows the total memory usage throughout the performance tests. Memory peaks at 750 MB while
performing content management, while during access to the website the peak reduces to only 238 MB.

0

100

200

300

400

500

600

700

800

00:00:00 00:14:24 00:28:48 00:43:12 00:57:36 01:12:00 01:26:24 01:40:48

M
em

or
y

(M
B)

Time (hours:minutes:seconds)

doi: 10.21957/m5gl27f96m	 11

Manuel Martins	 ECMWF Sites: websites as a service

Concluding remarks
In the past months, several developments have been made to improve the way the main components of
the platform are distributed. The idea behind these changes is to open-source the project, decoupling
the main components from ECMWF’s specifics, and to make it even more configurable. Such a platform
offers a robust system that empowers users to create, manage, and customise online spaces tailored
to a diverse range of use cases and can be highly advantageous for other organisations or national
meteorological services.

Several improvements on the Site REST API application were made while migrating from Python to
Golang. This led to big improvements in throughput, while significantly reducing the memory consumption
compared to the previous implementation. The latest version of the Site REST API supports streaming
of large files, enabling ECMWF Sites to be used for sharing large datasets over HTTP. Looking ahead,
the continued development of ECMWF Sites will focus on meeting evolving user needs, strengthening
security measures, and furthering its potential as an open-source solution, ensuring it remains a reliable
and adaptable platform for diverse use cases.

It is important to note that ECMWF Sites was introduced during the preparation for our data centre
migration in 2022, providing a straightforward way to host many services without the need for custom
integrations or involvement from other teams. This alleviated some of the pressure on the web
development team within ECMWF’s Forecasts and Services Department.

Further reading
Martins M., 2020: Introducing Sites: static websites as a service. ECMWF Newsletter No. 164, 17.
https://www.ecmwf.int/en/newsletter/164/news/introducing-sites-static-websites-service

Varela D. & Martins M., 2018: Re-Architecture of the Atlassian Collaboration Tools. ECMWF Newsletter
No. 157, 17. https://www.ecmwf.int/en/newsletter/157/news/re-architecture-atlassian-collaboration-tools

Kubernetes, 2024: Concepts, https://kubernetes.io/docs/concepts/, accessed on 20 August 2024.

Kubernetes, 2024: Operator Pattern, https://kubernetes.io/docs/concepts/extend-kubernetes/operator/,
accessed on 20 August 2024.

Kubernetes, 2024: Custom Resources, https://kubernetes.io/docs/concepts/extend-kubernetes/api-
extension/custom-resources/, accessed on 20 August 2024.

ECMWF Confluence, 2024: User Documentation, ECMWF Sites - Websites as a Service, https://confluence.
ecmwf.int/display/UDOC/ECMWF+Sites+-+Websites+as+a+Service, accessed on 20 August 2024.

Apdex (Application Performance Index), 2024: The Apdex Users Group, https://ww.apdex.org,
accessed on 12 September 2024.

Figure 7  This figure shows the total CPU (Cores) usage throughout the performance tests. CPU usage peaks at 11 CPU
Cores while performing content management, while during access to the website the peak reduces to 5 CPU Cores.

00:00:00 00:14:24 00:28:48 00:43:12 00:57:36 01:12:00 01:26:24 01:40:48
Time (hours:minutes:seconds)

0

2

4

6

8

10

12

14
CP

U
(C

or
es

)

https://www.ecmwf.int/en/newsletter/164/news/introducing-sites-static-websites-service
https://www.ecmwf.int/en/newsletter/157/news/re-architecture-atlassian-collaboration-tools
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://confluence.ecmwf.int/display/UDOC/ECMWF+Sites+-+Websites+as+a+Service
https://confluence.ecmwf.int/display/UDOC/ECMWF+Sites+-+Websites+as+a+Service
https://ww.apdex.org

12	 doi: 10.21957/m5gl27f96m

Manuel Martins	 ECMWF Sites: websites as a service

© Copyright 2025

European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, UK

The content of this document, excluding images representing individuals, is available for use under a Creative Commons
Attribution 4.0 International Public License. See the terms at https://creativecommons.org/licenses/by/4.0/. To request
permission to use images representing individuals, please contact pressoffice@ecmwf.int.

The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability
for error or omission or for loss or damage arising from its use.

https://creativecommons.org/licenses/by/4.0/

