
www.ecmwf.int/en/about/media-centre/media-resources

METEOROLOGYCOMPUTING

doi: 10.21957/m9ad5hv72s

from Newsletter Number 182 – Winter 2024/25

Modernisation of the
Integrated Forecasting
System

COMPUTING

2	 doi: 10.21957/m9ad5hv72s

Michael Sleigh et al	 Modernisation of the Integrated Forecasting System

This article appeared in the Computing section of ECMWF Newsletter No. 182 – Winter 2024/25, pp. 19–23

Modernisation of the Integrated Forecasting
System
Michael Sleigh, Andrew Bennet, Paul Burton, Paul Cresswell, Patrick Gillies,
Adrian Hill, Zak Kipling, Michael Lange, Olivier Marsden, Ahmad Nawab,
Balthasar Reuter

The Integrated Forecasting System (IFS) is mission-critical software for ECMWF. It fulfils our primary
purposes of (a) developing a capability for medium-range weather forecasting, and (b) providing
medium-range weather forecasts to our Member and Co‑operating States, and it is also used for other
applications. The IFS is, however, also extremely complex. The main driver in its development has
been the need to improve meteorological quality and capability – an effort to which hundreds of people
have contributed over decades. While very successful in terms of providing forecasts, maintaining
and updating the IFS has also led to the accumulation of a great deal of technical debt in the system.
Now, because of growing demands on the system and increasing diversity of the environment, the rate of
accumulation of technical debt is increasing. This leads to the need to modernise the IFS by adopting a
modular design, a new representation of data, and an open-source approach.

The need to modernise
The growing demands on the system come from the expanding range of applications it is used in, and the
growing population of developers and researchers who work with it. Since its launch, the IFS has evolved
to support various configurations and applications: 4D‑Var data assimilation, ensemble forecasting;
ensemble data assimilation; full Earth system modelling; sub-seasonal and seasonal forecasting;
atmosphere, ocean and land reanalysis; atmospheric composition and greenhouse gas forecasting and
reanalysis; flood and fire forecasting; use in academic research/teaching (via OpenIFS); and most recently,
with Destination Earth (Geenen et al., 2024), in climate and extreme weather at particularly high resolution.

Additionally, the environment in which it operates is becoming more complex and challenging. For a long
time, all our operational and research work ran in an ECMWF-owned data centre and high-performance
computing (HPC) facility, and it was able to use an industry-standard combination of central processing
units (CPUs) and Message Passing Interface–Open Multi-Processing (MPI–OpenMP) parallelism. The first
of these has ceased to be true, with Destination Earth pioneering the move to take advantage of external
data centres and HPC machines we do not administer. On the second point, much effort has already
been made to adapt to graphics processing units (GPUs), over several years. These developments
together presage a much more diverse and fast-changing computing environment, which will include
off‑premises and cloud components and a wider range of vendors. The range of architectures has already
broadened, and although we might not expect rapid change in the hardware market in the foreseeable
future, at the very least it will become essential to utilise equally well those architectures that have already
emerged. The rise of successful machine learning methods in weather forecasting also creates many
opportunities for use in a complex, hybrid operational system, with the additional challenges that brings.
As noted in the ECMWF Strategy from 2025 to 2034, a high degree of flexibility and agility is called for, to
be able to respond to rapid changes. The increasing need to be open in our science, data and software
applies additional pressure. Furthermore, it will become more difficult to find software engineers who are
willing to work on ‘old’ software frameworks and computing languages, such as Fortran.

The above factors – prioritising progress in performance and capability, continual increases in demands
on the system due to diversifying applications, and a rapid increase in the complexity of the environment
– have led to a system which is difficult to work with: less easy to understand, more brittle (easy to break),
harder to test, larger and more complex than is necessary, and hence slower to improve. Like any debt
that continually increases, there is a risk that at some point this becomes unsustainable. This might
happen because of increasing complexity, gradually eroding our ability to make functional improvements
in a realistic amount of time, at a time when the need to move quickly is at a premium.

doi: 10.21957/m9ad5hv72s	 3

Michael Sleigh et al	 Modernisation of the Integrated Forecasting System

This challenge points to an urgent need to modernise the architecture and infrastructure on which our
forecasting systems are based; to clear much of the legacy of technical debt already inherent in the
system; and to implement for the long term a development approach in which technical debt is explicitly
recognised, documented, and dealt with continuously, alongside functional improvements. Much effort
and progress have been made in recent years, for example through the Scalability Programme (Bauer
et al., 2020); a project to adapt the IFS so that it is ready for a hybrid CPU–GPU compute model (Hybrid
2024); and continual modernisation of our infrastructure and research-to-operations (R2O) tools and
processes (Buizza et al., 2017; Buizza et al., 2018). But a more concerted, coordinated and exhaustive
strategy is needed.

The necessary improvements can be achieved by the application of familiar and well understood software
engineering techniques and processes to the design and the ongoing development of our forecasting-
system software. The central part of this strategy is therefore the encapsulation, where appropriate, of
compact, standalone components that can be individually tested and developed, at least to some extent,
in isolation from the whole system, i.e. the separation of concerns. Efforts along these lines are not wholly
new: many of them were implemented through the Scalability Programme, which introduced concepts
of modularisation and separation of concerns in the form of an overarching plan to adapt the IFS to
forthcoming HPC architectures. Hence, much of what we propose here builds on these initial successes
and implements an overarching approach that takes the separation of concerns in a more coordinated
manner to its logical conclusion.

We also propose additional actions that complement this approach, such as the definition of API
(application programming interface) specifications and rigorous versioning. These ensure that integrated
systems can be composed from the encapsulated components without descending into ‘dependency
hell’. New and more extensive standards will be introduced to guide developers, and tooling will be
developed initially to detect and fix departures from the standards, and later to automatically enforce
them. Standards will be of particular importance because, in addition to guiding developers, they will
ensure the code is suitably structured to allow in-house tools to operate on it. An example of such a tool
is Loki, which is an in-house source-to-source code translation tool. This will also facilitate the automatic
extraction of OpenIFS, a supported and easily accessible version of the IFS provided for research and
education, from the larger IFS source code. Standards and tools will also recognise the importance of
code deprecation and removal.

Importantly, the strategy of devolving the code into components is not to move away from the idea of
being integrated: we still intend to meet the same range of applications from a single source code base.
Rather, it is to move away from an integrated forecasting system that is a monolith, to one that is a
coherent ‘ecosystem’ of components from which forecast applications can be composed.

Component design
The overarching principle is the move towards a truly modular overall design, in contrast to the traditional
monolithic approach that was used to create the core IFS code. Importantly, there will be a separation
between technical infrastructure, individual scientific components, and the different variations of the
overarching codes. This will ensure that technical and scientific changes can be adopted and migrated
easily between the various supported cycles and configurations of the IFS. Model components are
shared with Météo-France and the ACCORD consortium, and careful consultation will be undertaken
to determine how best to separate code into a set of self-contained libraries that meets everyone’s
requirements. Additional testing infrastructure will be deployed to better track significant scientific and
technical changes and coordinate the respective inclusion in release cycles across different organisations
and projects.

A modular component structure makes it possible to improve test coverage and streamline change
management. Individual module-level testing will facilitate greater test coverage. It will also enable the
testing of non‑operational features and model-specific code paths in jointly developed core modules,
in addition to rigorous technical testing of software infrastructure components. Importantly, this does
not diminish our current strong emphasis on scientific testing and evaluation in the R2O process. Here,
components need to be integrated and tested together to understand their cumulative impact, no matter
how well tested any individual component is in advance. We propose that the frequency of scientific
release cycles will not be affected (with one major cycle per year on a fixed schedule), while their
coordination will be improved.

4	 doi: 10.21957/m9ad5hv72s

Michael Sleigh et al	 Modernisation of the Integrated Forecasting System

A key change that such a refactoring will bring is that code ownership and governance can be applied
per component. While scientific and infrastructure packages that include jointly developed code will
require agreement and approval from all stakeholders, other components will be under local ownership.
This does not preclude external contributions or use of specific subroutines in other modules. However,
it makes the testing and technical management responsibility as localised as possible, with external
contributions going through formal code review and integration testing before cycle synchronisation.

Data structures
A prime consideration in a more modular design is the representation of data, in particular gridded field
data in grid-point and spectral space representations. Many of the modular components that will be
developed in the approach described above will benefit from a harmonised representation of such field
data. This will be provided by a new standalone library to enhance the modularity and uniformity of
component interfaces.

A central representation of field data structures will also enable a clean separation between scientific
abstractions used in forecast and data assimilation contexts, and technical concepts. The latter include
concepts such as offload to accelerators and programming model compatibility. This separation can
happen along the following lines:

•	 Scientific API: Here, further use of object-oriented Fortran and inheritance can separate high-level
concepts, for example prognostic and diagnostic variables, and facilitate quick access to scientific
metadata. Similarly, encapsulating higher-level concepts, such as tendencies or surface variable
groups, and consolidating their use across the code base will be done in close collaboration with
scientists.

•	 Computational API: Existing features in Atlas, a software library supporting the development
of Earth system model components and data processing (Deconinck, 2018), and other libraries
will be expanded to generally encapsulate technical features such as data storage backends,
GPU‑compatibility, parallel communication support, and I/O interface and utilities.

Moreover, a uniform, object-oriented representation of field data will serve two purposes:

•	 Provide a common API for field abstractions, compatible with Atlas, that encapsulates technical,
computational and scientific functionality.

•	 Store IFS forecast states (model state, grid and fields) in unified data structures that provide a clean
interface to OOPS (a framework for running different variational data assimilation formulations with a
variety of forecast models) for forecast and data assimilation configurations.

A unified and individually tested data structure library will enable the graceful migration towards
operational use of Atlas as the default memory data backend. The use of Atlas in the IFS will allow
wider compatibility with novel packages, such as the FVM (a new nonhydrostatic dynamical core under
development at ECMWF).

Workflow code
Separate to the compiled executables, the surrounding ‘workflow code’ divides into: (1) scripts which
drive the model and manage data flow at run-time, and (2) ‘suite builder’ code, which runs once at
deployment to generate the structure of the suite.

The envisaged workflow architecture is summarised in Figure 1. Multiple run-time configurations
are combined with a suite generator tool which builds an ecFlow suite definition. ecFlow is a work
flow package that enables users to run a large number of programs in a controlled environment (see
https://ecflow.readthedocs.io). The suite generator tool also builds shell wrappers for its tasks, and it
initiates a deployment of those, alongside required static component configurations and dependent
code libraries. Control is then passed to the ecFlow suite, which orchestrates the execution of the task
wrappers, which optionally generate on‑the‑fly state-dependent configurations and invoke relevant
binaries and library scripts.

https://ecflow.readthedocs.io

doi: 10.21957/m9ad5hv72s	 5

Michael Sleigh et al	 Modernisation of the Integrated Forecasting System

There are currently multiple sets of code for generating and deploying suites. All are written in Python,
but they have substantial differences in both functionality and style, with varying levels of use of common
frameworks. None has the required flexibility to cover all the needs of the complete range of research and
operational forecasting suites. The strategy is to build a system which delivers the necessary flexibility.
This is to be done by unifying the design and implementation of suites across applications, based on
a common software stack such as pyFlow and Troika. Current differences in the use of suites should
be harmonised as much as possible. It is also crucial to harmonise between research and operational
environments. Differences here have often been the source of unexpected issues during the R2O process.

To begin, ECMWF is developing a set of common standards for suite design. Both the tooling for suite
generation, and the design of the suites themselves, will be developed in line with these standards as
they evolve. Suite design standards and their publication as part of invitations to tender (ITTs) will ensure
consistency and optimal design for both internal and contracted-out work. The introduction of a full
end‑to‑end forecast-suite-level test platform, which we refer to as the ‘development suite’ (d‑suite), will
demonstrate how new workflow standards and designs will work in an operational-like context.

All forecast systems are driven at runtime by scripts, which have grown organically to a high level of
complexity, with a variety of different styles and approaches. This leads to a significant maintenance
burden and difficulty in making changes and adding new features. It also adds substantial overhead to
the migration to other HPC platforms.

A major effort to restructure and refactor the scripts is proposed, with the aim of making them cleaner,
more robust and maintainable, and easier to understand and modify with confidence. The starting point
for this will be rolling out a recently published IFS shell scripting standard, in three stages:

•	 Migrating away from the legacy Korn shell to Bash.

•	 Implementing a clean separation between ecFlow task wrappers, calling plain shell scripts to do the
actual work which can be tested outside of ecFlow.

•	 Bringing scripts into line with the detailed provisions in the standard.

Figure 1  Future architecture of IFS workflow code, illustrating the interaction between suite generation, control scripts,
configuration files, etc. Workflows are defined by the user in IFShub, a web-based interface for ECMWF and external
users. Then, suite-generation code written in Python, and using the pyFlow library, generates both the ecFlow suite
definition that defines the overall workflow (the set of tasks and how they interrelate and depend on each other), and the
task wrapper scripts that control each task. Ultimately this leads to the production of forecasts via the IFS binaries. Care
is needed to separate properly the static configuration defined once for the overall workflow, and the state-dependent
configuration that evolves as the work proceeds.

Suite generator
(pyFlow-based)

Configuration
logic goes here

System, suite
& component
configurations

(e.g. from
IFShub)

ecFlow suite
definition

Generated task
wrapper scripts

“Called” IFS
control scripts

Static
configuration
files for IFS
components

State-dependent
configuration files

for IFS components

Deployment from
developer branch

Pre-installation as
module

IFS binaries

produces
configures
invokes
(optional)

fixed software
configuration-dependent
state-dependent
optional process

State-dependent
logic goes here

6	 doi: 10.21957/m9ad5hv72s

Michael Sleigh et al	 Modernisation of the Integrated Forecasting System

In parallel with this, a longer-term effort will be to modularise scripts, factoring out common repeated
code and breaking down large scripts into smaller pieces that can be meaningfully tested in isolation.
Where appropriate, functionality should be factored out into self-contained tools (e.g. Python packages)
to be installed on the target platform. The primary motivation for this encapsulation is that it results in a
collection of components that can be tested in isolation, outside the context of an ecFlow suite.

Adoption of open source and open development
IFS software is partially open-source, following a Council agreement to open-source selected
components while keeping the system as a whole closed. The process of open-sourcing components
aims to enhance collaboration with both Earth system and computer scientists. To date, a number of
scientific kernels, such as the radiation package ecRad, and technical infrastructure libraries have been
made public under the Apache 2.0 licence.

The short-term plan is to include these existing open-source components in the operational IFS build, and
to remove the corresponding code from the central IFS source repository, so all scientists and developers
will work directly in the public repositories. This will benefit the modernisation of the code.

In the longer term, the new ECMWF Strategy says that “ECMWF will build on the successful OpenIFS
efforts and move to an open-source approach for the whole of the forecast model.” Council decisions
permitting, an initial open-source code will be based on OpenIFS, along with all the infrastructure to permit
running ‘out‑of‑the‑box’. Since the initial open-source version of the IFS forecast model will effectively be
OpenIFS, we suggest that the new public offering retain for the long term the OpenIFS identity.

Testing
Testing is of critical importance. Most recent improvements in IFS development workflows at
ECMWF have been improvements in testing. These have included introducing a fast interactive test
framework at the compiled IFS code level, and continuous integration (CI) testing which works at the
full integrated-suite level. Building on this, much of the motivation for the separation of concerns/
abstraction/modularity made above is that it enables more, earlier, and faster testing. The full
integration-level and scientific testing in our current R2O process is still required, but there is more that
can be done earlier in the process.

One limitation in current technical testing is that only the testing of changes expected to be bit‑identical
has been automated. We have no procedures to automatically test and accept meteorologically neutral
technical changes, such as those related to GPU adaptation, optimisation, or code refactoring, without
recourse to running long experiments of the order of a month and making a manual assessment. This
is a particular barrier for purely technical code developers, and for HPC vendors, who are likely to need
to make technical changes to tune the IFS to their systems as part of any procurement benchmarking.
One approach already used by MeteoSwiss is a test ensemble, in which confidence intervals for output
values are determined using a known good configuration. These are then used to detect problems in runs
on different setups (different compiler, optimisations, accelerators) (see https://github.com/MeteoSwiss/
probtest). We will explore this and similar ideas for the IFS.

It is a critical requirement to be able to identically replicate behaviour and results of operations in a
sandboxed test environment. We will ensure the full software environment of an IFS run is controlled and
replicable between research and operations. Being able to run the same code and configuration in both
research experiments and operational suites helps ensure we fully test changes only once, and early in
their development.

In addition to improved integration-level testing, we plan to significantly expand the scope of unit testing
to verify the behaviour of individual components. This applies at both the coarse level of the modular
components (for example the ECMWF ocean wave model, ecWAM), but also where possible to individual
routines and scripts. Such an approach is already taken for suite generation code, but it will be extended
to scripts and compiled code.

As previously mentioned, the introduction of a ‘d-suite’ (a fully functional, end-to-end clone of the
operational suite) as an intermediate integration testing system between forecast-system development
and operations will be a key mechanism to support enhanced testing, harmonise between research and
development and operations, and allow us to move towards continuous delivery.

https://github.com/MeteoSwiss/probtest
https://github.com/MeteoSwiss/probtest

doi: 10.21957/m9ad5hv72s	 7

Michael Sleigh et al	 Modernisation of the Integrated Forecasting System

Conclusion and outlook
We have proposed a software strategy for our forecasting system, to complement the wider ECMWF
Software Strategy (Quintino et al., 2023). This is intended to meet the immediate-to-medium-term
challenge of ensuring the forecasting system that we have now – the IFS – remains sustainable on at
least a ten-year timescale. It intends to make our forecasting software substantially more agile to meet
the challenges of a rapidly changing system and environment. An implementation project called FORGE
(Forecast-System Regeneration) is being launched to deliver the strategy.

While the more immediate software challenges have been thought through in detail so far, another strand
of software strategy, which is less mature at this stage, looks towards and beyond the ten‑year horizon.
In particular, this concerns how the forecasting system might move wholly away from the current IFS and
Fortran to a new FVM-based system written in Python, and exploiting domain-specific languages (DSL) to
separate scientific from technical concerns. This will be the subject of future articles.

Feedback is actively being sought from developers and researchers within ECMWF and our Member and
Co‑operating States, and from our collaborators and other stakeholders, on the detail of the approaches
presented here. This is done to take account of the feedback in the ongoing process of developing a final
detailed strategy document, covering both the more immediate software challenges and the longer term,
which will be presented to ECMWF’s Committees in the future.

Further reading
Bauer, P., T. Quintino, N. Wedi, A. Bonanni, M. Chrust, W. Deconinck et al., 2020: The ECMWF
Scalability Programme: progress and plans. ECMWF Technical Memorandum No. 857. https://doi.
org/10.21957/gdit22ulm

Bonavita, M., Y. Trémolet, E. Hólm, S. Lang, M. Chrust, M. Janiskova et al., 2017: A Strategy for Data
Assimilation. ECMWF Technical Memorandum No. 800. https://doi.org/10.21957/tx1epjd2p

Buizza, R., E. Andersson, R. Forbes & M. Sleigh, 2017: The ECMWF research to operations (R2O)
process. ECMWF Technical Memorandum No. 806. https://doi.org/10.21957/m3r9bvg6x

Buizza, R., M. Alonso-Balmaseda, A. Brown, S.J. English, R. Forbes, A. Geer, 2018: The development
and evaluation process followed at ECMWF to upgrade the Integrated Forecasting System (IFS). ECMWF
Technical Memorandum No. 829. https://doi.org/10.21957/xzopnhty9

Burton, P., M. Martins, S. Siemen & M. Sleigh, 2021: IFShub: a new way to work with IFS experiments.
ECMWF Newsletter No. 167, 28–32. https://doi.org/10.21957/bu599oxq27

Deconinck, W., 2018: ECMWF releases Atlas software library. ECMWF Newsletter No. 155, 12–13.
https://www.ecmwf.int/en/newsletter/155/news/ecmwf-releases-atlas-software-library

Geenen, T., N. Wedi, S. Milinski, I. Hadade, B. Reuter, S. Smart et al., 2024: Digital twins, the journey
of an operational weather system into the heart of Destination Earth. Procedia Computer Science, 240,
99–108. https://doi.org/10.1016/j.procs.2024.07.013

Quintino, T., U. Modigliani, F. Pappenberger, S. Lamy-Thepaut, S. Smart, J. Hawkes et al., 2023:
Software strategy and roadmap 2023-2027. ECMWF Technical Memorandum No. 904. https://doi.
org/10.21957/c6d7df0322

© Copyright 2025

European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, UK

The content of this document, excluding images representing individuals, is available for use under a Creative Commons
Attribution 4.0 International Public License. See the terms at https://creativecommons.org/licenses/by/4.0/. To request
permission to use images representing individuals, please contact pressoffice@ecmwf.int.

The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability
for error or omission or for loss or damage arising from its use.

https://doi.org/10.21957/gdit22ulm
https://doi.org/10.21957/gdit22ulm
https://doi.org/10.21957/tx1epjd2p
https://doi.org/10.21957/m3r9bvg6x
https://doi.org/10.21957/xzopnhty9
https://doi.org/10.21957/bu599oxq27
https://www.ecmwf.int/en/newsletter/155/news/ecmwf-releases-atlas-software-library
https://doi.org/10.1016/j.procs.2024.07.013
https://doi.org/10.21957/c6d7df0322
https://doi.org/10.21957/c6d7df0322
https://creativecommons.org/licenses/by/4.0/

