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In a previous Newsletter article (McNally et al., 2024a), we described how ECMWF research teams are 
embarking on a radical and ambitious project to investigate if weather forecasts can be made directly 
from meteorological observations, harnessing the power of machine learning (ML). We have called the 
method Artificial Intelligence–Direct Observation Prediction (AI–DOP). In this issue we report on progress 
and the first-ever skilful medium-range forecasts made purely from observations alone, without any use of 
a physics-based model, analyses, or reanalyses. 

Here we briefly recall the rationale motivating this research. The initialisation of global physics-based 
forecast models is extremely challenging. This is because the majority of meteorological observations 
that we have from weather satellites do not directly measure the variables required by forecast models 
(e.g. temperature, humidity and wind), and they do not measure at the horizontal and vertical spatial 
scales required. To address this discrepancy, data assimilation systems blend information from the 
observations with fine-scale model grid information obtained from a previous (prior) forecast. For this 
blending process to be optimal, it requires a highly detailed and exacting knowledge of the uncertainty 
in the observations, as well as the uncertainty in the prior forecast state. As both of these uncertainties 
can be highly complex and variable (for example changing with the meteorology of the day), specifying 
these to the degree of accuracy required is extremely challenging and occupies substantial resources. 
In addition, to successfully blend observations with model states, we need to have a very accurate 
mapping between the quantities being measured (e.g. radiation being captured by a satellite sensor) 
and the geophysical variables of the physics-based model state. For some observations, such as cloudy 
infrared and visible reflectances from satellites, this mapping is so complex that we are currently unable 
to exploit these data in global numerical weather prediction (NWP). 

Using artificial intelligence (AI) technology, we are exploring a completely different approach to using 
observations. Specifically, we have developed a system to enable Direct Observation Prediction (AI–DOP, 
see McNally et al., 2024b). Here, by applying ML to long historical datasets of observations, we train 
a neural network (NN) to forecast how the atmosphere evolves in time. Crucially, this forecast model 
operates directly upon the physical quantities that are actually measured by our meteorological observing 
systems. For example, it can predict the time evolution of radiances measured by satellites (that form the 
bulk of our observations), but also conventional observations of weather parameters, such as two-metre 
surface temperature or ten-metre wind. Formulated this way, the AI–DOP model can be initialised directly 
with values from the latest available observations without any need for data assimilation remapping to 
artificial grids or unmeasured quantities. This obviates the need for estimating large error covariances and 
allows the use of all observations, irrespective of the complexity of the measurement. The output of the 
model are predictions of observed quantities at future times. Owing to the design of the neural network 
and training procedure, the model can produce a forecast at any desired location, even where there 
may be no real input observations. Forecasts of weather-related variables, such as surface temperature 
or wind, are obtained by predicting future values of weather parameter observations, such as SYNOP 
weather station surface data or radiosonde data. 

Curation of observation training data
Crucial for AI–DOP is a well-curated set of historical observations that can be used for training. For this, 
we extract observations from existing operational archives into special data formats suitable for ML 
training. While this is a laborious process, it is significantly eased by the archives containing standardised 
data representations (e.g. BUFR), and once this task is complete we anticipate the extracted data will 
additionally support Member State ML activity via Anemoi, a collaborative, open-source initiative to create 
ML weather forecasting systems. 
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At the time of writing this article, we have processed over 250 billion observations from the atmosphere, 
surface and ocean, covering several decades (some 2.5 TB of data – see Figure 1). This is of course a 
large volume of data. However, to put these figures into context, the ERA5 reanalysis, which underpins 
analysis-based data-driven forecast systems like GraphCast and our own Artificial Intelligence 
Forecasting System (AIFS), amounts to more than 6 PB of data. It is also worth noting that the historical 
data being curated for AI–DOP are typically at a higher spatial density than ERA5 data, and that they 
include some observation types which were never used at all by ERA5. The choice of which datasets to 
prioritise for inclusion in the training was made based on the contribution of each observation type to the 
current operational 4D-Var data assimilation system. During training, the AI–DOP neural network learns 
statistical correlations between different observation types. A particularly important relationship is that 
between satellite data (which have excellent global coverage) and sparser in-situ observations of weather 
parameters. Once correlations are learned at real weather station locations, they can be applied where 
there are no weather stations (e.g. over oceans) to enable global weather parameter forecasts. If required 
by users, these forecasts can even be specified on a regular grid. 

Figure 1 Summary of the different observation types currently included in the training dataset. They include both 
in-situ and satellite observations, including from EUMETSAT’s Meteosat geostationary satellites and Metop polar-
orbiting satellites. Satellite observations are generally indicated by satellite names and instrument names. Colours 
indicate the number of reports per day.
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Forecasts using different types of neural networks
We are currently experimenting with two different candidates for the type of neural network to be used in 
the production of forecasts, a transformer neural network (TNN) and a graph neural network (GNN). While 
the data curation process is still in progress, we present preliminary results with both networks trained 
on a subset of observation types. This subset comprises the main satellite-based systems (ATMS, IASI, 
SEVIRI, AMSU-A ASCAT, GPSRO) and in-situ conventional observations of weather parameters (from 
surface stations and balloons). 
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Both networks are successfully producing predictions of future observations many days in advance, 
where a highly realistic time evolution of weather patterns can clearly be seen in the predicted values. 
Both networks have demonstrated the ability to learn robust correlations between global radiance 
measurements available from satellites and the significantly sparser in-situ observations of weather 
parameters, in order to produce useful weather forecasts. Furthermore, results show that these 
relationships (once learned at real weather station locations) can successfully be applied to arbitrary 
locations. In Figure 2, we show an example of predictions projected onto a regular user-specified grid. 
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Figure 2 An example of gridded (O96) weather parameters from the AI–DOP network (TNN) forecasting day five 
(20 June 2022, 12:00 UTC). The figure shows the forecast for (a) 2 m temperature, (b) temperature at 850 hPa and 
mean sea-level pressure, (c) sea-surface temperature, and (d) 10 m eastward component of the wind. The projection 
used generates some plotting artefacts in high northern and southern latitudes. 

Work is continuing to gain more insight into the relative merits of the two different network architectures, 
with a view to converging upon a single approach (or possibly a hybrid of the two) for further 
development.

Extending forecasts to the medium range
An immediate priority is optimising the process of forecasting into the medium range. Currently, both 
the TNN and GNN are trained to take 12 hours of real observations as input and predict observation 
values 12 hours in the future. To obtain (for example) a five-day forecast, this prediction is repeated 
10 times, with the output of one 12-hour prediction fed recursively as the input to the next 12-hour 
prediction. In Figure 3, we can see that this so-called ‘autoregressive roll-out’ approach performs 
extremely well in the short range, but that there is a loss of performance beyond day two. Experience 
from the development of other data-driven forecast systems suggests that the skill of longer-range 
forecasts can be improved significantly by fine-tuning the network. This will involve feeding knowledge 
of the accuracy of the longer forecasts back to the training process to refine the learned correlations. 
Another area where we hope to achieve accuracy gains is in preferentially learning from tropospheric 
satellite radiances with a strong predictive correlation to weather parameters (and conversely down-
weighting learning of stratospheric data) and guiding the network towards preferentially fitting 
observations known to be most reliable. 
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Finally, we are also exploring options for AI–DOP to produce probabilistic forecasts analogous to the 
ensemble forecasting systems of the physics-based Integrated Forecasting System (IFS) and the AIFS. 
Here we hope to build upon existing developments, such as diffusion- and score-based models designed 
for the AIFS (Alexe et al., 2024), which will make it possible to produce ensemble forecasts from AI–DOP. 
It is also expected that using a diffusion-based model will sharpen meteorological features in the forecast, 
which are prone to blurring with the current roll-out approach. 

Concluding remarks
The successful generation of medium-range weather predictions using only observations is a highly 
significant milestone in the field of AI data-driven forecasting. AI–DOP represents a radical departure from 
using observations in data assimilation to create initial conditions for physics-based models or analysis-based 
data-driven systems. It remains to be seen, of course, to what extent the skill of these new observation-based 
forecasts, either in the pure form described here or possibly hybridised with other approaches, will challenge 
other more conventional methods. This activity remains an extremely exciting area of research for ECMWF.   
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Figure 3 Root-mean-square error (RMSE) of AI–DOP forecasts (October–November 2022) of 2 m temperature (TNN in 
purple, GNN in pink) compared to the physics-based IFS and some state-of-the-art reanalysis-trained data-driven systems 
that rely on traditional data assimilation, such as Google DeepMind’s GraphCast, Huawei’s Pangu, and our own AIFS 
(October–November 2023). The different time frames are due to the AI–DOP observations dataset ending in early 2023.
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