
ical Memo Technical Memo Technical Memo Technical Memo Techn
nical Memo Technical Memo Technical Memo Technical Memo Tec
hnical Memo Technical Memo Technical Memo Technical Memo Te

Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical
Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical

Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical
Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical

Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical
Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical

Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical
Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical

Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical
Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical

Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical
Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical

Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical
Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical

Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical
Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical

Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical
Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical

Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical
Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical

Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical Memo Technical

Technical
Memo

904
Software Strategy and
Roadmap 2023–2027

Tiago Quintino, Umberto Modigliani,
Florian Pappenberger, Sylvie Lamy-Thépaut,
Simon Smart, James Hawkes, Iain Russell,
Laurent Gougeon, Cristiano Zanna,
Baudouin Raoult
January 2023

Series: ECMWF Technical Memoranda

A full list of ECMWF Publications can be found on our website under:
http://www.ecmwf.int/en/publications

Contact: library@ecmwf.int

© Copyright 2023

European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, UK

Literary and scientific copyrights belong to ECMWF and are reserved in all countries. The content of this
document is available for use under a Creative Commons Attribution 4.0 International Public License.
See the terms at https://creativecommons.org/licenses/by/4.0/.

The information within this publication is given in good faith and considered to be true, but ECMWF
accepts no liability for error or omission or for loss or damage arising from its use.

http://www.ecmwf.int/en/publications
mailto:library%40ecmwf.int?subject=
https://creativecommons.org/licenses/by/4.0/

Software Strategy and Roadmap 2023–2027

Technical Memorandum No. 904 3

Abstract

ECMWF develops several software packages to support the primary purpose of the Centre, to develop a

capability for medium-range weather forecasting and the provision of medium-range weather forecasts to the

Member States, as well as the objectives aligned with this purpose1. This strategy is in support of the

“ECMWF Strategy 2021–2030”2 in particular the pillar on Science and Technology which aims to develop

and make operational use of cutting-edge science and technology and the pillar on Impact which aims to

provide exceptional value for money to ECMWF’s Member States. Therefore, many of the software

packages are also used by Member and Co-operating States as well as other users to process and analyse

ECMWF archived or disseminated data. These software packages have been developed over many years,

sometimes decades, and continue to provide a reliable service to ECMWF operations.

As part of our constant drive for efficiency and improvement, ECMWF is reviewing its strategy and roadmap

for these software packages. The general principles that underpin ECMWF’s software strategy are as

follows:

• Efficient use of development resources. We aim to continue supporting, with the available

development resources, our current services, whilst providing capability to continue to grow both in

breadth and depth. To realise this goal, we need to rationalise and be efficient in all development

activities, as well as to minimise software maintenance efforts. This will be achieved by

modernisation, reducing technical debt, and consolidating functionality so that it incurs less

maintenance cost.

• Software reusability. To consolidate the development efforts, we will merge common functionality

into reusable components with well-defined interfaces that encourage usage in a variety of

environments, from HPC workloads to interactive end-user sessions.

• Software componentisation and integration. To enhance reusability, existing software will be

refactored into smaller units of functionality. We aim to make these components smaller, more

reusable, and simpler to integrate with each other. We also recognise that some of our software does

not integrate well with Python, a common environment for our users and the community in general.

We want to make these components more integrated with Python.

• Further use of external software. We aim to strike a good balance between our own development

of domain-specific software that is critical to the delivery of ECMWF’s core mission, with the use of

well-maintained and supported community software. This will leverage the community interaction to

further strengthen our developments whilst allowing us to focus on the functionality that is our core

mission.

• Adoption of open development. We believe that software developed openly with interaction and

feedback from the community leads to increased quality. Our experience has shown that the cost-

benefit is very favourable and leads to enhanced interaction with Member and Co-operating States.

• Data scalability. One of the drivers of this software strategy is the required improvements in

scalability of data handling, as the forecast data sets grow more than quadratically, with increases in

resolution and new scientific parameters. We aim to refactor our software stack to improve its use of

data in particular stages of the workflow, to minimise expensive data access operations, such as

1 Article 2 of the “Convention Establishing the European Centre for medium-range Weather Forecasts”

2 https://www.ecmwf.int/en/about/what-we-do/strategy

 Software Strategy and Roadmap 2023–2027

4 Technical Memorandum No. 904

network or I/O operations; and where possible provide the software tools and services to support

operating on the data where it is, i.e., a more data-centric workflow.

• Modernisation to new standards for higher interoperability. Over the years some new standards

have emerged, particularly in the landscape of web technologies, that bring higher levels of

interoperability between systems within and outside our data centre. This increased interoperability

improves access to ECMWF data and is strongly aligned with efforts such as the move to open data

and adoption of FAIR principles.

Plain Language Summary

This document outlines how ECMWF approaches the software side of the organisation (software strategy)

and the short- and long-term solutions to achieve this approach (software roadmap). We plan to improve

parts of the ECMWF collection of independent software components that work together to support the

ECMWF forecast systems, in particular the data handling, post-processing, and service to users. We present

the general principles that underpin the software strategy, and a roadmap which addresses ten areas of

intervention, including four horizontal areas which impact many operational systems. Software related to the

development of the IFS, verification and diagnostics is considered out of scope, although they do utilise

software described herein.

Software Strategy and Roadmap 2023–2027

Technical Memorandum No. 904 5

Table of Contents

1. Software Strategy ... 6

1.1. Resourcing 7

1.2. Innovation 7

1.3. Open Development 8

1.4. Security 8

1.5. Software Development Principles and Practices 9

2. Software Roadmap ... 9

2.1. Areas of Intervention 11

2.2. Refactoring of the Software Stack 11

2.3. Data Encoding and Decoding Libraries 14

Handling WMO GRIB/BUFR with ecCodes ... 14

Handling of ODB observation data with ODC .. 16

2.4. Visualisation Software 17

2.5. IO-server and On-the-fly Processing Pipelines 19

2.6. Data Dissemination and Acquisition 20

2.7. Observational Data Pre-Processing 22

2.8. Core Data Storage Software 23

2.9. Post-Processing Framework 27

2.10. Metview Environment 28

2.11. Web Framework 29

3. Summary .. 31

3.1. Summary of Milestones 32

4. Glossary .. 35

 Software Strategy and Roadmap 2023–2027

6 Technical Memorandum No. 904

1. Software Strategy

ECMWF develops several software packages to support the primary purpose of the Centre, to develop a

capability for medium-range weather forecasting and the provision of medium-range weather forecasts to the

Member States, as well as the objectives aligned with this purpose3. This strategy is in support of the

“ECMWF Strategy 2021–2030”4 in particular the pillar on Science and Technology which aims to develop

and make operational use of cutting-edge science and technology and the pillar on Impact which aims to

provide exceptional value for money to ECMWF’s Member States. Therefore, many of the software

packages are also used by Member and Co-operating States as well as other users to process and analyse

ECMWF archived or disseminated data. These software packages have been developed over many years,

sometimes decades, and continue to provide a reliable service to ECMWF operations.

As part of our constant drive for efficiency and improvement, ECMWF is reviewing its strategy and roadmap

for these software packages. The general principles that underpin ECMWF’s software strategy are as

follows:

• Efficient use of development resources. We aim to continue supporting, with the available

development resources, our current services, whilst providing capability to continue to grow both in

breadth and depth. To realise this goal, we need to rationalise and be efficient in all development

activities, as well as to minimise software maintenance efforts. This will be achieved by

modernisation, reducing technical debt, and consolidating functionality so that it incurs less

maintenance cost.

• Software reusability. To consolidate the development efforts, we will merge common functionality

into reusable components with well-defined interfaces that encourage usage in a variety of

environments, from HPC workloads to interactive end-user sessions.

• Software componentisation and integration. To enhance reusability, existing software will be

refactored into smaller units of functionality. We aim to make these components smaller, more

reusable, and simpler to integrate with each other. We also recognise that some of our software does

not integrate well with Python, a common environment for our users and the community in general.

We want to make these components more integrated with Python.

• Further use of external software. We aim to strike a good balance between our own development

of domain-specific software that is critical to the delivery of ECMWF’s core mission, with the use of

well-maintained and supported community software. This will leverage the community interaction to

further strengthen our developments whilst allowing us to focus on the functionality that is our core

mission.

• Adoption of open development. We believe that software developed openly with interaction and

feedback from the community leads to increased quality. Our experience has shown that the cost-

benefit is very favourable and leads to enhanced interaction with Member and Co-operating States.

• Data scalability. One of the drivers of this software strategy is the required improvements in

scalability of data handling, as the forecast data sets grow more than quadratically, with increases in

resolution and new scientific parameters. We aim to refactor our software stack to improve its use of

data in particular stages of the workflow, to minimise expensive data access operations, such as

3 Article 2 of the “Convention Establishing the European Centre for medium-range Weather Forecasts”

4 https://www.ecmwf.int/en/about/what-we-do/strategy

Software Strategy and Roadmap 2023–2027

Technical Memorandum No. 904 7

network or I/O operations; and where possible provide the software tools and services to support

operating on the data where it is, i.e., a more data-centric workflow.

• Modernisation to new standards for higher interoperability. Over the years some new standards

have emerged, particularly in the landscape of web technologies, that bring higher levels of

interoperability between systems within and outside our data centre. This increased interoperability

improves access to ECMWF data and is strongly aligned with efforts such as the move to open data

and adoption of FAIR principles.

1.1. Resourcing

The general principles of our software strategy are designed to increase efficient use of resources, through

seeking synergies in component reuse, use of open-source software and enhanced collaboration with

Member and Co-operating States.

Over the last decade, the software development at ECMWF has benefited significantly from external funding

for strategy-relevant deliverables. Today, only 1/3 of the development resources are supported by Member

and Co-operating State funding, with 2/3 obtained from a mix of external sources such as Copernicus,

Destination Earth, other EU research programmes and other national funding sources. This document

provides a single software strategy, irrespective of the funding source, as these programmes are drivers to

developments that directly contribute and benefit the core mission of ECMWF.

ECMWF will continue to seek resources in a similar manner, complemented by enhanced collaborations

with Member and Co-operating States, or the Centre of Excellence created by the Atos HPC contract; whilst

relying on outsourcing of activities when economically and technically viable.

1.2. Innovation

A key motivation for seeking collaboration through the aforementioned channels, such as Copernicus,

Destination Earth or EU research programmes, is to drive innovation in our software. These collaborations

synergize with the core mission of ECMWF, helping us to prepare for higher resolution forecasting,

utilization of new technology or exploring new avenues of development. These projects also allow us to

work closely with a diverse range of partners across Europe, which keeps us abreast of cutting-edge research.

EU research programmes have given us the opportunity to work with state-of-the-art I/O hardware and

develop novel data storage backends for the FDB (Fields Data Base), improving our readiness for new

hardware. Other research programmes have allowed us to develop novel algorithms for data-cube feature

extraction (Polytope), which will improve access to our data, particularly as our forecast resolution increases.

Important development areas featured in this document have strong synergies with these programmes, e.g.,

the reuse of web framework components from CADS to ecCharts, or MultIO developed for DestinE Digital

Twins reused within IFS.

ECMWF’s Innovation Platform is another key contributor to our innovation strategy, the aim of which is to

offer a platform to facilitate collaborations and knowledge sharing, as well as providing the necessary data,

software, and computing infrastructure to experiment with new ideas. Currently, the Innovation Platform is

focusing on the creation of tools to facilitate the development of AI/ML models on the Centre's data.

Additionally, ECMWF runs the Code for Earth as an innovation programme. Each summer, up to ten

external developer teams work together with experienced mentors from ECMWF and Copernicus on open-

source projects related to software development, web development, machine learning or applied data science.

 Software Strategy and Roadmap 2023–2027

8 Technical Memorandum No. 904

The aim of Code for Earth is to drive innovation and open-source developments in the Earth science

community. ECMWF also hosts hackathons targeting certain themes, such as “Hackathon 2022: Visualising

Meteorological Data”, which bring fresh ideas from a wider community – not just developers.

Our strategy of increasing software reusability and software componentisation gives us more flexibility to

explore new avenues of development and integrate novel solutions into our software stack.

1.3. Open Development

ECMWF has had an open-source policy for all non-IFS software for many years and has also been making

much of its open-source software available on GitHub. However, in most cases our developers primarily

interact with the code on our internal BitBucket servers, with the GitHub copy available for external users to

use and contribute to. For the most part, Continuous Integration (CI) and Continuous Deployment (CD),

issue handling and documentation are handled using our internal Atlassian systems.

Whilst we are aware that there is potentially the extra burden of managing the interactions with external

contributors, experience in recent years has shown that the cost-benefit is very favourable, with the

community quite often improving the code and, moreover, increasing the interaction with Member and Co-

operating States (e.g., with the Met Office in odc and eckit, and Météo-France within Atlas library).

We aim to build on the progress already made in the further adoption of GitHub and other open platforms,

including for CI/CD and software documentation. This will bring ECMWF’s software practices into line

with much of the rest of the scientific software community and encourage greater collaboration.

1.4. Security

Software security is consistently addressed throughout the development process and is implemented as part

of a robust software development life cycle (SDLC) that includes security-specific phases and activities.

ECMWF follows and adopts best practices and guidelines, from organisations such as NIST and OWASP,

into the development process to help ensure that software security is consistently considered. In this software

strategy we in particular focus on the following areas:

• Repository security - all software developments are versioned and traceable to the individual author

in the Git repositories hosted internally in our own data centre. With the adoption of Open

Development, some of these will be moved to cloud-based Enterprise services, such as GitHub, for

which we will implement advanced security features integrated with our authentication and

authorization systems, such as 2 factor authentication. This offers full traceability, immutability, and

reproducibility of the software artifacts.

• Data security - most external data flows into and out of the data centre are secure using standard

industry protocols. However, it is important to highlight that data security also covers the data used

in the process of developing the software and services, which maybe static auxiliary data (masks,

country shapefiles, etc) or test data (e.g., reference results). The storage and provision of this data

needs to be secured and its traceability ensured. This area will require planned evolution as datasets

grow and current methods become outdated.

• External facing services security - multiple services are exposed to the outside of the data centre.

Although we have invested in the past in actively scanning these services for security flows by

employing specialised third-party contractors, we believe more tests and assurances need to be put in

place to insure a high level of security. This will involve both the services that interactively serve our

Software Strategy and Roadmap 2023–2027

Technical Memorandum No. 904 9

users but also the API endpoints of our automated systems. These tests would preferably cover

multiple techniques, from penetration testing and code scanning to social engineering approaches.

• Code security - finally security also comes down to developing code that is secure by design. To

ensure this we employ multiple approaches. Code committed is always reviewed before reaching

operational status, either by peers or team leaders. With respect to open development, this means for

external contributions only running CI/CD workflows on our infrastructure after careful code review

from internal software maintainers (called Gatekeepers). We will also continue to employ automatic

code quality tools and sanitizers that ensure that common mistakes like buffer overflows are less

likely to occur. We will continue to have our code regularly scanned by specialised third-party

contractors that look for code that is suspicious or marked as unsafe, or that infringes licenses or

patents. Finally, we will invest in the training of developers to ensure that security is a particular

concern when designing and implementing software and services.

1.5. Software Development Principles and Practices

Given the complex and numerous systems, services, and software packages that we maintain with reduced

resources, developer productivity is a main concern.

ECMWF has long embraced multiple techniques derived from Agile methodologies, to improve

productivity. Conscious that one size rarely fits all, we adapt these methodologies for each service and

software stack. Depending on the situation, we make use of multiple agile techniques like code reviews,

sprints, hackathons, SCRUM-style meetings, code refactoring, pair programming, etc.

As an example, one of the main blockers to developer productivity is code readability and maintainability.

Industry studies suggest that code is more read than written by factors ranging from 7/1 up to 200/1. We

improve code readability by making it a main criterion for code acceptance, and by encouraging

development in teams, avoiding silos and single-author code bases. We do this by code reviews, pair-

programming, and show & tell sessions.

One of our main tenets is of high-quality, domain-driven development. This means that we rely on being

focused on our domain, to develop software that is highly optimized for ECMWF's mission and the support

of our Member States.

Ultimately, our approach can maybe be best described as based on Lean Software Development principles5

for the development process, coupled to the production environment via an adapted DevOps methodology.

2. Software Roadmap

In this section, the software roadmap for the coming five years is presented, detailing the action plan for

adopting changes to our software stack to prepare it for our future challenges, in line with the software

strategy.

ECMWF operates multiple workflows that involve multiple software packages. Some of these workflows are

operational and time-critical; others are operational but not time-critical; some are research oriented; others

co-shared with external entities such as national meteorological services (NMS). To facilitate the description

and scoping of the roadmap, we will take the operational time-critical workflow as an example, but the

5 https://en.wikipedia.org/wiki/Agile_software_development

https://en.wikipedia.org/wiki/Agile_software_development

 Software Strategy and Roadmap 2023–2027

10 Technical Memorandum No. 904

roadmap applies to software in all these workflows. Figure 1 illustrates the ECMWF’s time-critical

workflow, from the acquisition of observational data into the data centre, all the way to the dissemination of

the forecast products. Observational data is acquired by the ecPDS service from a multitude of data sources

world-wide, and then passed to the SAPP system that processes and prepares them, eventually transforming

them to the ODB form that is ready for ingestion by the model. The IFS, here understood as the aggregate of

all its components that make up the Earth System model and data assimilation system, will assimilate these

observations and generate the forecast output, delegating handling of the output to the MultIO component.

MultIO may do further processing, and eventually encode the data into GRIB form, before storing it in the

FDB. From there, and within minutes of the fields being produced, the PGen system will fetch them to

produce user-defined products for the National Meteorological Services in the Member and Cooperating

States and other licensed users. In parallel to PGen, the Post-Processing will also compute derived products

from the model output, storing them in FDB.

All products are disseminated by ecPDS to NMSs and other licensed users. The forecast output will also be

archived for posterity in the MARS system, with some non-structured data archived to the ECFS system.

Both systems are later used by our users and researchers, to access data that eventually becomes off-line.

Web services (e.g., ecCharts, WebMars, etc.) are also used to provide forecasters and users access to our

forecast products in convenient, interactive ways, from within or from outside the data centre.

Figure 1: Generalised ECMWF workflow and data flow for generation of operational weather forecasts

The strategy described in Section 11 will be applied across the full depth of the software stack, and it will

impact many of ECMWF’s systems and services. To give an example, a single component like the GRIB

data encoder/decoder (ecCodes), is used within the IFS model (via a Fortran interface), within the MARS

archive (C/C++), inside the web stack, used in notebooks on the European Weather Cloud (Python) and

ultimately provided to our NMS to process disseminated data (as a library and command line tools). This

component of our software stack will go through a planned set of evolutions in the years to come, and

therefore the benefits should be felt across the board.

Software Strategy and Roadmap 2023–2027

Technical Memorandum No. 904 11

2.1. Areas of Intervention

We present the roadmap by describing multiple areas of intervention, some in vertical areas related to

specific applications, some in horizontal areas that crosscut along multiple applications and services to

support them.

The areas of intervention foreseen for the next five years are outlined below:

• Refactoring of the software stack is a horizontal cross-cutting area, interacting with multiple

applications and services.

• Data encoding and decoding libraries provide low-level functionality across the software stack to

encode and decode ECMWF observations and forecast data. These libraries form a horizontal,

supportive layer for all ECMWF services.

• Visualisation software is used across multiple applications and services, to display observation and

forecast data, in forms familiar to the users and Member State forecasters. This is considered a

supportive horizontal intervention area.

• IO-server and on-the-fly processing pipelines is a horizontal area, providing supporting libraries

that give the Earth System Models the capabilities to asynchronously process and output their model

output data, minimising the runtime of the time-critical runs by hiding I/O and allowing

computations to proceed.

• Data dissemination and acquisition is a vertical area which provides the service that sits at the

edge of ECMWF’s data centre, managing the acquisition of incoming observations and the

dissemination of the forecast products to NMSs and Users.

• Observational data pre-processing is a vertical area which provides the service to process the

incoming observations, filter them, and ensure a common format before being fed into the Data

Assimilation system.

• Core data storage software is a vertical area, providing the services that store, serve, and manage

the data assets of ECMWF. This includes the managed and unstructured archives in the DHS system

as well as within the HPC facility storage.

• Post-processing framework is a vertical area, delivering time-critical applications that create

derived products from ECMWF forecasts, making them available to other services, and ultimately,

the users.

• Metview environment provides an interactive, as well as batch, execution context for users to

explore, process and visualise ECMWF data. This is considered a vertical area.

• Web framework is a vertical area, supportive of a myriad of web applications that serve users in

multiple purposes at ECMWF, including data discovery and download.

2.2. Refactoring of the Software Stack

Status

Over the years, ECMWF has built a deep software stack with multiple layers to structure all the services and

applications that compose our forecast production workflows and support users handling the forecast data.

This stack, depicted in Figure 1, is mostly based on compiled software, often aimed at performance and

scalability, with much of it making the backbone of our systems.

New software components such as Atlas, MIR, ODC, PGen or FDB5 have been introduced to ensure that we

remain at the forefront of data handling, scaling to ever larger and denser datasets. Other packages, such as

 Software Strategy and Roadmap 2023–2027

12 Technical Memorandum No. 904

Metview, Magics and ecFlow, have been actively maintained to support new functionalities and ensure the

best user experience. As the stack has grown, synergies have been sought to bring about savings in the

maintenance cost of software and consolidation of functionalities. The strategy pertaining to this compiled

software stack is spread over multiple areas of intervention, mostly described in subsequent sections.

Growing organically in parallel to this compiled stack, there is another stack based on the Python language.

Originally this was mostly limited to the provisioning of language bindings to the existing C/C++ APIs. This

led to a series of interfaces that were not very easy to integrate with other Python community packages. As

more systems rely on the Python stack, it has become evident that ECMWF needs a more holistic approach

to the Python developments, one where both developments in the compiled C/C++ stack and the Python

stack are developed together, choosing the right language and interfaces for each task.

Figure 2: Current compiled software stack at ECMWF. Excludes Python components, web services and

ECPDS (whose stacks aren’t compiled). Some complex systems, with multiple components (e.g. MARS, ECFS)

have been coalesced into a single component for simplicity.

Motivation

To make the software stack more reusable under a multitude of different execution environments, from

massive parallel HPC workflows to web services, from interactive user Jupyter-like sessions, to batch data

analytics, we have started a project named SPICE. This project will take a holistic approach to the

refactoring of the software stack, making it more compatible with Python whilst also looking for

rationalisation of functionalities, that were often duplicated, into dedicated packages for reusability. This

project strongly relates to the future componentisation of Metview and the new MARS client. The aim is to

create a set of components with well-defined interfaces that are reusable and composable, which can be used

to engineer the more complex high-level applications and services that ECMWF maintains.

In Figure 3 we demonstrate what the future stack may look like. This view is centred around the packages

that will be supporting the Python language, which supplements the compiled stack presented in Figure 2.

Many of these components will interface to the compiled software stack where functionality profits from

delegation to a lower-level, high-performance C/C++ implementation. This is the case for the mir-python,

pyfdb, pyodc, eccodes-python components that are shallow interfaces around compiled libraries. Over the

next five years, we plan to refactor both software stacks simultaneously, as the needs of ECMWF

applications and services arise. Large projects such as the new design of the CADS (formerly known as

CDS), and the IFSHub developments are driving these developments.

Software Strategy and Roadmap 2023–2027

Technical Memorandum No. 904 13

Figure 3: The Python software stack being refactored in the SPICE project This is a work in progress and far

from complete, it will be subject to alterations in the years to come. Components in Green are new.

Components in Blue exist and are developed by ECMWF and will be part of the refactoring effortsfc.

Components in Orange are open-source and provided by the community.

Action Plan

The main guiding principle of the action plan is to develop more “Pythonic” interfaces to existing

components, allowing seamless integration with existing community software. These are typically wrappers

around the low-level compiled libraries (e.g., pybufr, pyfdb or mir-python).

We plan to incorporate the usage of well-supported software packages in our software stack, that can serve

as building blocks to other higher-level meteorological specific functions. These will, together with other

packages, serve as a supporting layer of pure numerical libraries, which implement algorithms on simple

structures (e.g., Numpy arrays or Pandas frames). In Figure 3 this is depicted by the lower layer. These

packages will be data format independent, hopefully maximising their reuse in different execution contexts.

The middle layer will provide the structured data handling functionality, allowing integration with different

data formats, and leveraging multiple community packages. In both these layers, we plan to develop a few

new components, which applications and services can rely on to achieve certain functionalities:

Grid Iterator (working title), a new low-level, high efficiency compiled library, that will serve as

the definition of the grids used in the Earth System Models. This will serve to consolidate code that

over the years is repeated in a multitude of packages, with some resulting inconsistencies.

Data Sources (working title), a new set of libraries abstracting the access to data, independently of

where the desired source is. This aims to serve both HPC batch-type workloads which access fast

storage such as the FDB as well as interactive users that may run on Cloud systems, e.g., an online

Jupyter notebook.

FieldSet, is a lift-off of the functionality that currently exists inside Metview to handle sets of Fields,

manipulating them using scientific metadata and providing the abstraction level that is familiar to

users of ECMWF data. Used in conjunction with Data Sources, many technical details of data

 Software Strategy and Roadmap 2023–2027

14 Technical Memorandum No. 904

location and file format will be handled transparently. The Fieldset is intended to integrate well with

Python community software.

In the top layer of Figure 3, we can see the application and services that will use the underlying plugins,

composing them in unique ways to deliver services -- from hydrological post-processing (Danu); to machine

learning data management (CliMetLab); passing through reliable hallmarks of ECMWF software such as

Metview and ecCharts.

Milestones

2023: First version of Grid Iterator, Data Sources and FieldSet libraries

2024: All Python software packages open sourced and integrated with community development

practices (open development principles)

2025: Generalised usage of the new concepts like Data Sources and FieldSet, and adopted into

systems like Metview and Danu

Interactions

As a horizontal area of intervention, this work supports many other projects and cross cuts all development

activities. It is deeply related to the refactoring of the web framework, the development of the post-

processing project and the developments coming to the Metview environment, described later.

Once the components have a minimal usable functionality, we plan to open source them for interaction with

the community, hoping this will eventually constitute a series of components that can be reused in contexts

other than ECMWF services.

2.3. Data Encoding and Decoding Libraries

Providing forecast data is at the core of ECMWF’s mission. It is crucial that ECMWF supplies ways to

encode and decode the data in formats that are appropriate to the specificities of that data, such as WMO

mandated formats. In this section we address the strategy for the low-level software that provides the

encoding and decoding of all mission critical ECMWF data. It is separated into two major efforts aligned

with two separate software packages: the first handles the coding of gridded forecast data and observations in

BUFR format, whilst the second handles the coding of observation data, in the form that the IFS model

handles (ODB).

Handling WMO GRIB/BUFR with ecCodes

Status

The software package ecCodes handles GRIB and BUFR data in such a way that provides a consistent

interface no matter the edition of GRIB or BUFR used. It is written in the C language and provides a Python

interface that maps directly to its C interface. For BUFR decoding we additionally have the legacy BUFRDC

package, which undergoes only essential maintenance.

Motivation

As a library written in the C language, ecCodes has required much code of its own to implement basic data

structures and operations. It has also been unable to benefit from developments in ECMWF's C++ packages,

as their code could not be re-used inside it. This situation has led to duplication of code between packages

and accrual of technical debt. Additionally, its Python interface is very tightly tied to the C interface and

does not take advantage of the language elements that Python brings.

Software Strategy and Roadmap 2023–2027

Technical Memorandum No. 904 15

Resource pressures will push an emphasis on deprecating facilities that are hard to maintain. Python 2 has

not been updated in two years, and niche architectures such as 32-bit platforms are hard to justify in a cost-

benefit analysis. Reducing our support for such platforms will reduce technical debt and allow development

time to be better focused on the main platforms that benefit most users. Support for ecCodes on the native

Windows platform generates additional burden and will need to be carefully considered and properly

defined.

The legacy BUFRDC package puts an additional burden in maintenance, and we do not have the resources to

fix any major issues with it, thus leaving users vulnerable to any deficiencies in the package. Efforts must be

made to remove any remaining obstacles that prevent the last users from migrating to ecCodes for their

BUFR handling.

Action Plan

We see the future of ecCodes as still providing the existing C interface, but internally implemented as C++.

This will allow for the removal of much code in favour of functionality supplied and optimised by the C++

STL (Standard Template Library). It will also allow for greater sharing of code and would open the

possibility of being more involved in the software refactoring project (SPICE), using the proposed Grid

Iterator library instead of its own code. The first step, which is to test the feasibility of building with a C++

compiler, has already been done, with favourable results.

Support for Python 2 and 32-bit architectures such as i686 will be dropped, enabling legacy code to be

removed and reducing the time spent on hard-to-support platforms. Support for native Windows platforms

will be defined after a requirement gathering exercise in consultation with users.

We will work with users of BUFRDC to ensure that the features and performance of ecCodes for BUFR

handling are sufficient to enable migration. We will also give a reasonable timeframe before dropping all

support for BUFRDC, to allow ECMWF’s operational jobs to either be migrated, or expire in cases of legacy

data sources.

The Python interface to ecCodes will gain a new, higher-level interface to make dealing with GRIB and

BUFR messages from disk and memory simpler for users.

Milestones

2023: Release of new high-level Python interface for ecCodes

2023: Start building ecCodes as a C++ package and drop support for selected platforms

2024: Replace ecCodes’ own iterator code with calls to the new Grid Iterator library from the SPICE

project

2025: End all support for BUFRDC

Interactions

As ecCodes is such a fundamental component of our software stack, changes will be undertaken with much

interaction across the ECMWF organisation. Liaison with Member and Co-operating State users and

representatives will also be undertaken. ecCodes will also be fundamental in the project to move all

ECMWF’s data to GRIB2, involving much interaction with the ECMWF Data Governance process and

related to WMO standardisation activities.

 Software Strategy and Roadmap 2023–2027

16 Technical Memorandum No. 904

Handling of ODB observation data with ODC

Status

ECMWF has replaced the old ODB-API software with a new package for ODB-2 support, named odc. This

came with several improvements, notably:

• Support for strings longer than 8 characters, enabling support for WIGOS identifiers

• New interfaces in C and Fortran, with consistent error handling

• Decoding data into, and encoding data from custom memory layouts

ODB-API has been deprecated and is now unsupported. A subset of the old ODB-API interfaces has been

retained for a transitional period.

Alongside odc, ECMWF have released a Python library for working with ODB-2 data, and which integrates

elegantly with pandas and numpy. This comes in two flavours; a Python-only library, pyodc, and a wrapper

library, codc, which provides exactly the same interface, but offloads work to the compiled odc library for

improved performance. These libraries present a relatively minimalist API, supporting only encoding and

decoding data, and interrogation of the structure of ODB-2 data streams.

Motivation

We would like to encourage the use of the Python interfaces for researchers investigating and experimenting

with observation data sets. Feedback from users has indicated that the SQL-like filtering functionality

available in the odc command line tools, and through the MARS interface, is extremely useful, and its

absence is a blocker to people adopting the Python interfaces. Although the intent was to build a thin

encoder/decoder, the absence of this filtering functionality is a blocker to further uptake of the Python

interface.

We would like to make use of pyodc and codc to support ongoing work with observations with external

partners. This will assist them in developing clean and modern software tools and facilitate the use of novel

observations.

Action Plan

We will implement the SQL filtering functionality in the codc module, alongside any necessary supporting

code in the ODC C API. We note that this will result in a divergence between the functionality presented by

pyodc and codc, as it will not be feasible to implement the SQL filtering in the pure Python module. The

interface will be kept the same but users of pyodc will be encouraged to interoperate with Numpy and

Pandas community software for filtering.

Once the use of data from the Observation Store is stabilised in the operational pipeline, we will work to

remove the old-style deprecated interfaces, retained from ODB-API.

In addition, we will build a Python-based infrastructure for ingestion, quality control and encoding of high-

frequency unconventional observations.

Milestones

• 2023: Support implementation of the first version of the Observation Store

• 2023: SQL-like filtering available through odc API

• 2025: Infrastructure for ingestion, filtering, quality control and encoding of high-frequency

unconventional observations

Software Strategy and Roadmap 2023–2027

Technical Memorandum No. 904 17

• 2026: Removal of deprecated old-style ODB-API interfaces

Interactions

Whilst the Observation Store software uses odc, it is primarily built on the FDB software stack. Configuring

this software will involve strong interactions with the ECMWF Data Governance process. Integrating the

Observation Store into the forecast production pipeline, for direct ingestion of observations into the model

will involves strong interactions with the COPE project.

The iChange and TRIGGER European projects will involve the acquisition, data governance, encoding,

filtering and quality control of novel unconventional observations. The Destination Earth programme also

contains work to bring higher resolution data into the model, which will have implications for observation

encoding.

2.4. Visualisation Software

Status

Magics, ECMWF’s meteorologically oriented visualisation software, has been developed and maintained for

the last 40 years. It provides an easy and fast way to visualise data in GRIB, BUFR and NetCDF format. It is

the graphical kernel of Metview and ecCharts, and is heavily used at ECMWF and some Member and Co-

operating States. Its API provides users with a long list of parameters that give them the ability to tailor their

plot but can be perceived as difficult to learn for a new generation of Python scientists used to working with

packages such as matplotlib. It will require further maintenance and development to tackle the challenge of

the data resolution increase.

Motivation

We strongly believe that we still need to provide our users with a meteorologically oriented package that will

hide some of the complexities of handling meteorological data, but it is time to review what we offer, to see

if it is still fit for purpose and ready for the next challenges -- and to imagine the visualisation component of

the SPICE project.

Magpye and bluejay are a first attempt to create these lightweight Python modules, easily installed from

Pypi, from day 1 with open documentation, and a gallery of Jupyter notebooks. Their final goal is to provide

meteorologically oriented functions to help users to get a quick view of their data. Both packages have a

small learning curve for newcomers due their Pythonic/matplotlib approach and will be able to display any

type of data, provided the data implements some functionality needed for the specific visualisation. These

mechanisms will ensure a good and light-weight interoperability with other SPICE components.

In a first stage, we envisage to delegate to plotly and matplotlib all the graphs functionalities (bluejay), and

to Magics all the geographical visualisations (magpye), taking advantage of all the efforts that have been put

in over the years in Magics to detect the most appropriate style to display the data. This approach will give us

the freedom to review this decision and use new packages if they prove to be more suitable in the future and

ensure a smooth transition.

Action Plan

The first action is to review the requirements for a graphical software such as Magics and be ready to

rationalise the requirements that were accrued over the years. We will then need to objectively review the

advantages/disadvantages of further developing and maintaining Magics, by investigating the possibility of

using MIR to speed up the visualisation of high-resolution data, and the use of graphical Python packages.

 Software Strategy and Roadmap 2023–2027

18 Technical Memorandum No. 904

In the meantime, a full analysis of magpye/bluejay should be done, to make sure that the offered solution

will not only work for the next generation of the CADS Toolbox, but also for other ECMWF users, while

ensuring their interoperability with other SPICE components. In tandem, we will also refactor applications

such as SkinnyWMS or CliMetlab to make use of them, to minimise migration and maintenance.

Milestones

2023: Design the high-level interfaces of magpye and bluejay

2023: Evaluate the implications of moving away from Magics, and Plan the transition of Magics

2024: Begin the transition plan for Magics

Interactions

Magics is used by a large number of users and in operational systems such as Metview and ecCharts, Any

change should be considered carefully: interaction with users and developers is key. To succeed, any

decision in its future will be taken in close cooperation and agreement with the Metview and ecCharts

developers and the transition carefully planned. This transition phase will have some challenging but positive

aspects, as some historical plots will need a complete rewrite, reducing our technical debt.

Magpye and bluejay will be two important components of SPICE and should be carefully designed with

users in mind as well as easy maintenance. We should be ready to interact and contribute with the matplotlib

community.

Software Strategy and Roadmap 2023–2027

Technical Memorandum No. 904 19

2.5. IO-server and On-the-fly Processing Pipelines

Status

Currently, the IFS features an IO-server that was implemented by Météo-France and further extended by

ECMWF. This IO-server is written in Fortran and required significant work to support the Wave model

output. The EU funded NEXTGenIO project provided the opportunity to do the Wave model migration, and

the extension of the IO-server for ensemble forecasts. This was critical for the scalability of the ensemble

forecasts in CY45R1. Whilst the current IFS IO-server performs very well, it is quite inflexible and was

laborious to extend.

The ocean model currently used by ECMWF (NEMO v3), uses another IO-server technology (XIOS) which

has features for on-the-fly processing which are used for computing temporal statistics and cumulative

parameters. However, XIOS only supports NetCDF and a strictly file-based output. A new solution is

required to support a message-oriented protocol and the GRIB format to allow the proper storage of ocean

fields in FDB and MARS, and enable synergies with the remaining ECMWF workflow, and achieve

scalability at very high resolutions.

Figure 4: Design of the new MultIO server showing various on-the-fly post-processing pipelines for different

fields, with flexible output to different types of data storage.

Motivation

ECMWF is extending the existing MultIO software with IO-server functionality, heavily inspired by the

efficient aggregation mechanisms of the current IFS IO-server and the flexible post-processing pipelines

available in XIOS (see Figure 4). The new MultIO IO-server handles aggregation of fields from distributed

compute nodes, using flexible transport protocols (e.g., MPI, TCP) and allow direct writing to different types

of data storage (including FDB/MARS). Furthermore, the MultIO IO-server supports user programmable

pipelines for on-the-fly post-processing, allowing for generation of additional fields and products, such as

temporal statistics, without having to write-and-read-back from the IO system. This is crucial technology to

enable the handling of the upcoming very high-resolution data sets.

Action Plan

The MultIO IO-server will initially be used by the NEMO Ocean model from v4 onwards, currently

scheduled for CY49. The new IO-server will also be used for the new FVM dynamic core model being

developed at ECMWF. After demonstrating its performance and flexibility, the MultIO IO-server will be

 Software Strategy and Roadmap 2023–2027

20 Technical Memorandum No. 904

adopted for use by the atmosphere and wave models’ output. This is expected to be a contribution from the

DestinE project.

The programmable pipelines will allow different post-processing to be applied to different types of fields,

and we intend to execute much more of our post-processing stack on-the-fly using this mechanism. Infero, a

new software package developed for unified execution of machine-learned inference models, currently runs

within IFS and executes on in-memory data from IFS. We expect to run Infero within the programmable

MultIO post-processing pipelines, therefore executing ML models on global fields very effectively without

touching the I/O system.

Furthermore, ECMWF will evaluate the feasibility of executing part of the product generation (PGen)

workload inside the MultIO processing pipelines, seeking to massively improve I/O efficiency and

potentially allow earlier creation of products. This was already partially demonstrated within the EU funded

MAESTRO project, with very promising results. Further work is needed to operationalise this prototype and

demonstrate it at scale.

The MultIO model will also be developed to support multi-threaded asynchronous encoding of data, to

further minimise the impact of output on the model runtime. This will support better configuration of HPC

job geometries to maximise use of available physical cores and hyper-threading on modern systems.

Milestones

2023: MultIO used for NEMO v4 output in CY49

2025: MultIO used for IFS atmospheric and wave model output

2027: Parts of PGen executed on-the-fly as part of MultIO programmable pipelines

Interactions

MultIO server activity has strong interactions with IFS and NEMO developments, in particular, MultIO

interacts with the Atlas library. The post-processing pipelines will impact the PGen software. There are also

opportunities to interact with the machine learning efforts at ECMWF and data compression developments.

Through Destination Earth there will be collaboration with other partners and external communities, since

MultIO and its on-the-fly post-processing features are a core part of the Digital Twin Engine. MultIO is open

source, and collaboration will be encouraged with all interested parties, including Member and Co-Operating

States.

2.6. Data Dissemination and Acquisition

Status

Data dissemination and acquisition at ECMWF is handled by the ECMWF Production Data Store (ECPDS).

This is now a very mature software, which has been in operational use for several years. However, the

operational context is shifting. As a result of the ECPDS extension to the Scalable Acquisition and Pre-

Processing (SAPP) system Optional Programme, various Member States and collaborations intend to use

ECPDS for their data acquisition, dissemination, and inter-site data movements. Work to support the needs

of the Member States in this Optional Programme will drive additional upcoming work.

Motivation

As a component that interacts with external data sources and users, ECPDS has a relatively high level of

business-as-usual development. There is a constant stream of work supporting new network transport

Software Strategy and Roadmap 2023–2027

Technical Memorandum No. 904 21

protocols and data endpoint types. This is especially true given the offerings of current cloud providers,

whose interfaces shift regularly.

The SAPP Optional Programme requires the development and deployment of a standalone ECPDS

distribution – that is, one that does not require ECMWF’s operational infrastructure to work. The decoupling

of ECPDS from ECMWF’s infrastructure, and its adaption to the needs of the Member States will drive most

of the immediately upcoming work.

The long-term goal of ECPDS has always been to support data transfers in a scalable manner, to a range of

locations. As our data volumes continue to increase, alongside the range of destinations, we need to improve

our data transfer capabilities and performance.

Action Plan

Development work is required to support integration of ECPDS into Member States existing IT

infrastructure. This particularly includes monitoring, authentication and accounting functionality. Further, as

ECPDS has been developed and deployed by a tight-knit development and operations team, the external

facing documentation is insufficient to support external operational teams and will need significant work. In

conjunction with that, ECPDS will be open sourced to make external access and deployment more

straightforward.

Member States in the SAPP Optional Programme wish to use ECPDS to support synchronisation between

multiple sites. This is not currently supported by ECPDS, but is a natural fit to its capabilities, and will also

be a potentially useful functionality to support the Destination Earth programme by linking ECMWF’s data

centre and the EuroHPC data centres. This functionality will need to be developed once the initial integration

of the standalone ECPDS with Member States infrastructures is completed.

The WMO is working towards the replacement of the Global Telecommunication System (GTS) with the

WMO Information System (WIS) 2.0. This will present a publish-subscribe (pub/sub) interface for the

acquisition and distribution of observations. ECMWF already has support for Malawi prototype, operated by

the WMO, which is making available observations from a selection of African countries. But this support

needs to be extended to support wider uptake of this technology.

Milestones

• 2023: User and administrator documentation of ECPDS for Member States

• 2024: ECPDS fully integrated into at least one Member State’s datacentre

• 2024: ECPDS open-sourced

• 2024: Full-featured use of WIS 2.0

• 2025: Inter data-centre synchronisation supported

Interactions

ECPDS development has several ongoing business-as-usual interactions with other teams. Most notably,

there is a strong link to operations run by the Forecast Delivery Team, but also with the operational teams

involved with acquisition and product generation. The Copernicus Atmosphere Monitoring Service (CAMS)

also makes use of ECPDS for observation retrieval and distributing data to their users through the data

portal.

In terms of external development, ECPDS development has strong links to the Member States involved in

the SAPP Optional Programme, especially Ireland and the members of the UWC West consortium.

 Software Strategy and Roadmap 2023–2027

22 Technical Memorandum No. 904

ECPDS is likely to be used for acquisition of novel, unconventional observations in the iChange and

TRIGGER projects. The Destination Earth project involves attention to novel satellite observations and may

use ECPDS to synchronise data between ECMWF’s data centre and EuroHPC computing facilities.

ECPDS will be heavily impacted by, and involved in, the shift towards provision of open data.

2.7. Observational Data Pre-Processing

Status

ECMWF’s Scalable Acquisition and Pre-Processing system (SAPP), is a critical and essential component of

the NWP processing chain, delivering timely observational BUFR data to the IFS operational assimilation.

The majority of business-as-usual activity is currently focused on introducing new observations in

operations; this includes configuring data acquisition (via ECPDS service) and developing decoding and

processing workflows orchestrated by SAPP.

The SAPP Optional Programme (SAPP OP), launched in 2019, allowed several participating NMSs to start

running customized SAPP virtual instances in their own local infrastructure with good results being reported

both in terms of system availability and increased number of assimilated observations and, therefore,

improved forecast quality.

Motivation

Over the last few years, new technological and operational requirements have emerged from BOND

migration and SAPP Optional Programme. The following key areas of maintenance and evolution have been

identified:

Address technical debt by decommissioning or migrating legacy code and workflows and continue

refactoring and decoupling software from ECMWF infrastructure, allowing for higher local

customization (relevant to SAPP OP).

Extend and improve system provisioning to virtual/cloud-based platforms, to enable and facilitate

scalability, automated testing and Continuous Development and integration.

Support WMO driven developments (migration to WIGOS identifier, WIS 2.0).

Support IFS data processing developments (e.g., COPE) and extend range of data formats and

observations handled, to include novel and higher spatial/temporal resolution data (DestinE).

Action Plan

Several migration and porting activities are planned or already under way to address and reduce technical

debt: Python2 to Python3, and PGI to GNU Fortran code migrations will be completed ahead of operational

implementation in Bologna.

The replacement of Legacy BUFRDC Fortran software with equivalent ecCodes Fortran/Python programs is

also under way and internal Python modules used for BUFR processing are being refactored to simplify

decoders customization and introduce higher level of abstractions for decoding/encoding and filtering steps.

In terms of system provisioning, a SAPP docker system (developed within the scope of SAPP OP) is being

consolidated and will be finalized after the BOND migration. The containerized solution, together with the

automation of virtual instance provisioning, is expected to vastly simplify deployment and integration of the

system both on ECMWF and Member States infrastructures.

Software Strategy and Roadmap 2023–2027

Technical Memorandum No. 904 23

As WMO Information System (WIS) 2.0 will progressively replace Global Telecommunication System

(GTS) some work will also be required to adapt SAPP acquisition stage to use WIS catalogue and topics

metadata in place of GTS bulletin headers for decoders routing logic. Monitoring tools will also be

enhanced to improve tracking of WIGOS Station identifier uptake for different observation types and

reporting of BUFR templates usage in operationally exchanged data.

SAPP extraction stage, feeding IFS Data Assimilation, will also be reviewed to meet the needs of

Continuous Observation Processing Environment (COPE) project; the current plan is to enable hourly/sub-

hourly BUFR extractions in IFS cycle 49r1.

Finally, incoming data format handling will also be extended to accommodate more JSON/CSV/NetCDF to

BUFR workflows in support of High-Res Data and novel/unconventional observation processing as

requested in the frame of different evolution projects (e.g., SAPP OP, DestinE).

Milestones

• 2023: SAPP docker system available; provisioning on cloud/virtual infrastructures

• 2024: COPE extractions in operations

• 2024: WIS 2.0 data acquisition (thru ECPDS-ACQ)

• 2025: Finalize SAPP decoders BUFRDC migration

Interactions

SAPP strongly relies on ecCodes for its BUFR decoding/encoding layer and gets all incoming observational

data from the ECPDS system; as such strong collaboration is in place to follow and adapt to new data format

and acquisition developments (EUMETcast, WIS 2.0, Observational data governance). Similarly,

interactions with WMO for data governance activities and with internal teams and systems involved in

observation verification and assimilation can drive the implementation of new processing and monitoring

features (COPE project, WIGOS identifier handling and monitoring).

2.8. Core Data Storage Software

Status

One of ECMWF’s great strengths is its metadata-driven workflows. Data is stored in self-describing data

formats and can be handled according to globally-unique identifying metadata through all parts of our

workflows. For examples, not only is storage and retrieval of meteorological data metadata driven, but also

post-processing and many categories of custom computation and dissemination of products to users.

 Software Strategy and Roadmap 2023–2027

24 Technical Memorandum No. 904

A large part of this functionality is driven by the MARS ecosystem, comprising the MARS server (holding

ECMWF’s long-term meteorological archive), the FDB (an in-HPC, high-performance object store) and the

MARS client. Additionally, ECFS provides an unstructured archive for data which is not self-describing

meteorological data, or otherwise sits outside of the metadata-driven workflows.

Version 5 of the FDB was deployed into operations at ECMWF in 2019, after a long period of development.

This brought substantial convergence between the FDB and the rest of the MARS ecosystem, as well as

performance and semantic improvements on the parallel filesystem. But the FDB has also brought a great

deal of forward-looking flexibility to be configured in different ways and to support different backend

technologies.

Recent developments have also focussed on the convergence of the MARS and ECFS software and

operational environments. In 2019 there was no commonality at all between these two services, which now

share deployment and administrative environments and large chunks of their codebases.

Motivation

Data handling underpins ECMWF's operational systems, giving us leading-edge performance and scalability

on the HPC (through the FDB), consistent and semantic access to data throughout our workflows and

integration of our long-term meteorological archive (MARS) into the same data ecosystem as current data.

But the data and storage landscapes are constantly changing, and we need to address several driving factors

to support ECMWF's strategy:

1. Resolution and data diversity increases drive constant increases in data volume.

2. The storage landscape is becoming more heterogeneous, and we wish to be able to make use of new

technologies on the market.

3. HPC and Cloud systems are gradually converging, and we wish to enable and support use of our data

from the cloud.

4. Open data is increasingly important, and comes with higher volumes of data access, and different

access patterns and semantics.

Beyond even these driving factors, we wish to increase the flexibility of the configurations that can be

supported by the FDB, which will facilitate the development of new backends to the FDB software. We also

Software Strategy and Roadmap 2023–2027

Technical Memorandum No. 904 25

wish to support a wider range of data access paradigms, particularly the extraction of data across different

axes and subsetting patterns to those currently supported, and to support the storage of novel types of data

using the same access technology.

Finally, having seen the benefits of the work done so far, we wish to continue and extend the convergence

between the MARS and ECFS domains, and to continue to excise and replace legacy software components

with more modern components. This will reduce the long-term maintenance and development effort

required, and also reduce the overhead on the operational teams who administer and run these services 24/7.

Action Plan

Larger data volumes will require the use of novel storage technology that is coming onto the market,

including solid state storage and storage class memory, and high-performance object storage technology built

on them, as well as cloud storage paradigms. We will expend significant effort building backends to support,

and evaluate, a range of hardware backends. This will give us significant flexibility during procurements

going forwards. We will also restructure the indexing and configuration of the FDB to allow the use of

multiple data backends simultaneously, and to support migration of data between backends.

As data volumes increase, the impact of using HPC and other resources to move data between data system

components becomes more significant. We will bring in usage of direct transfers of data from the FDB to

MARS, and between storage tiers and systems within the FDB. We will also implement a Volume FDB, to

store large volumes of research data on non-tape storage outside the HPC, and avoid unnecessary transfer

and archival of research data with a short lifespan.

At present, ECMWF's workflows are largely driven by single users, and the permissions and access model is

delegated to the POSIX filesystem. To support non-POSIX backends, and use of the FDB in cloud and more

diverse user environments the FDB will need to support explicit user authentication and authorisation. This

will likely involve reworking the remote-FDB protocol and may involve a thin FDB microservice layer for

indexing and for data storage.

The massively increased data volumes implied by increases in model resolution will drive a need to serve

more data at reduced resolution. The open data strategy combined with access from the European Weather

Cloud drive very different access patterns, slicing data across different axes. We will extend the FDB

ecosystem to be able to store reduced resolution or re-gridded copies of data, in secondary locations, to

support resource-efficient access. We will also build support for directly accessing slices and geometrically

defined subsets of the data, building on developments made in EU research projects (Polytope).

We aim to take the opportunities presented by required performance improvements and new functionality

to reduce duplication in our software stack, whilst removing legacy code. MARS, FDB and ECFS began as

entirely separate codebases, and are undergoing a continuous convergence. We expect to standardise the

MARS language handling across our stack and to replace much of the server machinery in ECFS with that

from MARS. The new Observation Store (see Observation Handling above) is built using the FDB

technology.

The MARS and ECFS clients are now old pieces of software. We will reduce our long-term maintenance

overhead by (re)implementing MARS and ECFS clients using modern languages and paradigms. These will

provide a programmatic, python-based interface to improve their integration into our workflows. By reusing

tested software components between the FDB, MARS server and the new clients this will improve

robustness with lower development overhead. Replacing the client-server communication protocol, currently

 Software Strategy and Roadmap 2023–2027

26 Technical Memorandum No. 904

based on FTP with that used in MARS will also enable significant performance and semantic improvements

in ECFS when handling large data transfers.

Milestones

2023: Implement Volume FDB, and Observation Store for use in research mode

2023: Develop DAOS and MOTR backends for the FDB

2024: Multiple backends per database and explicit user and permissions management in the FDB

2024: First versions of the new MARS and ECFS Clients

2025: Feature extraction support in the FDB

2025: Direct transfers (FDB to FDB, MARS to MARS and FDB to MARS)

Interactions

The Core Data Storage Software forms a pipeline that links many groups and activities at ECMWF.

Development work on these software packages involves collaborating with and balancing the needs of these

different groups.

Developments to our Core Data Storage Software underpins many of the goals and developments in

ECMWF’s externally facing projects. The ACROSS and IO-SEA projects involve direct work on the FDB to

support novel storage backends and data flows. The Destination Earth project will involve significant

development work on the FDB software, and deployment of the FDB and Observation Store into novel

contexts, storing novel data. We also anticipate collaboration with German Climate Computing Center

(DKRZ), MeteoSuisse and CSCS, amongst others, to support the FDB and metadata-driven workflows.

Software Strategy and Roadmap 2023–2027

Technical Memorandum No. 904 27

2.9. Post-Processing Framework

Status

Multiple activities within ECMWF depend on time-critical post-processing suites which run downstream of

IFS. These suites are usually not compatible with PGen (Product Generation software), because instead of 1-

field-to-many-products, these suites perform statistics or climatology across many fields (e.g., clustering

products, shift-of-tails, extreme forecast index). These suites have been developed disparately across the

centre, and many suffer from scalability issues which will prevent scaling to the planned ensemble forecast at

9 km resolution.

Motivation

We aim to develop a framework for post-processing suites, which will consolidate post-processing

functionality under a single environment, allying modern and scalable computer science technologies with

best scientific practices. This will result in higher performance, greater scalability and improved I/O

efficiency. Once this framework is in place, we expect that the maintenance and portability of this

framework to be much increased. For example, it will be possible to reuse the same consolidated procedure

between post-processing the operational model output and that of a research experiment (which is only

achieved today with laborious ad-hoc procedures).

Action Plan

The first goal is to port the various tools used in these suites to leverage the refactored software stack

introduced earlier, the harmonised Python ecosystem developed by the SPICE project. This will improve the

robustness of the tools, ensuring the same methods and algorithms are used throughout, and improve their

maintainability. In many cases, this will already improve the performance and scalability of these tools.

The second goal is to harmonise the execution of the suites, by refactoring them under a common Pyflow

framework. This will improve the operational management of these suites, whilst also enabling simple

execution within research experiments (including via IFSHub). It will also bring parallelism to essential

suites, such that they are ready to scale to 9-kilometre ensembles by CY48R1.

With this post-processing framework in place, we will be in a strong position to explore much more efficient

execution of these suites, whether through optimizing I/O or by utilising distributed parallel computing

frameworks. This will enable scaling of these suites beyond PiB-scale forecasts.

Milestones

2023: Port time-critical, unscalable post-processing suites for 9-kilometre ensemble using the post-

processing framework, demonstrating its effectiveness

2025: Pioneer and standardise post-processing suite development across the centre

2025: Enhance the post-processing framework with a robust and scalable parallel execution

framework

Interactions

There will be strong collaboration across the ECMWF as multiple teams contribute with scientific

functionality into the framework. The suite refactoring will rely on, and help to develop, the Python

components of the SPICE project. The work will also complement IFSHub, allowing execution of suites

within RD experiments.

 Software Strategy and Roadmap 2023–2027

28 Technical Memorandum No. 904

2.10. Metview Environment

Status

Metview is ECMWF's user-facing software package that provides a single environment for accessing,

processing and visualising data. It includes a graphical user interface (GUI), a Python interface and its own

Macro programming language. Over its 30 years of development, Metview has accumulated much code for

processing model and observation data. While its original design made good use of the libraries available at

the time (e.g. the MARS client with its fieldset handling and service-oriented architecture), many new

libraries have since evolved, sometimes needing to replicate some of Metview's functionality while

remaining independent of it. This duplication of code leads to technical debt, and different implementations

can lead to software packages producing slightly different results for the same computations. Most of the

current software stack that Metview relies on is hard-coded to use double-precision floating point arrays,

making manipulation of high-resolution data (e.g. 1km) very expensive in terms of memory usage.

Metview's visualisation capabilities come from the Magics library, with a close coupling of code.

Motivation

As we refactor the software stack there is a chance to rationalise the situation with Metview, with code and

algorithms from Metview being contributed to new software components that Metview and other packages

can use. For example, many thermodynamic functions are already being contributed to meteokit, and once

the software refactoring project is underway, Metview's own code for these computations can be removed,

and Metview (and other packages) can instead rely on the functions donated to meteokit. The same is true for

other components in the upcoming software stack. Metview will continue to provide users with a high-level

way of interacting with our data, including its GUI and improved ways of working in Jupyter notebooks.

With an upcoming new MARS client, much of Metview’s code must be refactored to adopt it while retaining

its current functionality. This will be an opportunity to reduce the amount of code in Metview and increase

its consistency.

As data volumes increase, so too must Metview's capacity to handle them. We are already seeing 1km grids

from Research, and even the resolution increase of the ENS forecast could have an impact on data handling.

Metview must be able to continue processing and visualising such fields efficiently with existing hardware.

Metview’s close coupling with Magics currently imposes some constraints on how we package both software

packages, leading to extra maintenance work. Having a looser coupling will reduce overall maintenance and

allow both packages to evolve more independently.

As Metview’s Python interface becomes more widely used due to its greater expressiveness and flexibility,

the original Macro language will become legacy, and supporting both will become a duplication of effort.

The Python ecosystem will be the way forward, especially in the context of the functionality that the SPICE

project components will be able to offer. We will first freeze development of the Macro language, following

that with a decommissioning in due time.

A relatively new environment where Metview is being increasingly used is the Jupyter notebook. In this

environment, Metview’s GUI is usually not available, creating a need for new components that allow data

inspection inside the notebook.

Software Strategy and Roadmap 2023–2027

Technical Memorandum No. 904 29

Action Plan

We will use the opportunities provided by the SPICE project to (i) donate code and algorithms from Metview

to new software components that can be used elsewhere, and (ii) re-base Metview on this more modern

software stack.

Another refactoring will involve replacing the existing C-based MARS client with the new C++ based client

as Metview’s C++ interface to the MARS archive and to basic GRIB-based computations. This will bring

Metview’s binary components up to date as part of a well-tested software stack.

Further work will be done to enhance the usability of Metview inside Jupyter notebook environments, in

particular interactive data inspection and plotting widgets.

The Magics plotting library contains a substantial amount of code that is used only by Metview’s interactive

plotting window. By extracting this code from Magics and making it part of Metview, maintenance and

packaging of Magics will be eased, and Metview will gain more flexibility in implementation.

A phased approach over the coming years will deprecate and eventually remove the Macro language from

Metview, starting with a freeze on new features. We will explore options that could assist users to migrate

their scripts to Python.

We will ensure that Metview and all its components can handle the large volumes of data envisioned in

future model upgrades by identifying and tackling bottlenecks. One component of this is to ensure that all

packages can work with single precision floating point arrays if requested to do so, thus halving their

memory usage.

Milestones

• 2023: Freeze development of Metview’s Macro language

• 2024: Refactor of Metview to use new MARS client code

• 2024: Enhanced Metview widgets for interoperability with notebook environments

• 2024: Development of SPICE components required by Metview

• 2025: Refactor Metview to use new SPICE components and reduce strong dependency on Magics

• 2027: Removal of Macro language from Metview installations

Interactions

Important stakeholders in these plans are all users of Metview, which include Member and Co-operating

State users. The work to reduce memory consumption will require interactions with the DestinE project.

2.11. Web Framework

Status

ECMWF and Copernicus are offering many web applications to their users such as Opencharts/ecCharts,

WebMARS for ECMWF and EFAS/CDS/ADS for Copernicus. Currently, while most of them share the

same general principles and technologies, they are still maintained and developed in isolation. This situation

evolved slowly over recent years, as the web became a more natural way to interact and provide ECMWF

services. It is now opportune to find synergies between applications and consolidate common functionalities

in reusable components.

 Software Strategy and Roadmap 2023–2027

30 Technical Memorandum No. 904

Motivation

We plan to capitalise on the experience the web team has built in developing these operational applications

and start working on reusability of components, interoperability of services and shared technologies.

We will identify reusable components that will make us more efficient in tackling future challenges such as

the increase of the ensemble resolution.

A strong focus will be on interoperability, as this will play an important role on projects such as IFSHub or

CADS where, from a single friendly environment, users will be able to interact and connect several services

they need for their daily work. An improved interoperability with external systems such as WEkEO will

facilitate interactions and exchanges.

Finally, by sharing components built on the shared technologies, we will benefit from a consolidated

infrastructure and software. This will facilitate the operational monitoring and resolution of issues by

increasing visibility, and we will extend our knowledge base.

Figure 5: Schema of the web framework: 4 categories of web services using a large set of well documented

APIs, themselves relying on a core infrastructure redesigned to use and contribute to SPICE

Action Plan

The first action is to review the web services (User facing, and internal ones) we are already offering,

documenting clearly their API using the OpenAPI standard. We should make use of the existing standard

tools available: they offer convenient ways to present the documentation and functionalities to the APIs via

OpenAPI. Once done, we will be able to refactor them one by one as necessary, and make use of some of

them to create more complex applications such as IFSHub.

During that phase we will also take the opportunity to review codes and Git repositories to identify reusable

components that could be nicely packaged and become candidates for integration into the SPICE project.

This work, and the generalisation of the use of opensource solutions which are well documented and

accepted by the broad community, will help us to reach a better interoperability between our diverse areas of

activities.

Another important aspect to consider soon is the impact of ENS resolution upgrade on our on-demand

services (ecCharts/opencharts) and in the long term the impact of a further increase in data resolution.

https://spec.openapis.org/oas/latest.html

Software Strategy and Roadmap 2023–2027

Technical Memorandum No. 904 31

The web services have a lot of challenges; it is important to find a common approach to tackle complex

issues such as cache, storage and authentication and improve our use of CI/CD by migrating to GitHub

Enterprise and GitHub Actions.

We have new projects in the pipeline: improve the discoverability of ECMWF data, develop the next

generation of the CADS Toolbox, create the next environment for researchers to achieve their daily work. It

is important to take advantage of previous experiences and design if we want to offer our users a pleasant

and consistent web experience.

Milestones

2023: Review web components, refactor WebMars and Data Layers

2023: Design IFSHub as a flexible platform to plugin components needed to researchers to perform

their daily work.

2024: Launch of CADS (Copernicus founded)

2024: First version of IFSHub

2025: Operational IFSHub

2026: New ecCharts ready for high resolution data.

Interactions

The success for a web application is to work in close cooperation with its potential users to fulfil their

expectations. The next 5 years will see the introduction of several brand-new systems: CADS, IFSHub and

SPICE, that will require strong interactions and communications.

CADS as the new generation of the CDS will need to answer the requirements of a well-established

community.

IFSHub will need a solid design, where the challenge is to create an intuitive platform for researchers,

generic and flexible enough to allow easy integration of new components and interoperability between them.

3. Summary

This software strategy and subsequent implementation roadmap complement each other when seen

holistically. The work in each Area of Intervention may stand on its own, but it creates synergies when all

are brought to bear fruits. The area of refactoring of software stack, will provide new components and

renewed flexibility in the software stack to support the other areas. The developments in web framework will

provide improved flexibility to deliver user facing services with more reusable components. These services

will be fed from products created with the new post-processing framework, which will draw from

components refactored out of the Metview environment, and now available to run of alternative execution

contexts like the CADS and the HPCF. The Metview environment will also profit from structural changes

coming to the visualisation software, where we are certain to find multiple synergies with the new version of

the CDS (CADS). The developments of data dissemination and acquisition software will support NMS using

this system, but also look forward to tighter integration in the core data storage software, regarding projects

in IoT observation data acquisition. Finally, the developments of the new IO-server and on-the-fly

processing pipelines which are so close to the Earth System Model, are tightly linked to the remainder of the

workflow in terms of data processing and encoding, to ensure that the overall workflow scales to

forthcoming the data handling challenges.

 Software Strategy and Roadmap 2023–2027

32 Technical Memorandum No. 904

This software strategy and roadmap will allow ECMWF to support our services more efficiently, whilst

simultaneously preparing for the challenges that larger datasets will bring. It will also allow ECMWF to

address the wider challenges of adapting its software infrastructure to the requirements deriving from the

ECMWF Strategy 2021-2030.

3.1. Summary of Milestones

Since each area of intervention defined its own milestones, to provide an overall view of how these integrate,

the milestones are thus collected here:

Year Description Area of Intervention

2023 First version of GridIterator, DataSources and FieldSet

libraries

Refactoring of Software

Stack

 MultIO used for NEMO v4 output in CY49 IO-server and On-the-fly

Processing Pipelines

 Review web components, refactor WebMars and Data

Layers

Web services

 Design IFSHub as a flexible platform to plugin

components needed to researchers to perform their

daily work

Web services

 Port time-critical, unscalable post-processing suites for

9-kilometre ensemble using the post-processing

framework, demonstrating its effectiveness

Post-Processing

 Release of new high-level Python interface for

ecCodes

Data Encoding and Decoding

Libraries

 Start building ecCodes as a C++ package and drop

support for selected platforms

Data Encoding and Decoding

Libraries

 Support implementation of the first version of the

Observation Store

Data Encoding and Decoding

Libraries

 SQL-like filtering available through odc API Data Encoding and Decoding

Libraries

 Freeze development of Metview’s Macro language Metview Environment

 Design the high-level interfaces of magpye and bluejay Visualisation Software

 Evaluate the implications of moving away from

Magics and plan transition of Magics

Visualisation Software

Software Strategy and Roadmap 2023–2027

Technical Memorandum No. 904 33

 User and administrator documentation of ECPDS for

member states

Data dissemination and

acquisition

 Implement Volume FDB, and Observation Store for

use in research mode

Core Data Storage Software

 Develop DAOS and MOTR backends for the FDB Core Data Storage Software

2024 All Python software packages open sourced and

integrated with community development practices

Refactoring of Software

Stack

 Launch of CADS Web services

 First version of IFSHub Web services

 Replace ecCodes’ own iterator code with calls to the

new GridIterator library from the SPICE project

Data Encoding and Decoding

Libraries

 Refactor of Metview to use new MARS client code Metview Environment

 Enhanced Metview widgets for interoperability with

notebook environments

Metview Environment

 Development of SPICE components required by

Metview

Metview Environment

 Begin the transition plan for Magics Visualisation Software

 ECPDS fully integrated into at least one member

state’s datacentre

Data dissemination and

acquisition

 ECPDS open-sourced Data dissemination and

acquisition

 Full-featured use of WIS 2.0 Data dissemination and

acquisition

 Multiple backends per database and explicit user and

permissions management in the FDB

Core Data Storage Software

 First versions of the new MARS and ECFS Clients Core Data Storage Software

2025 Generalised usage of the new concepts like DataSource

and FieldSet, and adopted into systems like Metview

and Danu

Refactoring of Software

Stack

 Software Strategy and Roadmap 2023–2027

34 Technical Memorandum No. 904

 MultIO used for IFS atmospheric and wave model

output

IO-server and On-the-fly

Processing Pipelines

 Operational IFSHub Web services

 Pioneer and standardise post-processing suite

development across the centre

Post-Processing

 Enhance the post-processing framework with a robust

and scalable parallel execution framework

Post-Processing

 End all support for BUFRDC Data Encoding and Decoding

Libraries

 Infrastructure for ingestion, filtering, quality control

and encoding of high-frequency unconventional

observations

Data Encoding and Decoding

Libraries

 Refactor Metview to use new SPICE components and

reduce strong dependency on Magics

Metview Environment

 Inter data-centre synchronisation supported Data dissemination and

acquisition

 Feature extraction support in the FDB Core Data Storage Software

 Direct transfers (FDB to FDB, MARS to MARS and

FDB to MARS)

Core Data Storage Software

2026 New ecCharts ready for high resolution data Web services

 Removal of deprecated old-style ODB-API interfaces Data Encoding and Decoding

Libraries

2027 Parts of PGen executed on-the-fly as part of MultIO

programmable pipelines

IO-server and On-the-fly

Processing Pipelines

 Removal of Macro language from Metview

installations

Metview Environment

Software Strategy and Roadmap 2023–2027

Technical Memorandum No. 904 35

4. Glossary

Term Description

bluejay SPICE component, meteorological graph based on plotly

BUFRDC ECMWF’s legacy software for encoding/decoding BUFR data

https://git.ecmwf.int/projects/MARS/repos/bufrdc_emoslib/browse

CADS Next generation of the Copernicus Datastore

https://cds.climate.copernicus.eu/#!/home

https://ads.atmosphere.copernicus.eu/#!/home

CliMetLab A Python package aiming at simplifying access to climate and

meteorological datasets

https://github.com/ecmwf/climetlab

COPE Continuous Observation Processing Environment

https://www.ecmwf.int/en/newsletter/158/meteorology/continuous-data-

assimilation-ifs

Danu ECMWF's python framework supporting the EFAS and GloFAS medium-

range forecast product generation as well as flash flood models.

DestinE Destination Earth Programme

https://digital-strategy.ec.europa.eu/en/policies/destination-earth

DHS ECMWF’s Data Handling System

https://www.ecmwf.int/en/computing/our-facilities/data-handling-system

ECFS ECMWF’s unstructured tape storage system

https://git.ecmwf.int/projects/ECFS/repos/ecfs-server/browse

https://git.ecmwf.int/projects/ECFS/repos/ecfs-client/browse

ecFlow ECMWF’s workflow manager

https://github.com/ecmwf/ecflow

ecCharts ECMWF’s web service for weather forecast charts

https://git.ecmwf.int/projects/ECCHARTS/repos/eccharts/browse

Code For Earth ECMWF Summer of Weather Code

https://codeforearth.ecmwf.int

EWC European Weather Cloud

https://www.europeanweather.cloud/

https://git.ecmwf.int/projects/MARS/repos/bufrdc_emoslib/browse
https://cds.climate.copernicus.eu/#!/home
https://ads.atmosphere.copernicus.eu/%23!/home
https://github.com/ecmwf/climetlab
https://www.ecmwf.int/en/newsletter/158/meteorology/continuous-data-assimilation-ifs
https://www.ecmwf.int/en/newsletter/158/meteorology/continuous-data-assimilation-ifs
https://digital-strategy.ec.europa.eu/en/policies/destination-earth
https://www.ecmwf.int/en/computing/our-facilities/data-handling-system
https://git.ecmwf.int/projects/ECFS/repos/ecfs-server/browse
https://git.ecmwf.int/projects/ECFS/repos/ecfs-client/browse
https://github.com/ecmwf/ecflow
https://git.ecmwf.int/projects/ECCHARTS/repos/eccharts/browse
https://codeforearth.ecmwf.int/
https://www.europeanweather.cloud/

 Software Strategy and Roadmap 2023–2027

36 Technical Memorandum No. 904

FDB ECMWF’s domain-specific object store for direct model output

https://github.com/ecmwf/fdb

HPCF ECMWF High Performance Computing Facility

https://www.ecmwf.int/en/computing/our-facilities/supercomputer

IFSHub A centralised web hub for interacting with research experiments at

ECMWF

https://www.ecmwf.int/en/newsletter/167/computing/ifshub-new-way-

work-ifs-experiments

Infero ECMWF’s engine for running inference ML models in time-critical

operations supporting multiple pluggable back-ends.

https://github.com/ecmwf-projects/infero

Magics ECMWF’s visualisation library

https://github.com/ecmwf/magics

magpye SPICE component, based on Magics and Matplotlib

https://github.com/ecmwf/magpye

matplotlib Open-source visualisation package for Python

https://github.com/matplotlib/matplotlib

MARS ECMWF Meteorological Archival and Retrieval System

https://git.ecmwf.int/projects/MARS/repos/mars-server/browse

https://git.ecmwf.int/projects/MARS/repos/mars-client/browse

Metview ECMWF’s data analysis and visualisation environment

https://git.ecmwf.int/projects/METV/repos/metview/browse

meteokit Python library developed by ECMWF to consolidate functionalities

common to multiple meteorological packages, aiming at performance and

reusability.

https://git.ecmwf.int/projects/ECSDK/repos/meteokit/browse

MultIO ECMWF’s next generation Multiplexing I/O asynchronous server

https://github.com/ecmwf/multio

OpenAPI Standard, language-agnostic interface to RESTful APIs

https://www.openapis.org/

PGen ECMWF’s Product Generation software running in time-critical operations

https://git.ecmwf.int/projects/PRODGEN/repos/pgen/browse

https://github.com/ecmwf/fdb
https://www.ecmwf.int/en/computing/our-facilities/supercomputer
https://www.ecmwf.int/en/newsletter/167/computing/ifshub-new-way-work-ifs-experiments
https://www.ecmwf.int/en/newsletter/167/computing/ifshub-new-way-work-ifs-experiments
https://github.com/ecmwf-projects/infero
https://github.com/ecmwf/magics
https://github.com/ecmwf/magpye
https://github.com/matplotlib/matplotlib
https://git.ecmwf.int/projects/MARS/repos/mars-server/browse
https://git.ecmwf.int/projects/MARS/repos/mars-client/browse
https://git.ecmwf.int/projects/METV/repos/metview/browse
https://git.ecmwf.int/projects/ECSDK/repos/meteokit/browse
https://github.com/ecmwf/multio
https://www.openapis.org/
https://git.ecmwf.int/projects/PRODGEN/repos/pgen/browse

Software Strategy and Roadmap 2023–2027

Technical Memorandum No. 904 37

plotly Open-source Graphing Library for Python

https://github.com/plotly/plotly.py

Pyflow Python based high-level description language for defining ecFlow

https://git.ecmwf.int/projects/ECFLOW/repos/pyflow/browse

pypi Repository of software for Python. https://pypi.org

readthedocs Open-sourced free software documentation hosting platform

https://readthedocs.org

SAPP ECMWF’s Scalable Acquisition and Pre-Processing system

https://www.ecmwf.int/en/elibrary/17341-sapp-new-scalable-acquisition-

and-pre-processing-system-ecmwf

SPICE Stacked Python libraries for Improved Computing Efficiency (SPICE), is

an internal project at ECMWF focused on pooling resources to refactor the

Python software stack into more reusable components

https://github.com/plotly/plotly.py
https://git.ecmwf.int/projects/ECFLOW/repos/pyflow/browse
https://pypi.org/
https://readthedocs.org/
https://www.ecmwf.int/en/elibrary/17341-sapp-new-scalable-acquisition-and-pre-processing-system-ecmwf
https://www.ecmwf.int/en/elibrary/17341-sapp-new-scalable-acquisition-and-pre-processing-system-ecmwf

	1. Software Strategy
	1.1. Resourcing
	1.2. Innovation
	1.3. Open Development
	1.4. Security
	1.5. Software Development Principles and Practices

	2. Software Roadmap
	2.1. Areas of Intervention
	2.2. Refactoring of the Software Stack
	Status
	Motivation
	Action Plan
	Milestones
	Interactions

	2.3. Data Encoding and Decoding Libraries
	Handling WMO GRIB/BUFR with ecCodes
	Status
	Motivation
	Action Plan
	Milestones
	Interactions

	Handling of ODB observation data with ODC
	Status
	Motivation
	Action Plan
	Milestones
	Interactions

	2.4. Visualisation Software
	Status
	Motivation
	Action Plan
	Milestones
	Interactions

	2.5. IO-server and On-the-fly Processing Pipelines
	Status
	Motivation
	Action Plan
	Milestones
	Interactions

	2.6. Data Dissemination and Acquisition
	Status
	Motivation
	Action Plan
	Milestones
	Interactions

	2.7. Observational Data Pre-Processing
	Status
	Motivation
	Action Plan
	Milestones
	Interactions

	2.8. Core Data Storage Software
	Status
	Motivation
	Action Plan
	Milestones
	Interactions

	2.9. Post-Processing Framework
	Status
	Motivation
	Action Plan
	Milestones
	Interactions

	2.10. Metview Environment
	Status
	Motivation
	Action Plan
	Milestones
	Interactions

	2.11. Web Framework
	Status
	Motivation
	Action Plan
	Milestones
	Interactions

	3. Summary
	3.1. Summary of Milestones

	4. Glossary

