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Abstract 
Statistical postprocessing aims to reduce systematic biases and dispersion errors of forecast ensembles 
provided by state-of-the-art numerical weather prediction (NWP) models. Often, this also entails an implicit 
mapping from NWP forecasts valid for grid cell means to point forecasts valid at specific points of interest 
within a given grid cell. In general, statistical postprocessing increases forecast skill considerably. However, 
due to the strongly non-Gaussian distribution and low predictability of precipitation at points, statistical 
postprocessing of precipitation forecasts is particularly difficult. ecPoint, a postprocessing approach developed 
at the European Centre for Medium-Range Weather Forecasts (ECMWF) is tailored to point forecasting of 
precipitation and proved to increase forecast skill considerably. Moreover, ecPoint is data efficient in that it 
needs only one year of training data from the global ECMWF-IFS NWP model. The combination of data 
efficiency and forecast skill of ecPoint calls for a comparison with (postprocessed) probabilistic forecasts of 
precipitation provided by high-resolution limited area NWP models like COSMO-E, which is a MeteoSwiss 
configuration of the Consortium for Small-scale Modeling (COSMO) model.  

In this study, we compare ecPoint forecasts for 12 h accumulated precipitation with ensemble model output 
statistics (EMOS) as a reference postprocessing method. We assess the performance of raw ecPoint and raw 
COSMO-E alongside EMOS applied to pooled ensembles constructed using either COSMO-E and ECMWF-
IFS or COSMO-E and ecPoint with varying weights. Verifying the different forecasts on a set of about 850 
gauge stations in Switzerland and neighboring areas confirms the good performance of ecPoint. For long lead 
times and heavy precipitation, ecPoint tends to be more skillful than EMOS. However, further research is 
needed to assess the impact of the lengths of the respective training periods on the relative skill of ecPoint 
compared with EMOS. Moreover, it will be beneficial to identify in which regions and in which meteorological 
regimes ecPoint ordinarily outperforms forecasts based on a high-resolution limited area model, and vice versa. 

 

Plain Language Summary 
Global weather models provide weather forecasts for different variables like temperature and rainfall on a grid 
with a rather large mesh size. The collection of runs of the same weather model with slightly different 
configurations is called an ensemble forecast. Ensemble forecasts allow us to quantify forecast uncertainty. 
However, ensemble forecasts are subject to biases, like forecasting too little or too much rainfall on average, 
and to being too certain or too uncertain about the future weather. In addition, global ensemble forecasts denote 
only “average weather” over pre-defined regions, that currently measure about 20km by 20km. In contrast, 
real rainfall can vary a lot over such a region, in particular for thunderstorms. These various issues can be 
tackled by applying correction algorithms to the ensemble forecasts. This process is called statistical 
postprocessing. The “ecPoint” postprocessing method, which has been developed at the European Centre for 
Medium-Range Weather Forecasts (ECMWF), is specially tailored to forecast for points rather than for 
regions. For rainfall, ecPoint forecasts have been shown to increase forecast quality considerably compared to 
ECMWF’s global weather model forecasts (ECMWF-IFS), in a timely manner and at low cost.  

In this study, we compare ecPoint forecasts with forecasts provided by a limited area weather model ensemble 
(COSMO-E). Compared to ECMWF-IFS, COSMO-E has a considerably smaller grid mesh size (about 2km 
by 2km) that should allow it to better predict local weather variations. COSMO-E is run by MeteoSwiss, for a 
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domain covering Switzerland and neighbouring areas. We assess the relative quality of rainfall forecasts over 
Switzerland from ecPoint, from COSMO-E and from different combinations of COSMO-E, ECMWF-IFS and 
ecPoint. The combinations have been postprocessed using an alternative postprocessing method, which is often 
used as a standard benchmark method in the field of ensemble postprocessing. Our results confirm the good 
performance of ecPoint compared both to COSMO-E, and to model combinations postprocessed with the 
alternative method. ecPoint performs particularly well for forecasts several days into the future, and for heavy 
rainfall. Further research is needed to assess why forecast quality varies between the different approaches. It 
will also be helpful to identify in which regions and in which weather situations ecPoint ordinarily outperforms 
forecasts based on a high-resolution regional weather model, and vice versa. 

 

1 Introduction 
State-of-the-art probabilistic weather forecasts are based on ensemble runs of numerical weather prediction 
models (NWP). Despite their great success over the last decades, NWP ensembles still suffer from systematic 
biases and dispersion errors (e.g. Vannitsem et al., 2021). Hence, statistical postprocessing is increasingly 
applied to NWP ensemble predictions to correct both bias and dispersion.  

Currently, NWPs’ horizontal grid resolution ranges from about 20 by 20 km (Hewson & Pillosu, 2021) in 
state-of-the-art global models to about 1 by 1 km in very high resolution regional models. For instance, 
COSMO-E (Baldauf et al., 2011; Klasa et al., 2018), which we consider in this study, has a resolution of about 
2 by 2 km. MeteoSwiss used to operationally run COSMO-E daily at 0 and 12 UTC until it was replaced by 
COSMO-1E and COSMO-2E (Kaufmann & Rüdisühli, 2019) in 2020. COSMO-1E is an 11-member ensemble 
extension of the formerly deterministic COSMO-1 configuration with a very high resolution of about 1 by 1 
km. COSMO-2E is an updated version of COSMO-E, operationally running every 6 hours. The underlying 
COSMO model is being developed in the Consortium for Small-scale Modeling. Clearly, weather variables 
with a lot of sub-grid variability, i.e. variability at spatial scales smaller than the grid size, like convective 
precipitation cannot be represented that well by (global) NWP models. Rather, the predicted precipitation 
represents the average value for the whole grid cell. To derive forecasts valid for any point within a grid cell 
from the global integrated forecasting system of the European Centre for Medium-Range Weather Forecasts 
(ECMWF-IFS; Owens & Hewson, 2018) ensemble grid cell mean forecasts, Hewson & Pillosu (2021) have 
introduced ecPoint. ecPoint is a novel postprocessing approach, developed originally for precipitation, but 
could in principle also be applied to other weather variables like 2m temperature. In a nutshell, ecPoint is a 
member-by-member postprocessing method that utilizes meteorological expert knowledge to construct 
mapping functions that convert grid cell forecasts to point forecasts conditional on the “gridbox weather type”. 
Unlike most postprocessing approaches, ecPoint needs only 1 year of training data, as it utilizes global 
observations in a non-local calibration procedure. Therefore, it is capable of weather type dependent 
postprocessing without needing, say, several years of reforecasts from an expensive high-resolution limited 
area NWP model.  

Traditional postprocessing methods like ensemble model output statistics (EMOS; Gneiting et al., 2005) 
implicitly also map probabilistic grid cell mean forecasts to forecasts for a particular point in space, i.e. the 
location of the verifying gauge station. This raises the question of how ecPoint compares to a postprocessed 
high-resolution limited area model. To gain insights into this question for precipitation over Switzerland, we 
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analyze forecast skill of ecPoint, direct model output (DMO) of COSMO-E, and EMOS postprocessed 
forecasts based on COSMO-E. As multi-model combination is known to increase forecast skill (Weigel et al., 
2008), we consider also EMOS based on different naïve two-model combinations comprising either COSMO-
E and ecPoint, or COSMO-E and DMO of ECMWF-IFS. Considering also the latter combination helps to 
examine the extent to which the gain in skill of ecPoint over raw ECMWF-IFS is attributed to non-linear 
corrections to the forecast distribution, which cannot be reproduced by a linear postprocessing approach like 
EMOS.  

In Section 2, we provide a brief description of the data, the study design and the methods used for 
postprocessing and verification. The results in Section 3 are followed by a discussion in Section 4 and the 
conclusions in Section 5. 

 

2 Data and methods 

2.1 Data and study design 

Joint availability of COSMO-E, ECMWF-IFS, ecPoint, and gauge observations covered the period 14 March 
2019 to 31 January 2020 at the time this study was performed. Observational data are available for about 850 
automatic gauge stations, mainly in Switzerland, but also in neighboring areas in Austria, France, and 
Germany. The example forecasts in Figure 1 show the locations of the gauge stations.  Due to the short study 
period of about 10 months, EMOS coefficients are estimated based on a 45-day moving window training 
period. Accordingly, pairs of observation and gauge measurement data from May 2019 to January 2020 are 
used for verification. We consider COSMO-E and ECMWF-IFS runs initialized daily at 00 UTC. The 
ensemble size is 21 and 51 for COSMO-E and ECMWF-IFS, respectively. No major changes have been 
applied to COSMO-E during the study period, ECMWF-IFS was updated from Cycle45r1 to Cycle46r1 in 
June 2019. However, we do not expect that this change has any relevant effect on our results. The horizontal 
resolutions are about 2 by 2 km and about 18 by 18 km for COSMO-E and ECMWF-IFS, respectively. The 
forecast horizon of COSMO-E is 5 days, while ECMWF-IFS mainly provides forecasts up to 15 days into the 
future. For this study, we consider 12 h accumulated precipitation for lead times 12, 24, …, 120 h, where the 
lead time denotes the last hour of the accumulation period. 

Furthermore, prior to computing the ensemble statistics used by EMOS, the raw ensembles to be considered 
(either COSMO-E and ECMWF-IFS or COSMO-E and ecPoint) are pooled together into a single ensemble. 
We have selected this pooling approach for two reasons: First, we can actively control and evaluate the effects 
of different raw ensemble weighting in EMOS. Second, this approach reduces the number of dynamic 
predictors to be estimated. Details on the construction of the different pooled ensembles are presented in 
Section 2.4.  

 

2.2 ecPoint 

Hewson & Pillosu (2021) and Owens and Hewson (2018) give a comprehensive introduction to ecPoint and 
ECMWF’s associated point forecast product, respectively. We provide just a short summary of ecPoint here, 
which follows Hewson & Pillosu (2021) closely. As mentioned in Section 1 ecPoint is a postprocessed 
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probabilistic (precipitation) forecast product tailored to deliver point forecasts based on global ECMWF-IFS 
ensemble forecast data. For each grid cell for each time interval, ecPoint maps predicted precipitation of each 
ensemble member to a probabilistic point forecast PDF. The mapping function used for a specific ensemble 
member depends on the weather type assigned to that ensemble member (for the said gridcell, for the said time 
interval). Technically speaking, applying ecPoint postprocessing comprises the following steps:  

1. Set up a decision tree based on meteorological expert knowledge. The decision rules governing the 
construction of the decision tree are universal in that they do not differ among grid points. However, 
adding grid point specific static predictors like regional topography to the decision tree would enable 
one to take account of regional effects induced by, e.g., coastlines or mountain ranges1. Subsequently, 
this decision tree assigns a weather type to each member at each grid cell for each time interval, 
conditional on the grid cell’s NWP output for precipitation-related variables like wind speed at 700 
hPa or the fraction of convective precipitation. 

2. The above decision tree differentiates between 𝐾 different weather types. For each weather type, a 
probability distribution function that maps grid cell precipitation forecasts onto point precipitation 
forecasts needs to be obtained. This is done based on the forecast error ratio (FER), which describes 
the difference of an observed precipitation value relative to grid cell (i.e. mean) forecast precipitation. 
Based on observed precipitation from gauges over a large domain, preferably the world, a FER 
probability density function (PDF) mapping function 𝑀! , 𝑘 = 1,… , 𝐾 can be constructed for each 
weather type 𝑘. Figure 2 shows an example of an empirical FER distribution. 

3. For grid cell 𝑠 and ensemble member 𝑖, 𝑖 = 1,… ,𝑚, where 𝑚 denotes the size of the raw ensemble, 
the probabilistic point forecast for precipitation 𝑟 (for a given time interval) based on its FER PDF is 
given by 

𝐹",$(𝑟) = /1 +𝑀!|".$(𝐹𝐸𝑅)3𝐺",$ , (1) 

where 𝐺",$ denotes the predicted precipitation of raw ensemble member 𝑖 and 𝑀!|",$(𝐹𝐸𝑅) denotes its 
associated mapping function. 

 

 
1Whilst this type of static predictor has been used in other ecPoint decision trees the real-time ecPoint output used here did not incorporate such factors.  
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Figure 1: Example forecasts initialized on 16 October 2019 00 UTC valid for 12 h accumulation 
period 19 October 2019 12 UTC to 20 October 2019 00 UTC. The subfigures show the 5th and 
95th percentiles of ecPoint and COSMO-E and the corresponding observations. For COSMO-E 
the driest and the wettest members at the corresponding station serve as proxies for the 5th and 
95th percentiles, respectively. 
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4. The probabilistic forecast 𝐹" for points in grid cell 𝑠 can then be obtained by computing 

𝐹" =
1
𝑚 56 𝐹",$(𝑟)

'

$()
7 . (2) 

These steps are illustrated in Figure 3, which is copied from Figure 6 in Hewson & Pillosu (2021).  

Applied to the 51 member ECMWF-IFS ensemble, ecPoint generates 5100 (51 members times 100 values 
sampled from the FER PDF per member) equi-probable precipitation forecasts for points in a specific grid cell. 
Ordered percentiles, i.e. the 1, 2, … , 99 percentiles, from the grid cells’ distributions of 5100 forecast values 
are then stored as the final ecPoint forecasts (Hewson and Pillosu, 2021). In principle, the ecPoint approach 
works for different accumulation periods. Here, we follow Hewson & Pillosu and consider 12 h accumulation 
periods. Unlike DMO ensembles, the standard ecPoint output does not provide a set of spatio-temporal forecast 
scenarios2, but rather a single calibrated, probabilistic point forecast distribution for any point in space for each 
12 h accumulation period for lead times 12, 18, 24, …, 120 h.  

 

 

 

 

 
2 Note that it is however possible to deconstruct any ecPoint forecast to deliver point forecast distributions for 
each ensemble member realisation, by using unadjusted gridbox precipitation forecasts, the diagnosed weather 
types which are archived, and the mapping function multipliers which are available offline. 

 

Figure 2: Simplified version of Figure 5 in Hewson & Pillosu (2021): An example of a FER based 
mapping function. The colours dark green, green, white, ochre and red, denote FER ranges mostly dry, 
‘over-prediction’, ‘good forecast’, ‘under-prediction’ and ‘strong under-prediction’, respectively. Note 
the non-linearity in the x-axis. 
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Figure 3: Copy of Figure 6 in Hewson & Pillosu (2021) illustrating the construction of an ecPoint precipitation 
forecast from gridbox ensemble member forecasts. The shape of the point precipitation forecast distributions 
(blue) in (B) depend on the ‘weather type’ (A) assigned to each ensemble member. (C) shows the 95th 
percentiles of the first 5 ensemble members’ ecPoint distributions and the corresponding median. Averaging 
the ensemble members’ ecPoint distributions leads to the aggregated ecPoint precipitation distribution based 
on all ensemble members (D). 

 

2.3 COSMO-E and gEMOS 

In this study, we use raw and global EMOS (gEMOS) postprocessed COSMO-E predictions as reference 
precipitation forecasts. Prior to any postprocessing COSMO-E forecasts have been interpolated from its 2x2 
km grid to the locations of the gauge stations using nearest neighbor matching. The term global in gEMOS 
describes an EMOS procedure, which estimates only one single statistical model, i.e. one single set of 
coefficients for all stations in the study area, here Switzerland and some neighboring regions, simultaneously. 
To some extent, static predictors based on grid coordinates and topography allow one to model spatial 
differences in conditional errors.  Following Friedli et al. (2021), we implement gEMOS as a heteroscedastic 
censored logistic regression model left censored at zero (Messner et al., 2014a, b). The predictors are listed in 
Table 1. Since we use a short training period, we need to restrict the number of predictors in gEMOS. 
Therefore, we selected only a minimal subset of the dynamic predictors, which proved to be beneficial for 
COSMO-E precipitation postprocessing at MeteoSwiss. The static predictors approximately discern different 
regions in Switzerland, for which we expect differences in precipitation biases: e.g. Swiss Plateau vs. Alps or 
northern slope of the Alps vs. southern slope of the Alps. Location and scale parameters of the censored logistic 
regression for 12 h accumulated precipitation are then modelled as 

𝜇 = 𝑝'*+ +	𝑝,- +		𝑠.+/ +	𝑠.01 +	𝑠+./ +	𝑠+./2) +	𝑠"132) +	𝑠4*32) +	𝑠/5$2) +	𝑠/5$6--, (3) 

𝜎 = 𝑝"/3 + 𝑠.+/ + 𝑠.01 + 𝑠"132) + 𝑠4*32) + 𝑠/5$2) + 𝑠/5$6--. (4) 

Due to the short time period covered by the dataset, only a moving window training approach is feasible. A 
window size of 45 days proved to produce reasonable results for gEMOS. We have used the R package crch 
to estimate the gEMOS model coefficients (Messner et al., 2016).  
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Table 1: List of predictors used in gEMOS. The static predictors latitude, longitude, and altitude refer to the 
gauge stations. The remaining static predictors are derived from a digital elevation model. TPI is a measure 
for the elevation of a grid cell relative to the neighbouring cells (Weiss, 2001). The dynamic predictors are 
derived from pooled ensembles of COSMO-E with ecPoint, or COSMO-E with ECMWF-IFS.  

Short name Description 

p_mea dynamic: precipitation ensemble mean 

p_f0 dynamic: precipitation fraction zero 

s_lat static: latitude 

s_lon static: longitude 

s_alt static: altitude 

s_alt31 static: altitude smoothed with 31 km kernel size 

s_snd31 static: south north derivative (of altitude) 
smoothed with 31 km kernel size 

s_wed31 static: west east derivative (of altitude) with 31 
km kernel size 

s_tpi500 static: Topographic position index (TPI) of 
DEM smoothed with 500 km kernel size 

p_std dynamic: precipitation standard deviation 

 

2.4 Construction of pooled ensemble forecasts 

As stated above, NWP-based gEMOS predictors are derived from the ensemble statistics of pooled ensembles 
of COSMO-E with ecPoint, or COSMO-E with ECMWF-IFS. This allows us to control the effect of ensemble 
model weighting. We replicate the raw ensembles using a different number of replicates for each model to 
obtain the desired weights. This leads to an implicit model weighting. The number of replicates to obtain the 
different combinations of COSMO-E with ecPoint or ECMWF-IFS are listed in Table 2 and Table 3, 
respectively. 
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Table 2: Weighting of ecPoint and COSMO-E for different pooled ensemble forecasts M1, …, M11. First row: 
number of ecPoint duplicates in pooled ensemble. Second row: number of COSMO-E duplicates in pooled 
ensemble. Third row: percentage of members stemming from COSMO-E in pooled ensemble. 

 M1 M2 M3 M4 M5  M6 M7 M8 M9 M10 M11 
# ecPoint 
duplicates 1 1 1 1 1 1 1 1 1 1 0 
# COSMO-E 
duplicates 0 1 2 3 4 5 6 10 15 20 1 
Percentage 
COSMO-E 0 18 30 39 46 51 56 68 76 81 100 

 

 

Table 3: Weighting of ECMWF-IFS and COSMO-E for different pooled ensemble forecasts M1, …, M11. First 
row: number of ECMWF-IFS duplicates in pooled ensemble. Second row: number of COSMO-E duplicates in 
pooled ensemble. Third row: percentage of members stemming from COSMO-E in pooled ensemble. 

 M1 M2 M3 M4 M5  M6 M7 M8 M9 M10 M11 
# ECMWF-IFS 
duplicates 1 2 2 2 2 2 2 2 2 2 0 
# COSMO-E 
duplicates 0 1 2 3 4 5 6 10 15 20 1 
Percentage 
COSMO-E 0 17 29 38 45 51 55 67 76 80 100 

 

2.5 Verification measures 

We use the continuous ranked probability score (CRPS; Matheson and Winkler, 1976), which depends on both 
forecast spread and bias, in order to assess overall forecast skill. The CRPS is a negatively oriented scoring 
rule, the lower the score the better the forecast. Its discrete version that we use to verify ensemble forecasts 
favours larger ensembles. In order to be able to compare ensembles of different sizes (e.g. ecPoint: 99 
members; COSMO-E: 21 members) we use the FairCRPS (Ferro et al., 2008; Ferro, 2014), which corrects for 
differences in ensemble size. Skill scores of the CRPS (or the FairCRPS), that is CRPSS (or FairCRPSS), are 
obtained by computing 

𝐶𝑅𝑃𝑆𝑆 = 1 −
𝐶𝑅𝑃𝑆,078
𝐶𝑅𝑃𝑆7*,

, (5) 

where 𝐶𝑅𝑃𝑆,078 and 𝐶𝑅𝑃𝑆7*, denote the CRPS of the forecast of interest and the reference prediction, 
respectively.  

To evaluate forecast discrimination ability for different thresholds, we use receiver operating characteristic 
(ROC) curves. A ROC curve for a particular event, e.g. exceedance of a threshold, is generated by plotting the 
true positive rate (sensitivity) against the false positive rate (1 – specificity). The better a forecast in terms of 
sensitivity and specificity, the more the ROC curve lies in the upper-left part of the unit square. A perfect 
forecast would lead to a step function 19:-, while a forecast with no skill leads to a ROC curve lying on the 
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diagonal. We have also computed the trapezoidal area under the ROC (AUC), which we show as summary 
measures in the ROC figures, but do not discuss further, because trapezoidal AUC values may be misleading 
as discussed in Ben Bouallègue & Richardson (2021).  

 

3 Results 
First, we evaluate station-wise ecPoint forecast performance compared to COSMO-E in terms of FairCRPS. 
Figure 4 shows FairCRPS skill score (FairCRPSS) values of ecPoint relative to COSMO-E for accumulation 
periods 6-18h, 36-48h, 60-72h, and 108-120h. Apparently, for all accumulation periods considered, there are 
both regions where ecPoint outperforms COSMO-E (reds) and regions where COSMO-E outperforms ecPoint 
(blues). ecPoint exhibits particularly high values of FairCRPSS in Northeast Switzerland. Similarly, some 
alpine regions like Southern Valais show quite consistent outperformance of ecPoint compared to COSMO-E. 
However, it is difficult to explain any of the spatial patterns in FairCRPSS by topography.  

Figure 5 and Figure 6 show the CRPS against lead time of gEMOS of pooled ensembles constructed from 
COSMO-E and ECMWF-IFS and from COSMO-E and ecPoint, respectively. Irrespective of the exact pooled 
ensemble variant, there is a daily cycle in gEMOS forecast performance in terms of CRPS. CRPS values are 
higher (worse prediction) in the afternoon/evening than in the morning. Most likely, this is due to convection-
induced precipitation, which predominantly occurs during the summer half year in the afternoon/evening. For 
short lead times up to 30 h, gEMOS on pooled ensembles with a considerable proportion of COSMO-E (55 % 
when combined with ECMWF-IFS and 51 % or even 46 % when combined with ecPoint) performs best. At 
lead times 36 h and beyond gEMOS of pooled ensembles with COSMO-E proportions of about 30 to 45 % 
perform best. When combined with ecPoint even using a considerably lower COSMO-E proportion of about 
18 % leads to well performing predictions. For a lead time of 24 h (12-24 h accumulation period), gEMOS 
based on pooled ensembles with high ECMWF proportions leads to a particularly poor performance, using 
ecPoint instead seems to mitigate this issue.  

Now, let us have a look at gEMOS forecast skill in terms of CRPSS with ecPoint as reference forecast. As 
shown in Figure 7, gEMOS based only on COSMO-E does not outperform ecPoint. In fact, ecPoint exhibits 
considerably better CRPS for lead times beyond 30 h. gEMOS based on the pooled ensemble consisting of 38 
% COSMO-E and 62 % ECMWF-IFS shows positive skill compared to ecPoint for lead times up to about 55 
h. At longer lead times ecPoint performs better. Figure 8 shows the corresponding CRPSS values for gEMOS 
based on pooled ensembles consisting of COSMO-E and ecPoint. For most lead times gEMOS applied to a 
pooled ensemble consisting of 30 % COSMO-E and 70 % ecPoint is among the best performing gEMOS 
models. Nevertheless, at lead times beyond 70 h raw ecPoint forecasts tend to outperform all gEMOS variants. 
Overall gEMOS based on COSMO-E and ecPoint performs slightly better than gEMOS based on COSMO-E 
and ECMWF-IFS in terms of CRPSS. This is in line with the optimal proportion of ecPoint in COSMO-
E/ecPoint pooled ensembles tending to be larger than the optimal proportion of ECMWF-IFS in COSMO-
E/ECMWF-IFS pooled ensembles.  
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Figure 4: FairCRPSS for ecPoint minus FairCRPSS for COSMO-E, for 12h accumulation periods over lead 
times a) 6-18h, b) 36-48h, c) 60-72h, and d) 108-120h. 

 

a) 6-18h b) 36-48h 

c) 60-72h d) 108-120h 
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Figure 5: CRPS of gEMOS applied to pooled COSMO-E and ECMWF-IFS 
ensembles with different COSMO-E ratios against lead time (here denoted as 
end of 12 h accumulation period). Lower CRPS values are better. 

 

Figure 6: CRPS of gEMOS applied to pooled COSMO-E and ecPoint 
ensembles with different COSMO-E ratios against lead time (here denoted as 
end of 12 h accumulation period). Lower CRPS values are better. 
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Figure 7: CRPSS of gEMOS applied to pooled COSMO-E and ECMWF-IFS 
ensembles with different COSMO-E ratios with ecPoint as reference 
forecasts against lead time (here denoted as end of 12 h accumulation 
period). Positive values mean the combination beats unadjusted ecPoint. 
Negative values mean unadjusted ecPoint is better. 

Figure 8: CRPSS of gEMOS applied to pooled COSMO-E and ecPoint 
ensembles with different COSMO-E ratios with ecPoint as reference forecasts 
against lead time (here denoted as end of 12 h accumulation period). Positive 
values mean the combination beats unadjusted ecPoint. Negative values mean 
unadjusted ecPoint is better. 
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Besides average skill, for precipitation in particular it is important to issue skillful predictions for thresholds 
like rain/no rain or some alert levels for heavy precipitation and flooding. Accordingly, we analyze 
discrimination ability in terms of ROC for thresholds of 1, 10, 20, and 50 mm / 12 h. Figure 9 toFigure 11 
show example ROC curves for the threshold of 20 mm / 12h for different lead time accumulation periods. In 
each figure, subpanel a) refers to 12 to 24 UTC validation times, while b) refers to 0 to 12 UTC. Note that we 
do not consider the parts of the ROC curves lying to the right of the lowest probability threshold in order to 
avoid any misleading conclusions (Ben Bouallègue & Richardson, 2021). 

For the short lead time accumulation period 12 to 24 h the gEMOS combinations perform best, i.e. they are 
to the left and above for the relevant probability thresholds. For longer lead time accumulation periods 
ecPoint and the gEMOS combinations perform quite similarly. Selected ROC plots for the other thresholds 
are shown in Appendix A1. In general, both the gEMOS combinations and ecPoint outperform the other 
forecast variants. The gEMOS combination tend to perform particularly well for low thresholds, while 
ecPoint catches up for higher thresholds, which is in line with the CRPS comparisons above. At higher 
thresholds a diurnal cycle in the ROC seems to exist, in that ROC curve are slightly better for 12 to 24 UTC 
validation times than for 0 to 12 UTC validation times. This cycle is more pronounced in raw COSMO-E and 
gEMOS than in ecPoint. Similar results were found in the MISTRAL (Meteo Italian SupercompuTing 
poRtAL) project for Italy (Gascón et al., 2022). The poorest ROC values occur in the second half of the night 
and in the morning. This is not in line with the diurnal cycle of CRPS. It looks like raw COSMO-E and 
gEMOS perform best in terms of CRPS at times of day without convection, while discrimination ability in 
terms of ROC curves is relatively poor at the same times of day. 
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Figure 9: ROC curves and associated AUC values for ecPoint, COSMO-E, and different gEMOS 
postprocessed forecasts for a) accumulation period 12-24h and b) accumulation period 24-36h. 
gEMOS results are shown for the single model ensemble COSMO-E, ecPoint, ECMWF-IFS and for 
the pooled combinations of ecPoint or ECMWF-IFS with COSMO-E that performed best in terms of 
CRPS. The threshold is 20 mm/12h. 
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Figure 10: ROC curves and associated AUC values for ecPoint, COSMO-E, and different gEMOS 
postprocessed forecasts for a) accumulation period 36-48h and b) accumulation period 48-60h. gEMOS 
results are shown for the single model ensemble COSMO-E, ecPoint, ECMWF-IFS and for the pooled 
combinations of ecPoint or ECMWF-IFS with COSMO-E that performed best in terms of CRPS. The threshold 
is 20 mm/12h. 

a) 36-48h 

b) 48-60h 
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Figure 11: ROC curves and associated AUC values for ecPoint, COSMO-E, and different gEMOS 
postprocessed forecasts for a) accumulation period 84-96h and b) accumulation period 96-108h. gEMOS 
results are shown for the single model ensemble COSMO-E, ecPoint, ECMWF-IFS and for the pooled 
combinations of ecPoint or ECMWF-IFS with COSMO-E that performed best in terms of CRPS. The threshold 
is 20 mm/12h. 
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4 Discussion 
Despite being based solely on the global ECMWF-IFS model, ecPoint performs well over Switzerland’s 
complex topography. The higher the threshold considered and the longer the lead time, the better ecPoint 
performs compared to postprocessed COSMO-E predictions. Besides verifying ecPoint, this study confirms 
also that combining multiple models, here done by ensemble pooling prior to applying gEMOS, can improve 
forecast skill. When combining COSMO-E with ECMWF-IFS, the best gEMOS forecasts in terms of CRPS 
have been obtained with a pooled ensemble consisting of about two third ECMWF-IFS and one-third COSMO-
E, despite the considerably coarser resolution of ECMWF-IFS. The same holds for the combination COSMO-
E with ecPoint. The only difference is that the weights assigned to ecPoint for construction of the pooled 
ensemble resulting in the lowest gEMOS CRPS are slightly higher than the corresponding weights assigned to 
ECMWF-IFS in the former pooled ensemble.  

As mentioned above, the diurnal cycles in CRPS and ROC are not in line. Poorest ROCs are observed in the 
second half of the night and in the morning while CRPS exhibits the poorest values for the accumulation period 
spanning from the afternoon to 00 UTC. On the one hand, one would expect poorer ROCs in the afternoon 
because of low predictability of convective precipitation. On the other hand, ECMWF-IFS’s predictions of 
afternoon convective rainfall perform quite well, but evening and morning suffer a bit because of diurnal cycle 
errors. Another possible explanation of this behavior may be related to the short verification period and a 
diurnal cycle of climatological precipitation. That is, a specific threshold refers to climatological quantile that 
is probably different in the morning to what it is in the afternoon. This may affect ROC. Moreover, the 
verification period is rather short. Therefore, ROC for high thresholds may also be dominated by only a few 
events.  

Despite its advantages (Table 1 in Hewson and Pillosu, 2021), ecPoint also entails drawbacks. First, though 
being computationally cheap compared to running a limited area NWP model, gEMOS is even cheaper. 
Second, the forecast percentile output of ecPoint is not related to specific ECMWF-IFS ensemble members. 
Hence, it is not straightforward to create a physics-based template of spatio-temporal dependence structure 
from ecPoint forecast output in its current form. The generation of realistic scenarios based on ecPoint using 
ensemble copula coupling (Schefzik et al., 2013) might need a template from another source, e.g. COSMO-E 
or ECMWF-IFS. Third, ecPoint forecasts the same predictive distribution for any point within a grid cell. It 
does not account for systematic intra grid-cell variability, e.g. induced by local topography. So, for events that 
are strongly driven by local topography, like e.g. orographic precipitation, we presume that a high resolution 
local model like COSMO-1E (Kaufmann & Rüdisühli, 2019) outperforms ecPoint. Fourth, very short 
accumulation periods below 6 h are not covered by ecPoint. Hewson & Pillosu (2021) considered 12 h 
accumulation periods. ECMWF produces also 6 h ecPoint output, running twice daily. For 6 h ecPoint, 
topography and local solar time have been included as predictors in the decision tree. Therefore, we expect 6 h 
ecPoint to perform well over complex topography. Hence, we suggest considering also 6 h accumulation 
periods in a follow-up study. 

As the scope of this preliminary study was limited, we have not performed any in depth analyses of the spatial 
and temporal pattern of ecPoint skill relative to COSMO-E and gEMOS. However, identifying regions and 
weather regimes in which ecPoint’s skill is particularly good or poor may be beneficial. Further, since this 
study is based only on 10 months of data, the results need to be viewed with some caution. As ecPoint is now 
available for a longer period, it would be worth to perform another analysis with a longer verification period. 
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This would also allow testing alternative gEMOS training periods, which may lead to a more skillful 
benchmark. In particular, the different sizes of the training data sets, which are 45 days of data (over a limited 
area) for gEMOS and a full year of global data for ecPoint, may have affected the results of this study. As 
COSMO-1E and COSMO-2E have replaced COSMO-E at MeteoSwiss in the meantime, we suggest 
considering these issues in a follow-up study based on COSMO-1E and COSMO-2E.  

Another issue in this study is related to how we have constructed the ROC curves. As stated by Ben Bouallègue 
& Richardson (2021) interpretation of ROC, and in particular the trapezoidal AUC values, may be misleading 
if not done appropriately. The gEMOS and the ecPoint forecasts used for generating the ROC curves in this 
study are based on the same discretization, i.e. same number of percentiles of the forecast distribution. As a 
simple increase in the discretization of gEMOS may improve the parts of the curve to the right of the lowest 
probability threshold considerably, the ROC curves shown in this study can only be interpreted up to the lowest 
available probability threshold. On top of that, the discretization innate to COSMO-E is much coarser, i.e. 21 
members. However, as running a hypothetical 100 member COSMO-E ensemble would be computationally 
very expensive, one could argue that it is fair to use trapezoidal AUC, which tends to penalize small ensemble 
size. Note that the issue of small COSMO-E ensemble size when computing its ROC could be alleviated by 
improving the ROC using the ensemble mean based correction approach as described in Ben Bouallègue & 
Richardson (2021). Moreover, forecast bias affects also ROC and AUC. For the postprocessed forecasts, 
gEMOS and ecPoint, we assume that bias should not be a big issue. However, the effects on COSMO-E ROC 
are unclear. Accordingly, we hypothesize that our ROC based comparisons of discrimination ability of the 
different postprocessed forecasts is still valid as long as one focuses on the part of the ROC up the lowest 
probability threshold only. The comparison with raw COSMO-E ROC shows potential for postprocessing and 
increasing ensemble size. Hewson and Pillosu (2021) and Gascón et al. (2022) compared the AUC values also 
to AUC of a climatological reference. Due to the very restricted scope of this study and its focus on the 
comparison between ecPoint and COSMO-E, we did not include the climatological reference. We suggest 
including it and also considering the former AUC related issue in a follow-up study based on COSMO-1E and 
COSMO-2E.   

As mentioned above, ecPoint performs well in comparison with gEMOS for high thresholds over Switzerland. 
Accordingly, we suppose that ecPoint may provide valuable information for warning applications. In 
particular, warnings associated with convective precipitation events and related flash floods, which occur at 
small spatial scales, may benefit from ecPoint. Moreover, ecPoint output could serve as a low-cost method to 
obtain calibrated probabilistic precipitation forecasts, which would not require any additional statistical 
postprocessing to be performed by MeteoSwiss.  

 

5 Conclusions 
This study shows that ecPoint forecasts for 12 h accumulated precipitation perform well in terms of overall 
skill. Additionally, ecPoint exhibits a decent discrimination ability particularly for higher thresholds and longer 
lead times. At those thresholds and lead times, it tends to perform well in comparison with gEMOS 
postprocessed pooled COSMO-E and ECMWF-IFS ensembles. Moreover, our analysis of ROC stresses also 
the benefits from the large “ensemble size” of ecPoint. To be able to draw conclusions on discrimination ability 
that are more reliable we suggest performing a follow-up study that takes the guidelines by Ben Bouallègue & 
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Richardson (2021) into account. Additionally, ecPoint is efficient in terms of the need for reforecasts in that 
its training is based only on one year of forecasts from a global model. gEMOS with a moving window training 
period needs even less reforecasts, but at least in our study it relies on the availability of a high-resolution 
limited area NWP ensemble model like COSMO-E. Furthermore, we presume that ecPoint performs equally 
well in other regions besides Switzerland.  

Moreover, our study is limited in that we did not stratify the verification on different locations and weather 
regimes. Hence, we suggest comparing ecPoint with postprocessed forecasts from local high-resolution models 
in a stratified manner in order to detect when and where forecast quality might not benefit from using ecPoint. 
Additionally, we suggest testing longer gEMOS training periods and increasing the length of the verification 
period in order to obtain more reliable results, in particular for extreme events.  
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Appendix 

A1 Additional ROC figures 

 

 

 

 

Figure A1: ROC curves and associated AUC values for ecPoint, COSMO-E, and different gEMOS 
postprocessed forecasts for a) accumulation period 36-48h and b) accumulation period 48-60h. gEMOS 
results are shown for the single model ensemble COSMO-E, ecPoint, ECMWF-IFS and for the pooled 
combinations of ecPoint or ECMWF-IFS with COSMO-E that performed best in terms of CRPS. The threshold 
is 1 mm/12h. 
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Figure A2: ROC curves and associated AUC values for ecPoint, COSMO-E, and different gEMOS 
postprocessed forecasts for a) accumulation period 36-48h and b) accumulation period 48-60h. gEMOS 
results are shown for the single model ensemble COSMO-E, ecPoint, ECMWF-IFS and for the pooled 
combinations of ecPoint or ECMWF-IFS with COSMO-E that performed best in terms of CRPS. The threshold 
is 10 mm/12h. 
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Figure A3: ROC curves and associated AUC values for ecPoint, COSMO-E, and different gEMOS 
postprocessed forecasts for a) accumulation period 36-48h and b) accumulation period 48-60h. gEMOS 
results are shown for the single model ensemble COSMO-E, ecPoint, ECMWF-IFS and for the pooled 
combinations of ecPoint or ECMWF-IFS with COSMO-E that performed best in terms of CRPS. The threshold 
is 30 mm/12h. 
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Figure A4: ROC curves and associated AUC values for ecPoint, COSMO-E, and different gEMOS 
postprocessed forecasts for a) accumulation period 36-48h and b) accumulation period 48-60h. gEMOS 
results are shown for the single model ensemble COSMO-E, ecPoint, ECMWF-IFS and for the pooled 
combinations of ecPoint or ECMWF-IFS with COSMO-E that performed best in terms of CRPS. The threshold 
is 40 mm/12h. 
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Figure A5: ROC curves and associated AUC values for ecPoint, COSMO-E, and different gEMOS 
postprocessed forecasts for a) accumulation period 36-48h and b) accumulation period 48-60h. gEMOS 
results are shown for the single model ensemble COSMO-E, ecPoint, ECMWF-IFS and for the pooled 
combinations of ecPoint or ECMWF-IFS with COSMO-E that performed best in terms of CRPS. The threshold 
is 50 mm/12h. 
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