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Abstract 

UGROW is an ECMWF cross-departmental project focused on Understanding systematic error GROWth from 

hours to seasons ahead. The forecast errors over the Indian Ocean is one of the focus themes (UGROW-IO), 

which assesses the lead-time-dependent evolution of forecast errors in the Indian Ocean, which happens to be 

the eastern pole of the Indian Ocean Dipole Index. 

Seasonal forecasts rapidly develop an easterly surface wind bias in the Equatorial Eastern Indian Ocean (EEIO) 

during boreal summer, visible already at week 1. This bias amplifies with time via coupled feedbacks, and it 

eventually manifests in a cold SST bias, as one of the prominent errors at the seasonal time scales in SEAS5.  

The EEIO exhibits two regimes: a warm pool regime or convective regime, characterized by a local negative 

wind-SST coupled feedback which limits warming, and a cold-tongue regime, characterized by a non-local 

positive wind-SST-thermocline feedback which enhances and maintains the cold SST. The error in the seasonal 

forecasts suggest that in the model the cold-tongue regime dominates, while the wind-SST coupling in the 

warm regime is very weak compared to observations 

We have studied the dependency of this error to ocean and atmosphere initial conditions, ocean and 

atmospheric resolution, and different model cycles. We conclude that there are two fundamental and 

independent sources of errors that lead to the SST errors in seasonal forecast. The first one is of atmospheric 

nature and is largely related with too stable easterly circulation present in the equatorial Indian Ocean, further 

characterized by the lack of response of the local winds to local surface heating in the EEIO. This induces an 

easterly bias which leaves the model state predominantly in a state with a shallow thermocline and cold SSTs 

in the EEIO. The second error is of oceanic origin, associated with a too shallow thermocline, which enhances 

the SST errors arising from errors in the wind. Ocean initial conditions, which depend on both the quality of 

the assimilation and the ocean model, play an important role in this context. Nevertheless, the version of the 

ocean model used for the forecast can also play a non-negligible role at the seasonal time scales, by amplifying 

or damping the subsurface errors in the initial conditions due to the strength of the atmosphere-ocean coupling 

in this region.  

 

1. Motivation 

Investigation of errors in the Indian Ocean was motivated by the fact that the Eastern equatorial Indian Ocean 

(EEIO) is one of the few regions worldwide where forecast skill in surface parameters has degraded in SEAS5 

compared to SEAS4 especially for forecasts started in May. Figure 1 is reprinted from Johnson et al. (2019) 

and shows the difference in CRPSS between SEAS5 and SEAS4 in JJA, which clearly shows the statistically 

significant degradation of SEAS5 in the EEIO. The degradation is also associated with a negative SST bias 

and overly large spread in the EEIO, as will be shown later. 

Given the importance of the EEIO for teleconnections and global climate variability, it is essential to better 

understand these changes. Stockdale et al. (2018) assessed the impact of various modelling choices (coupled 

vs uncoupled, resolution, stochastic physics etc.) on the SST bias in the EEIO but did not explore the 

underlying processes. This manuscript aims at characterization of forecast errors in the EEIO at different lead 

times, to gain a better understanding of mechanisms and provide recommendations for metrics to guide further 

model development. The rest of the paper is organized as follows. Section 2 shows in more detail the changes 
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in SST forecasts in the Indian Ocean from SEAS4 to SEAS5. Section 3 investigates errors in atmospheric and 

oceanic initial conditions used in SEAS5 and compares them to those used for SEAS4. Section 4 discusses 

evolution of surface and subsurface errors in the EEIO as a function of lead time across the medium, extended 

and seasonal ranges. Section 5 explores the state dependence of wind and precipitation errors in the Indian 

Ocean. Section 6 employs diagnostics developed in the earlier sections to evaluate the performance of more 

recent model cycles. Section 7 concludes with a discussion. 

 

Figure 1 . Difference in CRPSS of t2m forecasts for JJA from SEAS5 and SEAS4. Scores are based on forecasts 

initialized in May 1981-2016. Reprinted from Johnson et al. (2019). 

 

2. From SEAS4 to SEAS5: Changes in SST forecast scores and indices 

Figure 2 is reprinted from Johnson et al. (2019) and is here used to further set the scene. SEAS5 exhibits a 

positive SST bias in the western equatorial Indian Ocean (WEIO; 10S-10N, 50-70E) with a moderate annual 

cycle (Figure 2a). Compared to SEAS4, SSTs in SEAS5 have warmed in this region, but the shape of the 

annual cycle is similar. In the WEIO, other performance metrics than bias are similar in SEAS4 and SEAS5 

(Figure 2c, e, g). In the eastern equatorial Indian Ocean (EEIO, 10-0S 90-110E), SEAS5 SST bias has a more 

pronounced annual cycle (Figure 2b). While it is positive in boreal winter and spring, it is negative in boreal 

fall, especially in ASON and most pronounced for 4-6 months lead time.  

This represents a significant change compared to SEAS4, which has a seasonally more uniform SST bias, 

which is comparatively small especially for 1-3 months lead time. Also the other metrics shown in Figure 2 

show the degradation of SEAS5 SST forecasts in the EEIO, with greatly enhanced amplitude ratio in JASOND 

(Figure 2d), reduced anomaly correlation especially in boreal fall (Figure 2f), and substantially increased RMS 

errors in JASON compared to SEAS4. The degraded performance in boreal fall indicates a reduced ability of 

the system to predict the state of Indian Ocean Dipole (IOD), which usually has its peak during this season.  

Figure 3 compares SEAS4 and SEAS5 SST forecasts in the EEIO in ASO, when the negative forecast bias in 

SEAS5 is most pronounced. SEAS4 shows clear anti-correlation between ensemble mean SSTs and SST 

spread (Figure 3a). This makes sense physically, as at lower SSTs the SSTs themselves are more sensitive to 

small changes in the surface winds (see section 5.3). Although SEAS5 forecasts exhibit a similarly negative 

correlation between ensemble mean SSTs and spread, it is evident that the correlation mainly arises from the 

few points with SST values >28°C, while most forecasts cluster in the low SST/high spread regime. Figure 3a 

furthermore suggests that for a given SST, the spread in SEAS5 is higher than in SEAS4, especially for warmer 
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SSTs. Figure 3b compares SST spread and forecast errors. The spread-error relationship in SEAS5 appears to 

have two distinct regimes: a more populated cold error/large spread regime, with overestimation of spread in 

some instances, and a scarcely populated warm error/small spread regime, where the forecasts are clearly 

under-dispersive. This relationship is not present in SEAS4, where correlation between spread and forecast 

error is close to 0. 

 

Figure 2. Various SST forecast performance metrics in the Western (WEIO) and Eastern (EEIO) Equatorial 

Indian Ocean as a function of target month: (a,b) bias, (c,d) amplitude ratio, (e,f) anomaly correlation, (g,h) 

RMSE. Blue (red) lines show SEAS4 (SEAS5), and solid (dashed) lines show seasonal averages for 1-3 (4-6) 

months lead time. OIv2 SST data are used as a reference. The observed standard deviation of SST interannual 

variability in WEIO and EEIO is shown as a function of calendar month in (g) and (h), respectively. Reprinted 

from Johnson et al (2019). 
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Figure 3.  Relationships of different metrics of ASO mean SST forecasts (initialized on 1 May 1993-2017) in 

the EEIO. a) ensemble mean SSTs versus SST ensemble spread; b) ensemble mean SST forecast error versus 

SST ensemble spread. 

To examine whether these relationships hold in other forecast systems, the characteristics of SEAS4 and 

SEAS5 were compared to other forecast systems in the C3S multi-system seasonal forecast 

(https://doi.org/10.24381/cds.68dd14c3). Ten ensemble members from seven forecast systems with reforecasts 

were included. In Figure 4, the climate mean SST bias in the EEIO is compared to the root-mean-square of the 

spread and the root-mean-square error of the bias-corrected ensemble reforecasts. A clear relationship between 

SST bias and RMS error in the EEIO is shown in Figure 4b. When the SST bias is small, the RMS error is also 

at a minimum. This figure also shows that the largest SST biases and RMS errors are associated with cold SST 

biases. Figure 4a shows that these cold SST biases are associated with larger spread, as discussed above for 

SEAS4 and SEAS5 (see also Figure 3). Together, these two relationships suggest that systems with a larger 

warm SST bias would have low spread-error ratios compared to models with a cold SST bias. In Figure 4c, we 

show the spread-error ratio of the systems compared to the SST drift. We can see that SEAS4 and SEAS5 are 

overspread for their RMS errors, despite having very different SST bias and error characteristics. However, 

the other systems have too little spread for their error. There appears to be little relationship between SST drift 

and the spread-error ratio, except perhaps a lack of models exhibiting a large warm SST bias (> 0.3 C) and 

excess spread at the same time. However, this could also be due to the limited number of systems considered 

here. 

 

Figure 4. Relationships between ASO mean EEIO SST bias, RMS spread and RMS error in the C3S multi-

system seasonal re-forecasts initialized on 1 May from 1993 to 2016. (a) RMS spread versus SST bias (b) RMS 

error versus SST bias and (c) Spread-error ratio versus SST bias.  
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Figure 5 explores how these SST characteristics are related to the mean zonal wind bias in the EEIO. In Figure 

5a, the mean SST bias and mean zonal wind bias are compared, which shows that an overly strong easterly 

wind (negative wind bias) always exists with a cold SST bias, and weak easterly wind (positive wind bias) 

always exists with a warm SST bias. This is consistent with an overly strong easterly bias leading to increased 

upwelling off the coast of Java and cooling SSTs in the EEIO. However, there is a lot of variation in the 

relationship between the magnitude of the zonal wind and SST bias – clearly indicating that other 

characteristics of the model, beyond the zonal wind bias, determine the size of the SST bias. As expected from 

the relationships with SST bias in Figure 4, Figure 5b and c show that a stronger zonal wind in the EEIO is 

also associated with increased SST RMS error and increased SST spread, though any relationship with SST 

spread-error ratio is again less clear (not shown).  

 

Figure 5. Relationships between ASO mean EEIO 10m zonal wind bias and SST characteristics in the C3S 

multi-system seasonal re-forecasts initialized on 1 May from 1993 to 2016. (a) SST bias versus zonal 10m wind 

bias (b) SST RMS error versus zonal 10m wind bias and (c) SST RMS spread versus zonal 10m wind bias.  

 

3. Errors in initial conditions 

In this section we assess errors in the EEIO of the initial conditions used in SEAS4 and SEAS5. These are 

ORAS4 (SEAS4) and ORAS5 (SEAS5) for the ocean and ERA-Interim (both systems) for the atmosphere. 

3.1. Atmospheric reanalyses 

We validate analysed 10m zonal winds (u10m) from ERA-Interim against in-situ measurements taken from 

buoys located in the EEIO and are provided through Research Moored Array for African-Asian-Australian 

Monsoon Analysis and Prediction (RAMA; Mcphaden et al. 2009). This parameter is crucial as it is strongly 

coupled to SSTs in two ways, i.e., driving SST changes and responding to changed SSTs. Figure 6 shows (a) 

time series and (b) mean annual cycle of u10m bias from ERA-Interim and buoy measurements for a buoy 

located at 0N, 90E, i.e., at the edge of the EEIO. The mean annual cycles were computed for the months when 

observations were available, and buoy measurements were adjusted to account for the measurement height of 

the anemometers (4m) following Bidlot et al. (2002). ERA5 data is included as well for comparison. When 

considering full time series (left column), reanalysis-based winds are in generally good agreement with the 

observations, both in terms of interannual variations and the mean annual cycle. Considering the mean annual 

cycle of the bias compared to observations, ERA-Interim and ERA5 show a weak easterly bias (too weak 

westerlies) at the equator (0N, 90E) during April-November, which is more pronounced in ERA-Interim than 

ERA5 (Figure 6b). This is consistent with the analysis by Belmonte Rivas and Stoffelen (2019), who compared 

ERA-Interim and ERA5 surface winds (taken from short-term forecasts) to ASCAT observations and found 

relatively small zonal wind errors in the EEIO. Nevertheless, the small easterly bias in the reanalyses despite 



 Outcomes from UGROW-IO 

 

8 Technical Memorandum No. 898 

observational constraints is already indicative of an easterly bias of the atmospheric model, which becomes 

much more pronounced in forecast mode (see subsequent sections). We note that climatological near-surface 

winds at the buoy location have a strong southerly component in boreal summer, but the reanalysis bias of the 

v-component (too weak southerlies) is smaller than that of the u-component and hence not shown here. 

To which degree the easterly bias at 0N,90E during April-November has the potential to induce cooling in the 

ocean initial conditions is unclear, as it is relatively far off the coast, where one would expect the strongest 

effect on the upwelling. Moreover, the buoy location is at the northern edge of climatological easterlies in 

boreal summer. Figure 6b also suggests that ERA5 winds are in better agreement with the observations, with 

the easterly bias roughly halved. However, as will be shown later (Appendix A1), change from ERA-Interim 

to ERA5 forcing does not lead to significant changes in the analysed ocean state.  

 

Figure 6. a) time series of u10m for ERA-Interim, ERA5, and the RAMA buoy at 0N, 90E and b) annual cycle 

of u10m bias from reanalyses (w.r.t. buoy measurements, considering only months when observations are 

available) and difference between reanalysis winds (considering all months) at 0N, 90E. 

We also considered buoy measurements at two locations south of the equator, but there the results are less 

clear (not shown). ERA-Interim seems to exhibit less reliable winds towards the end of its lifetime, but also 

the buoys seem to contain spurious values, especially in the early period. Because of these complications, we 

refrain from including results from the buoys south of the equator here.  

3.2. Oceanic reanalyses 

In this subsection we focus on the differences in the ocean initial conditions ORAS5 (Zuo et al. 2019) and 

ORAS4 (Balmaseda et al. 2012). The ocean component differs substantially between the two systems. ORAS5 

configuration is ~0.25° in the horizonal, 1m vertical resolution in the upper ocean layers, higher than that in 

ORAS4 (~ 1° in the horizontal and 10m in the vertical over the upper ocean). There are also changes in the 

ocean model version and data assimilation. In order to isolate the impact of ocean resolution, we conduct an 

additional ocean reanalysis similar to ORAS5 but at the lower the horizontal and vertical resolution of ORAS4. 

We call this ocean reanalysis ORAS5-LR.  

We first compare three ocean reanalyses ORAS5, ORAS5-LR, and ORAS4 to in-situ-based analyses Hadley 

EN4 (Good et al. 2013) in its version 4.2.1. We note that EN4 profiles are assimilated into the ECMWF ocean 

reanalyses and hence should not be viewed as independent validation data, but systematic differences can 

indicate biases in the assimilating ocean model. Figure 7 shows the difference between the mean annual cycle 

(1993-2013) of water temperature in the EEIO from (a) ORAS5, (b) ORAS5-LR, and (c) ORAS4 and EN4, as 

a function of depth. ORAS5 and ORAS5-LR exhibit a cool bias order ~0.5K around the thermocline almost 

year-round, with a maximum around 100m depth. Biases in the mixed layer and below 150m are small. The 

similarity between ORAS5 and ORAS5-LR biases suggests that they are resolution-independent. ORAS4 has 
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a reduced cool bias in 100m, which only appears in a few calendar months (February and March, August and 

September). In return, ORAS4 exhibits a warm bias in the mixed layer. To facilitate comparison of the 

temperature bias with available data of temperature analysis increments of the three reanalyses (discussed 

next), the second row of Figure 7 repeats the bias plots but for the period 2011-2013. 

It is useful to now consider the temperature analysis increments in the different reanalyses, which are plotted 

in the same manner as the temperature bias in the third row of Figure 7. As averaging period we choose the 

short period during which all three reanalyses archived the increments (2011-2013). ORAS5 (Figure 7g) and 

(to slightly lesser degree) ORAS5-LR (Figure 7h) have strongly positive increments between 50 and 150m 

from May-November (Figure 7d-e) and thus act to reduce the bias during that time of the year (Figure 7d-e) . 

Increments in boreal winter are generally negative during January-April and limit the temperature bias, which 

tends to be slightly positive during this time of the year. Thus, in general the data assimilation works effectively 

to limit biases around the thermocline, as expected. Only in a few instances increments and bias are of the 

same sign, e.g., in December, which may be related to a temporary reduction of available observations, 

rejection of observations due to too large deviations, or spatial propagation of temperature increments. Figure 

7i shows temperature increments from ORAS4, which are negative around the thermocline almost all year, 

which is in stark contrast to the increments of the two ORAS5 versions. It is especially surprising that ORAS4 

and ORAS5-LR exhibit such differences in the increments, despite the same resolution and atmospheric 

forcing. This confirms that the differences seen in ORAS4 and ORAS5 do not stem from the resolution. There 

are other contributing factors, such as differences in the used flux formulation (bulk formulation in ORAS5 

versus direct IFS-fluxes in ORAS4), different assimilation options, different observational data sets, and 

differences in the model versions used in ORAS5 (NEMO3.4) and ORAS4 (NEMO3.0), especially those 

associated with vertical mixing (inclusion of wave effects or different choices for the tidal mixing). 

 

Figure 7. mean annual cycle of subsurface temperature bias in EEIO of a)/d) ORAS5, b)/e) ORAS5-LR, and 

c)/f) ORAS4 compared to EN4 analyses averaged over (first row) 1993-2015 and (second row) 2011-2013. 

Temperature increments in EEIO from g) ORAS5, h) ORAS5-LR, and i) ORAS4 averaged over 2011-2013. 

We performed the diagnostics shown in Figure 7 also on a prototype of the new ocean analysis system 

ORAP6.1 (Zuo et al., 2021, see Appendix A1). The main differences between ORAP6 and ORAS5 is related 

with observational datasets (reprocessed in-situ and altimeter, SST), use of atmospheric forcing from ERA5, 

and modified subsurface bias correction scheme. The subsurface bias in ORAP6.1 is slightly reduced, but its 
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vertical structure as well as the seasonal cycle of temperature assimilation increments are very similar 

compared to ORAS5. 

 

4. Evolution of errors across forecast ranges 

After assessing biases in the initial conditions used in the forecasting system, we now turn to forecast biases 

of zonal wind, SST and subsurface temperature as a function of lead time. As before, we assess atmospheric 

and sub-surface errors separately. We use results from medium-range forecasts using IFS CY46R1 as well as 

extended range hindcasts from CY46R1. Table 1 summarizes the used seasonal forecast data. 

Name Initial conditions Resolution Model Exp id  

SEAS4 ORAS4, ERA-Interim T255 L91 

ORCA1 Z42 

IFS CY36R4  

SEAS5 ORAS5, ERA-

Interim/operations 

Tco319 L91 

ORCA025 Z75 

IFS CY43R1  

SEAS5-LR ORAS5-LR, ERA-

Interim 

Tco319 L91 

ORCA1 Z42 

IFS CY43R1 gltf 

SEAS5-LR-O4 ORAS4, ERA-

Interim/operations 

Tco319 L91 

ORCA1 Z42 

IFS CY43R1 ghzq 

SEAS5-obsSST ERA-

Interim/operations 

Tco319 L91 IFS CY43R1, uncoupled, 

forced by observed SSTs 

gv90 

FC_47R1 ORAS5-LR/ERA5 Tco199 L91 

ORCA1 Z75 

IFS CY47R1 hcy8 

FC_47R2 ORAS5-LR/ERA5 Tco199 L91 

ORCA1 Z75 

IFS CY47R2 hfnf 

FC_47R3 ORAS5-LR/ERA5 Tco199   

ORCA1 Z75 

IFS CY47R3 hm3f 

FC_ORAP6 ORAP6.1, ERA-

Interim/operations 

Tco199 L137 

ORCA025 Z75 

IFS CY47R1 hiu0 

FC_ORAS5 ORAS5, ERA-

Interim/operations 

Tco199 L137 

ORCA025 Z75 

IFS CY47R1 hiqa 

FC_N3.4_LR Low-resolution 

NEMO3.4 ocean 

control run/ERA5 

Tco199 L137 

ORCA1 Z75 

IFS CY47R3 hgr8 

FC_NX_LR Low-resolution ocean 

control run using 

modified ocean model 

NEMOX/ERA5 

Tco199 L137 

ORCA1 Z75 

IFS CY47R3 hpa0 

FC_N34_LR_PERT Perturbed NEMO3.4 

ocean control 

run/ERA5 

Tco199 L137 

ORCA1 Z75 

IFS CY47R3 hr1o 

Table 1.Seasonal forecast experiments used in this study, including information on oceanic and atmospheric 

initial conditions and resolution (atmospheric horizontal and vertical resolution, oceanic horizontal and 

vertical resolution). All forecasts are run in coupled mode unless otherwise stated.  
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4.1. Errors in the atmospheric forecasts 

We begin with the assessment of short-range wind errors in the ECMWF HRES forecasts and put them in 

relation to other NWP models. Figure 8 shows the bias in forecasts of 10m-u-wind in the IFS HRES at (a) 1 

day and (b) 3 days lead time for JJASO 2018. The largest error, especially at day 3, is the too strong easterlies 

in the Western Tropical Pacific, which is strongest in DJF (not shown) and has been present in ECMWF 

seasonal forecasts for a long time (see Magnusson et al. 2013). Focusing on the tropical Indian Ocean, we find 

a strong negative bias along the equator and a positive bias in the northern tropical IO. The wind bias bears the 

signature of a too strong monsoon circulation. It is a long-standing issue that was extensively discussed in 

Rodwell et al. (2010). It is clear that the wind bias develops very fast in the Indian Ocean as it is present already 

during the first days of the forecast. 

 

Figure 8. a) 10m u-wind bias of the IFS HRES (a) day-1 and (b) day-3 forecast in JJASO 2018.  c) Lead-time 

evolution for u10m of mean error in the EEIO for different models contributing to DIMOSIC. Winds were 

verified against own analysis. 

To put the ECMWF bias in perspective, Figure 8c shows result from the DIMOSIC project, where different 

global models were initialised from the same (ECMWF) analysis (Magnusson et al., 2022, submitted to 

BAMS). Here we make use of forecasts from 6 June 2018 - 1 November 2018 (49 cases). Figure 8c shows the 

evolution of the bias of u10m in the EEIO from the different models as a function of lead time verified against 

the ECMWF analysis. Most of the models develop a negative bias over the first 2 days. The two red lines show 

ECMWF IFS CY47R1 (solid) and IFS-47r3 (dashed). IFS CY47R3 shows a somewhat stronger bias than IFS 

CY47R1 but gives on the other hand a lower RMSE (not shown). The plot also includes the SHiELD model 

initialised from GFS initial conditions, and this model starts from a similar mean state and shows a similar 

model drift, indicating that the issue is not dependent on the initial conditions. A similar wind bias in the EEIO 

is found in both IFS versions and DWD-ICON, METEOFRANCE-ARPEGE and UKMO-UM, with the 

strongest bias in UKMO-UM. On the other hand, this bias is not present in GFDL-SHiELD, JMA-GSM and 

CMC-GEM. However, GFDL-SHiELD and JMA-GSM have strong negative biases in other parts of the 

tropical Indian Ocean (not shown). 
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We now turn to 10m zonal wind errors in extended range forecasts, shown for CY46R1 hindcasts 2000-2019, 

verified against ERA5. Figure 9a and b show the week-1 wind bias for May and August starts, respectively. 

The moderate (~0.3 m/s) easterly wind bias in the equatorial and southern subtropical Indian Ocean and the 

stronger easterly wind bias in the equatorial Pacific (most pronounced at order 0.7-0.8 m/s west of the date 

line) as well as the westerly bias in the northern IO are similar to the bias in short-range forecasts. Week-1 

biases for August starts are qualitatively similar, but with a generally higher magnitude, likely because in 

August the monsoon circulation is fully established, and related model biases appear to be proportional to its 

strength. Going to weeks 2-4 (Figure 9c and d), we see a strengthening of the easterly bias along the equator, 

where magnitudes are 1.5 m/s. The easterly wind bias further extends to the subtropical Pacific. While the 

westerly wind bias persists in the northern subtropical Indian Ocean for May starts (Figure 9c), it diminishes 

in August starts (Figure 9d). 

 

Figure 9. 10m u-wind errors in extended-range forecasts (CY46R1) initialized in (a,c) May and (b,d) August 

2000-2019 for week (a,b) 1 and (c,d) 2-4. ERA5 is used as reference. 

Figure 10 presents 10m zonal wind biases for coupled and uncoupled seasonal forecasts initialized in May. 

SEAS5-ObsSST is an atmosphere-only seasonal reforecast experiment, equivalent to SEAS5, where the 

atmosphere model sees the daily SST prescribed from observations. Figure 10a and b show month-1 (i.e., May) 

wind biases of SEAS5 and SEAS5-obsSST, respectively. First, they are qualitatively similar to the week 2-4 

biases of the extended range hindcasts started in May as shown in Figure 9c. However, the seasonal forecast 

biases appear generally stronger, but this may also be related to the different periods used for computation. 

The difference between the wind biases of coupled and uncoupled models (Figure 10c) show that in some 

regions the coupled model shows more pronounced biases (e.g., western equatorial Pacific), but reduced biases 

in other regions (e.g., equatorial Indian Ocean). 

Progressing to JJA averages (Figure 10d-e), we see further amplification of the bias patterns seen already in 

May. Especially in the western equatorial Pacific, SEAS5 exhibits a much stronger easterly wind bias than 

SEAS5-obsSST (Figure 10f), which is likely the result of a positive coupled feedback between the cold SST 

bias in the eastern equatorial Pacific of SEAS5 (Johnson et al., 2019) and the Equatorial easterlies. Thus, in 

areas with positive coupled feedback, the wind biases of the coupled model in JJA are mostly stronger 

compared to those of the uncoupled model. One exception is the north-western subtropical Pacific and northern 

Indian Ocean, where SEAS5 has slightly smaller biases. 

The increased easterly bias of SEAS5 along the equatorial but decreased westerly bias in the northern Indian 

Ocean is related to regional changes of errors in the coupled model. The former is associated with the enhanced 

zonal SST gradient along the equatorial Indian Ocean (compare Figure 1a and b), while the latter is related to 

the improved precipitation climatology of SEAS5 in the Southeastern monsoon region (SEAS5-obsSST 

exhibits strong overestimation of precipitation in this region; compare Fig. A12 in Stockdale et al. 2018). The 
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improved monsoons in the coupled model may be related to the warm SST bias present in the northern Indian 

Ocean (compare Fig. 12d in Stockdale et al., 2018), which acts to reduce the land-sea temperature contrast and 

consequently could act to reduce the monsoonal inflow to the continent.  

 

Figure 10. 10m u-wind errors in long-range (a,d) coupled forecasts from SEAS5, (b,e) SEAS5-obsSST, and 

(c,f) their difference initialized on 1st of May 1993-2018 for (a,b,c) May and (d,e,f) JJA. ERA5 is used as 

reference. 

Figure 11 relates wind and SST biases in the EEIO in extended-range and seasonal forecasts for different lead 

times. Figure 11a confirms that in the extended range the easterly wind bias develops in week-1 and saturates 

in weeks 2-4. The evolution is similar for all four months May to August, but the strongest week 2-4 wind bias 

is found in June. Extended range SST biases (Figure 11a) are positive in week 1 and then diminish, with a 

similar behaviour for all start months. The initial warming may be related to the shoaling mixed layer which 

then can be warmed more efficiently by surface heat fluxes. Figure 11b shows the evolution of wind and SST 

biases in seasonal forecasts started in May. Wind biases of the coupled (SEAS5) and uncoupled forecasts 

(SEAS5-obsSST) are similar in month 1. They further worsen in the coupled forecast from month 2 onward, 

which is associated with the development of the cold SST bias from month 2 onward, while the wind bias 

remains roughly stable in SEAS5-obsSST. The relationship between SST in the EEIO (and WEIO) with the 

winds in the EEIO will be further investigated in the subsequent sections. SEAS4 shows a different behaviour 

than SEAS5, despite a weakly positive SST and weak easterly bias in lead month 1, biases reduce to almost 

zero in JJA. Figure 11b and c additionally include results for other experiments which will be referred to later. 

 

Figure 11: 10m u-wind and SST bias in EEIO at different lead times (a) in extended-range (2000-2019) and 

(b,c) seasonal forecasts (May starts 1993-2015). ERA5 is used as a reference. 

We note that the week 1-4 SST bias (~0.1K) of the extended range forecasts (Figure 11a) is lower than that of 

SEAS5 in month 1 (~0.3K) bias (Figure 11b). This can partly be attributed to the different time periods 

considered, as the SEAS5 month-1 SST bias for 2000-2018 is only ~0.2K (not shown). The remaining 
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difference may be attributable to the different model cycles (CY43R1 for SEAS5, CY46R1 for the extended 

range results). 

4.2. Subsurface errors 

Figure 12 shows the lead-time dependent subsurface temperature bias in seasonal forecasts initialized in May 

1993-2013. In month-1 SEAS5 (Figure 12a) has a moderate cold bias of ~-0.5K peaking at ~100m depth, 

which is largely consistent with the temperature biases found for ORAS5 (Figure 7). The negative bias at that 

depth rapidly amplifies with lead time and becomes lower than -3K from July onward. From July onward, the 

bias also extends to the surface, consistent with Figure 11b. The forecast bias below ~200m remains small at 

all lead times. Figure 12b shows the subsurface temperature bias of a low-resolution version of SEAS5 

(SEAS5-LR) that is initialized from ORAS5-LR. Consistent with the similar sub-surface biases of ORAS5 and 

ORAS5-LR, SEAS5-LR exhibits a similar bias in lead month 1. The negative bias around the thermocline 

subsequently amplifies, but not as pronounced as in SEAS5. Also, the negative bias close to the surface is 

substantially reduced compared to SEAS5. The reduced surface impact of the cold thermocline bias in SEAS5-

LR is consistent with the reduced SST bias and, as a result, a reduced u10m bias compared to SEAS5 (compare 

Figure 11b). Figure 12c shows the subsurface temperature bias of a low-resolution version of SEAS5 that is 

initialized from ORAS4, with the same coupled model cycle used in SEAS5 and SEAS5-LR. We call this 

experiment SEAS5-LR-O4. The negative bias with a maximum around the thermocline is also present for this 

experiment, but with a magnitude that is further reduced compared to SEAS5-LR. This is most visible in lead 

month 1, which is consistent with the warmer thermocline temperatures of ORAS4 compared to ORAS5-LR 

(compare Figure 7b and c). More importantly, in SEAS5-LR-O4 the cold bias does not reach the surface. This 

is an important difference to SEAS5 and also to SEAS5-LR, which both have the cold bias reaching the surface 

(at varying degrees). An important consequence is that the subsurface-errors in SEAS5-LR-O4 are fairly 

uncoupled from the atmosphere in summer, during the monsoon season. Figure 11b confirms the positive 

impact of ORAS4 initial conditions on surface biases, with the SST bias remaining positive also in JJA, despite 

the strengthening easterly bias. We conclude that all considered forecast experiments show a strong cold bias 

developing around the thermocline for May starts, and in all except for the one using ORAS4 initial conditions 

the cold bias reaches the surface by boreal summer and thus induces a cold SST bias as well. Although the 

difference in forecast biases between SEAS5-LR and SEAS5-LR-O4 is due only to the ocean initial conditions, 

since they use the same model setup in forecast mode, the impact of the ocean model version cannot be 

discarded. Indeed, the different ocean model versions used for the long reanalyses can impact the forecasts 

through the initial conditions. We also find sensitivity to the resolution, with different bias evolution in SEAS5 

compared to SEAS5-LR, a fact that should be kept in mind for testing of newer cycles at low resolution (see 

also Roberts et al. 2020). 

 

Figure 12. Subsurface ocean temperature bias in EEIO in long-range coupled forecasts from (a) SEAS5, (b) 

SEAS5-LR, (c) and SEAS5-LR-O4 for lead months 1-6 (May starts 1993-2015). Hadley EN4 analyses are used 

as reference. 
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5. State-dependence of errors 

In the previous sections we assessed unconditional biases as a function of lead time. To identify conditional 

biases, here we examine flow-dependent relationships between SST, winds, and precipitation. We focus on 

JJA, when the SST bias is not yet at its peak (compare Figure 2), to explore relationships and feedbacks during 

the development phase of the errors. 

5.1. Local atmospheric response in the EEIO to SSTs 

Figure 13 shows scatter diagrams of SSTEEIO versus (first row) zonal wind and (second row) precipitation in 

the EEIO for forecasts and ERA5. The SST/wind relationship (Figure 13a and b) exhibits a non-linear 

behavior, with two different regimes for SST above and below a certain threshold Tc (~28.5°C): the sensitivity 

of wind to SST variations is higher (steeper slope) in the warm regime.  

 

Figure 13. Scatter diagrams of JJA SSTs in EEIO against (a,b) 10m u-wind and (c,d) precipitation in JJA in 

EEIO. Black crosses show single members (10 per start date) of (a,c) SEAS5 and (b,d) SEAS5-obsSST forecasts 

initialized on 1 May 1993-2018 and red circles relationships based on ERA5 1993-2018. 

Since the winds and SSTs are coupled two-ways, the flattening of the u10m/SST relationship in the cold regime 

can also be interpreted as an increased SST sensitivity to wind variations. In the observations (Figure 13a), 

most of the points are in the warm regime, showing a strong reduction of the prevailing easterlies as a response 

to warmer SSTs. SEAS5 forecasts exhibit three major differences w.r.t. reanalyses. First, for a given SST, the 

easterlies are too strong. Second, the easterly wind bias increases with SSTs (warm regime slope error). Third, 

SEAS5 SSTEEIO is more populated in the cold regime, with a sizable fraction of forecasts reaching much cooler 
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values than observed. The SST/wind relationship in SEAS5-obsSST (Figure 13b) is somewhat improved 

compared to SEAS5, with forecasts lying closer to ERA5 for SSTs < Tc. However, at higher SSTs the warm 

regime slope error appears similar in coupled and uncoupled forecasts. 

The observed and modelled SST/precipitation relationships are closer to observations (compared to the 

u10m/SST relationship) for both coupled and uncoupled forecasts (Figure 13c, d). Both forecasting systems 

exhibit a slight underestimation of precipitation at high SSTs, where SEAS5 exhibits weaker underestimation 

of precipitation at high SSTs (-0.8 mm/d for all cases with SST> Tc and -1.1 mm/d for all cases with SST>Tc 

and lower the observed maximum SST) than SEAS5-obsSST (-1.5 mm/d for all cases with SST>Tc). For the 

cool SSTs only present in SEAS5, the SST/precipitation relationship weakens as precipitation goes towards 

zero. 

5.2. EEIO atmospheric response to zonal SST gradients 

Next, we look at relationships of u10m and precipitation in the EEIO with the zonal SST gradient across the 

Indian Ocean, approximated by the difference SSTEEIO-SSTWEIO (ΔSST). Note that ΔSST differs from the 

Indian Ocean Dipole Model Index as the latter uses standardized SST anomalies and has the sign reversed. 

Figure 14 is analogous to Figure 13, but now with ΔSST on the x-axis. It stands out that the observed zonal 

SST gradient is always positive and ranges between 0 and 2K, i.e., SSTs in the EEIO are always warmer than 

those in the WEIO. In SEAS5 (left column of Figure 14), the SST gradient can attain large negative values 

lower than -2K. For the cases where SEAS5 has a positive zonal SST gradient, the ΔSST/u10m relationship in 

SEAS5 (Figure 14a) agrees reasonably well with ERA5, although the weakening of the winds in response to a 

positive SST gradient still seems underestimated in terms of slope. Hence, it appears as if the model captures 

comparatively well the response to the positive zonal SST gradients in spite of the deficient local response 

over the EEIO. This can be understood by noting the positive SST bias in the WEIO in JJA (compare Figure 

2): For a given positive SSTEEIO anomaly in SEAS5, ΔSST is smaller compared to observations because of the 

warm SSTWEIO bias. This is confirmed by Figure A2 which shows the relationship between SSTEEIO and ΔSST 

in SEAS5 and ERA5. We conclude that the warm regime slope error of SEAS5 (too weak zonal wind response 

to SSTEEIO; Figure 14a) at least partly results from the warm SSTWEIO bias and the fact that the zonal winds are 

more strongly related to ΔSST rather than SSTEEIO. However, from Figure 14a it is also evident that cases with 

more than moderately positive ΔSST are relatively rare in SEAS5, as the majority of SEAS5 forecasts cluster 

around neutral SST gradients, which is rarely observed (not to mention the occurrences of negative ΔSST). 

The too weak wind response in SEAS5-obsSST for ΔSST>1K may be related to the too weak precipitation 

response for high SSTs in the EEIO (Figure 13d), which conversely provides too weak diabatic heating and 

low-level wind convergence. Another aspect is the positive precipitation bias of SEAS5-obsSST over southeast 

Asia [see Stockdale et al. (2018) or also Lavers et al. (2021)], which is associated with strengthened equatorial 

easterlies through the enhanced anticyclonic atmospheric circulation over the northern Indian Ocean. 

Furthermore, the observed anti-correlation between SSTEEIO and southeast-Asian precipitation (i.e., higher 

SSTEEIO goes with reduced precipitation over southeast Asia and vice versa in reanalysis) is not reproduced by 

SEAS5-obsSST (not shown), i.e., the precipitation bias and associated circulation response is especially strong 

for high SSTEEIO, which likely contributes to the conditional easterly wind bias of SEAS5-obsSST in the EEIO. 

In addition to this, the too weak slope of the ΔSST/wind relationship of SEAS5-obsSST may also indicate a 

persistent and stable easterly regime which is difficult to destabilize by either local convection or large-scale 

SST gradients. 
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SEAS5-obsSST (Figure 14b) exhibits a similar ΔSST/u10m relationship as SEAS5, with reduced wind spread 

at SST gradients >1K. In the reanalyses, the ΔSST/u10m relationship has a stronger linear slope for positive 

SST gradients, i.e., the model winds do not weaken sufficiently with stronger positive SST gradients.  

 

Figure 14. Scatter diagrams of JJA west-east SST gradients in the Indian Ocean against (a,b) 10m u-wind and 

(c,d) precipitation in JJA in EEIO. Black crosses show single members (10 per start date) of (a,c) SEAS5 and 

(b,d) SEAS5-obsSST forecasts on 1 May 1993-2018 and red circles relationships based on ERA5 1993-2018. 

The ΔSST/precipitation relationship in SEAS5 (Figure 14c) is degraded compared to the local 

SST/precipitation relationship (compare Figure 13c), with too high precipitation for a given SST gradient. This 

can be explained by the fact that SEAS5 only produces significant positive zonal SST gradients when SSTEEIO 

attains overly high SSTs (see Figure A2). In these cases, the SST gradient may be corrected by the warm WEIO 

SST bias, but precipitation responds more strongly to local SSTs and hence is too high for a given SST gradient. 

The ΔSST/precipitation relationship in SEAS5-obsSST (Figure 14d) shows an underestimation of precipitation 

for strongly positive SST gradients. This result is in accordance with the found underestimation of precipitation 

to local SSTEEIO (Figure 13d). 

We do not show these diagnostics for extended-range forecasts for the sake of brevity, but we note that the 

main features found for the seasonal range can be seen already in weeks 2-4 of the forecasts. 
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5.3. Relationships between SSTs and sub-surface temperatures 

While the previous sections assessed the relationships between SSTs and atmospheric quantities, we now turn 

to the relationship between SSTs and sub-surface temperatures in the EEIO. Figure 15 shows scatter diagrams 

of SSTs versus temperatures in 100m depth (T100) in EEIO. T100 can be interpreted as a proxy for thermocline 

depth, with high values indicating a deep thermocline and vice versa.  

ORAS5 (Figure 15a) expectedly shows a positive correlation between SSTs and T100 in EEIO. Again, the 

scatter diagram shows the existence of two regimes. The slope is steeper in the warm regime (for SSTs>Tc) 

with strong T100 variations (~21.5 to 24.5°C) compared to a relatively small range in SSTs (~28.5 to 29.5°C), 

indicative of a strong vertical temperature gradient around 100m, associated with a deep thermocline in the 

warm regime. In the cold SST regime (SST < Tc), the slope is relatively flat with a smaller change in subsurface 

temperatures being associated with a larger change in SSTs. This is indicative of a shallower thermocline 

(maximum vertical gradient in shallower layers than 100m). We note that in ORAS5 the cold regime is a rare 

event and represented only by very few cases.  

 

Figure 15. Scatter diagrams of JJA SSTs in EEIO against temperature in 100m depth in JJA in EEIO. Black 

crosses show single members of (a) SEAS5 (1993-2015) and (b) SEAS5-LR (1993-2013), and (c) SEAS5-LR-

O4 (1993-2015) forecasts (May starts). Red circles show relationships based on the respective initial 

conditions of the forecasts: (a) ORAS5, (b) ORAS5-LR, and (c) ORAS4.  

The steep slope in the warm regime can also be interpreted as little SST sensitivity to variations of a relatively 

deep thermocline, together with the fact that deep atmospheric convection prevents the growth of SST 

perturbations. Conversely, the flatter slope of the cold regime can be interpreted as a strong sensitivity of the 

SST to variations of a shallow thermocline, a sensitivity that is not capped due to the weaker local air-sea 

interaction in the cold regime 

The T100/SST distribution based on SEAS5 forecasts (Figure 15a) is shifted vertically compared to ORAS5, 

i.e., T100 for a given SST is lower in SEAS5 compared to ORAS5. Nevertheless, SEAS5 exhibits a similar 

distinction of regimes around SST=Tc. However, in contrast to ORAS5, a large fraction of forecasts resides in 

the cold regime, and very cool T100 values are obtained by some members which have never been observed 

during the considered period. This is consistent with a shallowing error of the thermocline in the forecasts. The 

transition from the cold to warm regime appears to happen more gradually, with the T100/SST relationship in 

the warm regime of SEAS5 being not as steep as for ORAS5.  

Figure 15b shows the T100/SST relationship for SEAS5-LR as well as ORAS5-LR (i.e., the corresponding 

ocean reanalysis used to initialize SEAS5-LR). ORAS5-LR behaves very similar to ORAS5 (Figure 15a), the 
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notable difference being the slightly cooler lowest two T100 values. SEAS5-LR has a similar cool T100 bias 

as SEAS5 but has a weaker tendency to go into the cold regime. The long tail for cold SSTs is not present in 

SEAS5-LR, and the relative frequency of high SSTs is higher compared to SEAS5 (not shown).  

A further gradual change in behavior can be seen for SEAS5-LR-O4 (Figure 15c). SEAS5-LR-O4 exhibits a 

less pronounced distinction between warm and cold regime compared to SEAS5, i.e., the flattening of the 

T100/SST relationship for SST<Tc is less present, and cool T100 values below 19°C are reached for 

comparatively warm SSTs. Conversely, in SEAS5-LR-O4, low T100 values do not translate into SSTs as low 

as in SEAS5. This is consistent with the result that the unconditional cold subsurface bias in SEAS5-LR-O4 

does not appear at the surface as prominently as in SEAS5 (compare Figure 12). Another salient difference of 

SEAS5-LR-O4 with SEAS5 are the increased frequencies of cases in the warm regime (not shown explicitly), 

but it has to be kept in mind that SEAS5-LR-O4 consists of only 5 ensemble members, which makes robust 

statements about changes in forecast distributions difficult.  

 

6. Assessment of recent cycles and sensitivity tests 

Here we apply the diagnostics developed in previous sections to more recent developments and cycles. The 

impact of ORAP6 initial conditions on subsurface biases in seasonal forecasts is slightly positive, and results 

are shown in the Appendix A3. The next two subsections assess the impact of updated moist physics 

(introduced in IFS CY47R3) and an interim ocean model version different from NEMO3.4, here termed NX. 

6.1. Recent IFS cycles 

The wind/SST bias has not improved in recent model cycles compared with the performance of CY43R1 (used 

in SEAS5). In particular, CY47R1 saw a clear degradation of the biases (see FC_47R1 results in Figure 11c). 

The moist physics changes in CY47R3 have been evaluated with the seasonal reforecast experiment FC_47R3 

(also shown in Figure 11c). In this experiment, SSTs in the EEIO are cooler from lead month 1 and u10m in 

the EEIO is more easterly from lead month 2 (compared to FC_47R1). While the SST cooling means a 

reduction of the initial warm bias in lead month 1, it increases the cold bias from month 2 onward. Further 

diagnostics showed that the cooling mainly arises from reduced downwelling shortwave radiation and 

enhanced evaporation in FC_47R3 compared to FC_47R1 (not shown). The increased easterly bias in 

FC_47R3 is likely associated with the cooler SSTs in the EEIO. 

Inspection of the change in SST/u10m and SST/precipitation distributions from FC_47R1 to FC_47R3 (not 

shown) suggests that in FC_47R3 there is a decrease in relative frequency of strong easterlies with u<4m/s but 

an increase of weak easterlies for warm SSTs >Tc. This represents an improvement compared to SEAS5, as 

Figure 13a clearly shows the over-representation of cases with warm SSTs and strong easterlies. Indeed, the 

conditional wind bias for SSTs >29°C is reduced by ~0.1m/s in FC_47R3 compared to FC_47R1 (-1.1 vs 1.2 

m/s; not shown). However, the effect of the increased frequency of SSTs<Tc in FC_47R3 (which are already 

overrepresented in SEAS5) clearly dominates, as the unconditional biases in Figure 11c show. The 

SST/precipitation relationship does not change in FC_47R3 compared to FC_47R1 (not shown). Thus, the 

changes in the moist physics in FC47R3 do not show a direct impact on the precipitation response to local 

SSTs in the EEIO. We also assessed a seasonal forecasting experiment using IFS CY47R2 (FC_47R2; biases 

shown in Figure 11c as well), which behaves more similarly to FC_47R1 than FC_47R3. This confirms the 

above conclusion that the changes seen in FC_47R3 indeed result from the moist physics changes introduced 

with that cycle. 
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6.2. Role of the ocean model  

In this section we investigate the relative role of the ocean model in the EEIO errors, trying to separate the 

impact from the initial conditions and that of the model formulation during the forecasts. The method used to 

address this question is somewhat opportunistic, taking advantage of existing ocean simulations and reforecast 

experiments with different ocean model formulation, which turned out to exhibit different behaviour in the 

forecasts of the EEIO.  

The benchmark reforecast experiment is FC_N3.4_LR, which uses NEMO3.4 at low resolution, and it is 

initialized by an ocean-only simulation (i.e., no ocean data assimilation), where the SST has been constrained 

via a strong relaxation. FC_N3.4_LR exhibits a similar cold subsurface bias as SEAS5-LR (not shown) and 

also develops a cold SST and easterly u10m bias in the EEIO (Figure 11c). The reforecast experiment of 

opportunity is called FC_NX_LR, which is similar to FC_N3.4_LR but uses a different formulation of the 

ocean model (NX) during the forecast phase and in the production of the ocean initial conditions. FC_NX_LR 

shows warmer subsurface temperatures (i.e., a reduced subsurface bias) compared to the reference 

FC_N3.4_LR (Figure 16a) as well as a decreased SST bias in EEIO (not shown). Further inspection reveals 

that the ocean initial conditions produced with version NX show a warmer mixed layer and deeper thermocline 

in this region compared with those produced by the standard NEMO3.4 (not shown). However, it has to be 

noted that the ocean-only simulation using NX used a different subsurface climatology for the nudging than 

the simulation using NEMO3.4 (Sarah Keeley, personal communication), which could partially explain the 

differences in the initial conditions. 

 

Figure 16. Subsurface temperature differences in EEIO as a function of lead time (May start dates 1993-2015) 

between a) FC_NX_LR and FC_N3.4_LR and b) FC_N3.4_LR_PERT and FC_N3.4_LR. 

Figure 12We assess the sensitivity of seasonal forecasts using NEMO3.4 to a warm subsurface perturbation. 

For this purpose, we compute the temperature difference between the initial conditions produced with NX and 

NEMO3.4. We applied this difference (in combination with a density-compensating salinity perturbation) over 

the EEIO in May to the NEMO3.4 initial conditions and carried out seasonal forecasts using these perturbed 

ICs (initialized 1st May 1993-2015; labelled FC_N3.4_LR_PERT). The difference between subsurface 

temperature in FC_N3.4_LR_PERT and FC_N3.4_LR is presented in Figure 16b. Differences in lead month 

1 (May) are similar to the difference between FC_NX_LR and FC_N3.4_LR (compare Figure 16b with a),   

explaining about ~87% of the temperature difference between initial conditions of FC_N3.4_LR_PERT and 

FC_N3.4_LR at the thermocline (80m depth). At longer lead times, the differences decrease, explaining only 

~43% of the thermocline initial condition perturbation in 80m by lead month 6. The surface impact of the 

perturbation in FC_N3.4_LR_PERT is small, with slightly reduced SST bias and hardly changed u10m bias 

in the EEIO in JJA (Figure 11c). This result suggests that while the memory of subsurface perturbations in the 

initial conditions lasts into the seasonal forecast, they fail to amplify; in fact, the initial perturbation is damped 

as the forecast progresses. This implies that the formulation of the ocean model (most likely vertical processes) 
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plays a role in the growth of the initial condition error.   However, it should be kept in mind that the perturbation 

has been applied only to the relatively small EEIO region, and lateral advection and mixing might play a role 

in the damping of the initial perturbation as well. 

 

7. Summary and conclusions 

This paper summarizes the work carried out within UGROW-IO, which assessed the lead-time-dependent 

evolution of atmospheric and oceanic forecast errors in the Indian Ocean, most notably the cold SST and 

easterly wind bias in the EEIO. Analysis reveals that errors are present already in the initial conditions to some 

extent. Comparison of winds from atmospheric reanalyses to in-situ-observations in the EEIO showed that 

there is a weak easterly bias at the equator during April-October. The ORAS5 ocean reanalysis exhibits a too 

cold thermocline in the EEIO, which may be related to the identified easterly wind bias in ERA-Interim. 

Moreover, the subsurface temperature bias in ORAS5 is increased compared to ORAS4 despite the same 

atmospheric forcing. Oceanic resolution has been found to play a relatively small role in this context, which 

suggests that the different versions of the NEMO ocean model (NEMO3.4 compared to 3.0) along with 

differences in assimilated data and assimilation methods leads to the increased bias in ORAS5. 

The easterly wind bias increases rapidly within the first forecast days, suggesting that the atmospheric model 

establishes strong easterlies in the EEIO (and other tropical regions) in the absence of sufficient observational 

constraints. A similar behaviour is seen for a range of atmospheric models participating in the DIMOSIC 

project. At subseasonal-to-seasonal lead times, the easterly wind bias further strengthens and leads to 

development of the cold SST bias in the EEIO through enhanced upwelling. 

Investigation of the state-dependence of atmospheric errors shows that warmer SSTs are associated with overly 

strong easterlies, even in uncoupled experiments, while cooler SSTs have smaller wind biases. SEAS5 

forecasts develop a warm SST bias in the WEIO which likely further enhances the easterly bias in the coupled 

runs. Local precipitation response to SST anomalies in the EEIO is underestimated when compared to 

reanalyses, with a stronger underestimation by the uncoupled compared to the coupled forecasts. Considering 

relationships of winds in the EEIO with zonal SST gradients along the equatorial Indian Ocean yields better 

agreement of the forecasts with reanalyses, although easterlies are still too strong for high SSTs. For the 

coupled runs, the cause for the improved relationship is likely the removal of the effect of the warm WEIO 

bias by considering the zonal SST gradient. A potential cause for the remaining bias is too weak local diabatic 

heating and associated wind response in the EEIO arising from the underestimation of the local precipitation 

response. For the uncoupled forecasts, overestimation of the anticyclonic circulation over the northern 

subtropical associated with the too strong southeast Asian monsoon may play an additional role. 

Diagnostics of the relationship between subsurface ocean temperatures and SSTs in the EEIO show that there 

are two distinct regimes: the warm regime with deep thermocline and weak sensitivity of SSTs to winds and a 

cold regime with a shallow thermocline and a strong sensitivity of SSTs to winds. Coupled forecasts 

predominantly reside in the cold regime (opposite to observations), in which SST errors amplify quickly in the 

presence of wind errors. 

The diagnostics developed under UGROW-IO were subsequently applied to ongoing system developments on 

atmospheric and ocean model versions and ocean data assimilation. The analysis of system developments, 

assisted by targeted numerical experimentation, has helped us to gain further insight into the nature of the 

errors in the EEIO.  The lessons learnt can be summarized as follows: 
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• Recent atmospheric model cycles: Wind and SST bias in the EEIO have not been improved in recent 

model cycles when compared to SEAS5 (using CY43R1). In direct comparison to CY47R1, the wind-

SST relationship in the convective regime is slightly improved in seasonal forecasts with CY47R3, 

but overall biases (SST and wind) in the EEIO increased, likely because in CY47R3 reduction of net 

surface heat flux into the ocean leads to an overall cooling of SST. Although the change in SSTs 

represents a reduction of the existing positive bias in lead month 1, it represents an increase of the 

existing negative SST bias from lead month 2 onward.  

• Ocean data assimilation developments in the path towards ORAS6: We have evaluated the pilot ocean 

reanalyses (the so-called ORAP6 family), which use surface forcing based on hourly ERA5 and 

updated observational datasets. Changing ocean initial conditions from ORAS5 to ORAP6.1 improves 

subsurface biases only slightly. This suggests that the change to ERA5 forcing does not improve the 

cold thermocline bias in ocean reanalyses significantly despite the improvement of ERA5 10m-u-

winds over ERA-Interim in the comparison to winds measured by RAMA buoys. 

• Ocean model developments in the path towards NEMO4: ocean simulations (control runs) using an 

interim version of NEMO (NEMOX) showed a deeper and warmer mixed layer in the EEIO and a 

tighter thermocline. The comparatively warmer mixed layer in the initial conditions persists well into 

the forecasts conducted with this interim version of the ocean model, thus reducing the cold SST bias 

in the EEIO. We note though that these results may not be applicable to newer versions of the ocean 

model proposed for operational implementation. 

• Numerical experimentation on perturbation growth: A seasonal forecast experiment using NEMO3.4 

and modified initial conditions with a warm perturbation added in the EEIO (to mimic the warmer 

mixed layer in this region from an ocean simulation with modified ocean model version) shows that 

the initial perturbation is damped out relatively quickly within the first 3 months of the forecasts. This 

contrasts with the previous results using the modified ocean version in the forecast model, suggesting 

that, within a given atmospheric model version, the EEIO cold SST forecast bias does not only depend 

on the ocean initial conditions, but also depends on the formulation of the ocean model, which can 

damp or amplify the initial state.  

We conclude that there are two fundamental and independent sources of errors that lead to the SST errors in 

seasonal forecast. The first one is of atmospheric nature and is largely related with too stable easterly 

circulation present over the whole equatorial Indian Ocean, characterized by the lack of response of the local 

winds to local surface heating in the EEIO. This induces an easterly bias which leaves the model predominantly 

in a state with a shallow thermocline and cold SSTs in the EEIO. Circulation errors arising from precipitation 

biases in the southeast Asian monsoon regions play a role as well. The second error is of oceanic origin, 

associated with a too shallow thermocline, which enhances the SST errors arising from errors in the wind. The 

markedness of this error varies with ocean initial conditions, which depend on both the quality of the 

assimilation and the ocean model. The version of the ocean model used for the forecast also plays a non-

negligible role at seasonal time scales, by amplifying or damping the subsurface errors in the initial conditions 

due to the strength of the atmosphere-ocean coupling in this region. 
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Appendix 

A1 Subsurface temperature biases in ORAP6  

 

Figure A1. Mean annual cycle of subsurface temperature bias in EEIO of ORAP6.1 during (a) 1993-2015 and 

c) 2011-2013; b) Mean annual cycle of subsurface temperature differences between ORAP6.1 and ORAS5; d) 

Temperature increments in EEIO from ORAP6.1 during 2011-2013. 

A2 Observed and modelled relationships between SST in EEIO and zonal SST gradient  

 

Figure A2. Scatter diagrams of JJA SSTs in the EEIO versus west-east SST gradients in the Indian Ocean. 

Black crosses show single members (10 per start date) of SEAS5 (May starts) and red circles relationships 

based on ERA5 1993-2018. 
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A3 Impact of ORAP6 initial conditions on seasonal forecasts  

Figure A3 shows the impact of the updated ocean analysis system ORAP6 on seasonal forecasts by comparing 

the subsurface temperature forecast bias in seasonal forecasts initialized from ORAP6.1 (FC_ORAP6.1) and 

ORAS5 (FC_ORAS5), which use the same model setup (Tco199 L137 ORCA025 Z75) and only differ in their 

initial conditions. The reduced cool subsurface bias in ORAP6.1 is translated to a slight warming of subsurface 

temperatures in seasonal forecast experiments initialized from ORAP6.1 compared to initialization with 

ORAS5. This change represents a slight improvement given the strong cold subsurface forecast bias of SEAS5 

(compare Figure 12a). 

 

Figure A3. Difference between subsurface temperature bias in EEIO of hindcasts initialized from ORAP6.1 

and an identical forecast experiment except for initialization with ORAS5 (May starts 1993-2015). 

 


