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Statistical modelling of 2m temperature and 10m wind speed forecast errors

Abstract

Based on the principle “learn from past errors to correct current forecasts”, statistical postprocessing
consists in optimizing forecasts generated by numerical weather prediction (NWP) models. In this
context, machine learning (ML) offers state-of-the-art tools for training statistical models and mak-
ing predictions based on large datasets. In our study, ML-based solutions are developed to reduce
forecast errors of 2m temperature and 10m wind speed of the ECMWF’s operational medium-range
high-resolution forecasts produced with the Integrated Forecasting System (IFS). IFS forecasts and
other spatio-temporal indicators are used as predictors after careful selection with the help of ML
interpretability tools. Different ML approaches are tested: linear regression, random forest decision
trees, and neural network. Statistical models of systematic and random errors are derived sequen-
tially where the random error is defined as the residual error after bias correction. In terms of output,
bias correction and forecast uncertainty prediction are made available at any point-locations around
the world. All 3 ML methods show similar ability to capture situation-dependent biases leading
to noteworthy performance improvements (between 10% and 15% improvement in terms of root-
mean-square error for all lead times and variables), and similar ability to provide reliable uncertainty
predictions.

1 Introduction

Near-surface temperature and wind speed are key variables in many weather applications, but numerical
weather prediction (NWP) systems struggle in producing bias-free forecasts of such quantities, even at
short lead times. In particular, long-standing biases affect the operational medium-range forecasts of 2m
temperature and 10m wind speed produced with the Integrated Forecasting System (IFS) of the European
Centre for Medium-Range Forecasts (ECMWF), as illustrated in Figure 1.

Recent investigations of ECMWF’s near-surface forecast biases shed new light on potential sources of
forecast errors and paved the way for ongoing and future model developments for the IFS (Sandu et al.,
2020). At the same time, statistical postprocessing offers a pragmatic way to correct systematic errors.
By comparing forecasts with in-situ observations, statistical models learn from past errors to derive
corrections to be applied to future forecasts. Hemri et al. (2014) showed that the expected benefit of
postprocessing does not vary year after year, suggesting that benefits from postprocessing and benefits
from NWP model improvements are complementary.

In this study, statistical postprocessing of IFS forecasts is investigated with a focus on the ECMWF”s
operational deterministic high-resolution forecasts of 2m temperature and 10m wind speed. More specif-
ically, we assess and predict systematic and residual forecast errors using machine learning (ML) tools.
The following semantics is used throughout the text: systematic errors refer to differences between fore-
casts and observations that can be corrected for by postprocessing through bias correction, while residual
errors refer to the remaining forecast errors after bias correction.

ML provides a general framework for applying complex statistical methods to large datasets that finds
natural applications in the postprocessing of weather forecasts (Düben et al., 2021). Recent developments
of ML software libraries such as scikit-learn in Python programming language (https://scikit-learn.org)
greatly facilitate the take-on of state-of-the-art ML methods. Moreover, advances in ML interpretability
(McGovern et al., 2019) provide suitable tools to initiate positive feedback loops between NWP model
developers and postprocessing experts. Here, our ML-based postprocessing applications intend to:

• capture bias patterns and estimate forecast uncertainty,
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Figure 1: 48 hour forecast performance over Europe (35oN−75oN, 12.5oW −42.5oE) of IFS 2m temperature (left)
and 10m wind speed (right) over the last decade, for ECMWF’s operational high-resolution forecasts with respect
to synop observations. The blue (root-mean-square error) and red (mean error) lines indicate the calculation as
performed by Haiden et al. (2021), while the respective dots represent the equivalent calculation performed with the
data quality control criteria used here (see text). The black dots indicate the resulting errors after postprocessing
by the best ML-based models derived here (see text for details).

• compare the performance of different postprocessing methods,

• help identify sources of errors,

in the context of global forecasting of surface weather variables.

Postprocessing of global forecasts requires large datasets in order to provide relevant contextual informa-
tion about the forecast to be corrected. So-called predictors help distinguish between different situations
(in a static or a dynamic sense) leading, on average, to over- or under-prediction, and, on average, to a
large or a small forecast error. The general strategy consists in including a variety of predictors as input to
the ML models: NWP model output (such as the forecast surface pressure), model characteristics (such
as the model orography), and spatio-temporal indicators (such as the day of the year). ML algorithms
are designed to find useful relationships between the predictand (here the forecast error) and the diverse
sets of predictors. The use of such ML approaches for successful weather forecasting applications have
been documented in recent years:

1. linear regression techniques for the postprocessing of ensemble solar radiation forecasts over Ger-
many (Ben Bouallègue, 2017),

2. decision trees from random forests for the postprocessing of temperature and wind speed forecast
over France (Taillardat et al., 2016),

3. neural networks for the postprocessing of ensemble temperature forecasts over Germany (Rasp
and Lerch, 2018),

to cite a few examples in an effervescent field of research. The interested reader can find an overview of
postprocessing techniques and recent developments in this research area in Vannitsem et al. (2021).

Here, we propose to test and compare 3 statistical methods: linear regression (LR), random forests (RF),
and neural networks (NN). The goal is to provide statistically postprocessed forecasts at any location
over the globe based on 2m temperature and 10m wind speed IFS forecasts. In contrast with previous
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studies, systematic and residual errors are treated sequentially rather than at the same time. Additionally,
we explore the benefit and impact of using postprocessing configurations where input data consists of
static predictors (e.g. non-state-dependent) and time indicators only. Finally, following a suggestion in
Hamill (2021), the combination of the different statistical models is also tested.

The remaining of the manuscript is organised as follows: Section 2 details the data used in this study,
the statistical models are described in Section 3, the selection of predictors in Section 4. The results are
presented and discussed in Section 5 before concluding in Section 6.

2 Data

2.1 Forecasts, observations and predictors

The forecasts of 2m temperature and 10m wind speed used in this study are the operational ECMWF
high-resolution (∼ 9 km) ten-day global weather forecasts produced with ECMWF IFS (ECMWF, 2020).
The data is taken over two years (Sept. 2019 to Aug. 2021) from forecasts starting each day at 00:00 and
with lead times up to 48 hours, at 3-hour intervals.

Observations are measurements at synoptic weather stations (SYNOP) received through the World Mete-
orological Organization (WMO) Global Telecommunications System∗ (GTS). For each weather station,
the nearest neighbour 2m temperature and 10m wind are taken from the forecast at the nearest neigh-
bouring point of a measurement station.

There is a difference between the height of model orography at a station location and the true height
of the station. When comparing the forecasts and observations, the standard 2m temperature forecast
correction corresponds to a linear reduction in temperature with height (a lapse rate) of 6.5oC km−1

while taking the nearest neighbouring point in the model grid as the model elevation. This approach is
considered as the default bias correction in the following.

We consider a variety of potential predictors for our ML experimentations. The full list of predictors is
provided in Table 2.1. We test 2 types of model configurations:

1. a “state-dependent” configuration where the current forecast and any other model output can be
used as a predictor (i.e. there is no self-imposed restrictions on the use of predictors),

2. a “state-independent” configuration where only predictors available before the start of the forecast-
of-the-day are used.

We distinguish 3 types of predictors: state-dependent predictors which are direct model outputs that
differ for each forecast, static predictors which describe constant characteristics of the model surface,
and time indicators (see the classification in Table 2.1). In a state-independent configuration, input data
only include static predictors (such as the model orography) and time indicators (such as the day of the
year) offering a 3D† model of the forecast errors independent of the forecast-of-the-day.

∗Unfortunately, we cannot make our dataset publicly available because of restrictions regarding the redistribution of
SYNOP data.
†2D in space plus the time dimension
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2m temperature 10m wind speed

Predictors / Configurations state-dependent state-independent state-dependent state-independent

State-dependent predictors

2m temperature (IFS) ◦ · · ·
10m wind speed (IFS) · · ◦ ·
2m dewpoint ◦ · − ·
Skin temperature ◦ · − ·
Lowest model level temperature ◦ · ◦ ·
Lowest model level wind speed ◦ · − ·
Lowest model level meridional wind − · ◦ ·
Lowest model level zonal wind − · ◦ ·
Second level meridional wind · · − ·
Second level zonal wind · · − ·
Total cloud cover − · − ·
Low cloud cover − · − ·
Snow depth ◦ · − ·
Surface solar radiation flux ◦ · ◦ ·
Surface thermal radiation flux ◦ · − ·
Latent heat flux − · − ·
Sensible heat flux ◦ · − ·
Top soil layer temperature ◦ · − ·
Top soil layer frozen (1) or not (0) ◦ · − ·
Boundary layer height ◦ · ◦ ·
CAPE − · − ·
Volumetric soil water layer − · − ·
Surface pressure ◦ · − ·
Aerodynamic roughness length − · − ·

Static predictors

Model orography − − − −
Slope of sub-grid orography − − − −
Standard deviation of sub-grid orography ◦ ◦ ◦ ◦
Land sea mask ◦ ◦ ◦ ◦
Soil type − − − −
Vegetation cover low − ◦ ◦ ◦
Vegetation cover high − ◦ ◦ ◦
Vegetation type low − ◦ − −
Vegetation type high − ◦ − −
Latitude − ◦ ◦ ◦
Longitude − − ◦ ◦
Cos(longitude) − ◦ ◦ ◦
Station elevation ◦ ◦ − −
Station-Model elevation ◦ ◦ ◦ ◦
Log(station-model) elevation ◦ ◦ ◦ ◦

Time indicators

Day of year − − − −
Cos(day of year) − ◦ − ◦
Sin(day of year) ◦ ◦ − −
Local time of day ◦ ◦ − −
Cos(time of day) ◦ ◦ − ◦
Solar zenith angle − ◦ − −
Start date − − − −
Forecast lead time − − − −

Table 1: Predictors list, classification, and use in different configurations: [◦] selected ,[−] not selected, [·] not
tested.
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2.2 Observation quality control

Observation quality control is first based on observation meta-data. To start with, the elevation of each
station is not necessarily fixed over the two-year period. Sometimes estimates of its location change,
perhaps by rounding errors in the reported latitude and longitude. This changes the station’s elevation if
it is automatically read from a map. Sometimes a station’s altitude is measured differently and sometimes
the station actually moves. If a station moves, its elevation doesn’t necessarily change, but the model
elevation might. 1882 of 13573 (14%) stations exhibit elevation changes.

Sometimes, for some of the measurements at a particular station, the elevation is not recorded. In this
case, we set the station elevation for the purposes of modelling to an elevation that is recorded for that
station, before applying the criteria below.

We adopt the following WMO control criteria (WMO, 2019). Independently for wind and temperature
observations, measurements are rejected if:

• The surface pressure is higher than 700 hPa (low elevation) and the measured vs. lapse rate cor-
rected forecast 2m temperature difference is more than 15oC.

• The surface pressure is lower than 700 hPa (high elevation) and the measured vs. lapse rate cor-
rected forecast 2m temperature difference is more than 10oC.

• Over the ocean the mean difference between the measured 2m temperature and the lapse rate
corrected forecast temperature is greater than 4oC.

• Over the ocean the standard deviation of the difference between the measured 2m temperature and
the lapse rate corrected forecast temperature is greater than 6oC.

• Over the ocean the mean difference between the measured 10m wind and the forecast wind is
greater than 5ms−1.

• The surface pressure is higher than 775 hPa (low elevation) and the measured vs. forecast 10m
wind difference is more than 35ms−1.

• The surface pressure is between 775 hPa and 600 hPa (middle elevation) and the measured vs.
forecast 10m wind difference is more than 40ms−1.

• The surface pressure is lower than 600 hPa (high elevation) and the measured vs. forecast 10m
wind difference is more than 45ms−1.

Contrary to the WMO quality control criteria, 10m wind measurements were not rejected if there were
less than 10 measurements in any particular month, or if the RMS forecast error that month is greater
than 15ms−1. In addition, measurements are rejected for:

• All stations (126) that moved more than 10km.

• All forecasts where the observation latitude or longitude changed at all during the validity time of
the forecast.

• All stations with elevations recorded above 10,000m, or stations where the elevation is never
recorded.
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• Four predictors are derived from heat and radiation fields: surface solar radiation, surface thermal
radiation, sensible heat, and latent heat fluxes. These are stored as cumulative quantities. They are
converted to instantaneous fluxes using first-order finite differences. Where there is a gap between
2m temperature or 10m wind measurements of 6 hours or more, the finite difference approximation
is not sufficiently accurate and the forecast at this station location is rejected.

• All forecasts where we don’t have an initial measurement at zero lead time.

• All stations recording a 2m temperature above 56.7oC (207 stations) or below -78oC (73 stations).
(Only 2m temperature measurements rejected.)

• All stations (1684 stations) recording a 10m wind speed above 50m/s (180 km/h). (Only 10m wind
measurements rejected.)

2.3 Training, verification and test data

We use data over the two-year period 1 September 2019 - 31 August 2021 and the data is split into three
segments: training, verification, and test. The training data is the portion of the data that the ML-based
models are fit to. We use 1 year for the training data, 1 September 2019 - 31 August 2020 and half of the
stations (even-numbered, with numbers randomly attributed). The verification data is the portion of the
data that is reserved for optimisation of all free model parameters, often called hyper-parameters. For
example, we don’t know the number of trees to use in a random forest, the number of neurons to use
in a neural network or the step size in an iterative descent. We also use even-numbered stations for the
verification data. The test data is reserved for the end to finally test model predictions of data that they
have not yet seen. We conduct 4 experiments with different validation and test data sets:

Experiment Verification Test
1 March-April-May 2021 September-October-November 2020
2 June-July-August 2021 December-January-February 2020-2021
3 September-October-November 2020 March-April-May 2021
4 December-January-February 2020-2021 June-July-August 2021

In addition to the split as a function of the date, test data is taken from odd-numbered stations while even-
numbered stations are used for training and verification. This scheme ensures that there is no overlap
between training/verification and test data. When discussing the results in Section 5, we focus on a
summer season (experiment 2) and a winter season (experiment 4) only.

3 ML-based Models

We want to model the difference between a forecast denoted f , and the corresponding measurement at a
weather station denoted o. We consider 3 ML models and, for each model, 2 configurations based on the
chosen pool of predictors, and finally a combination of models for each configuration. More explicitly,
we perform the following for 2m temperature and 10m wind independently:

1. Test 3 types of ML methods: linear regression (LR), random forests (RF) and neural networks
(NN), see sections 3.1, 3.2 and 3.3, respectively.
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2. For each method, consider 2 model configurations depending on the pool of predictors we select
from: a state-dependent configuration and a state-independent configuration, see Section 2.1.

3. For each configuration, select a subset of predictors (optimised by trial and error testing and with
the help of ML interpretability tools that assess predictors importance) and use this subset consis-
tently with all 3 ML methods, see section 4.1.

4. For each method and configuration, fit 2 models to predict the systematic error and the residual
error separately: “Model 1” fitted to the raw forecast error f − o and “Model 2” fitted to the
remaining error ( f̂ −o)2 after bias correction with f̂ the bias-corrected forecast, see Figure 2.

5. For each method and configuration, take the average of the 3 ML predictions to make a combined
prediction.

In our approach, we use 2 distinct statistical models for the representation of systematic errors on the one
hand and the representation of residual errors on the other hand. Model 1 focuses on the raw forecast
error denoted e and defined as e = f − o. The estimated systematic error, i.e. the output of Model 1, is
denoted ê. Model 2 focuses on the residual error denoted ξ and defined as ξ = (ê− e)2. The residual
error can be expressed as the squared difference between corrected forecast and observation:

ξ = (ê− e)2 (1)

= (ê− ( f −o))2 (2)

= ( f̂ −o)2 (3)

where f̂ = f − ê is the bias-corrected forecast. Using synthetic data, a simple example of how Model 1
and Model 2 works in practice is provided in Fig. 2.

The choice of a 2-model approach is motivated by the fact that no assumptions about the form of the
underlying forecast probability distribution are required in that case. Such assumptions are for example
required when using parametric methods which target the optimisation of a probabilistic score such as the
continuous ranked probability score (CRPS). Moreover, with our 2-model approach, ML interpretability
tools can be beneficially applied to each model (Model 1 and Model 2) separately as illustrated below
in Section 4.2. With traditional non-parametric methods relying on analog forecasts, for example, it is
difficult to distinguish between sources of different error types (systematic and residual).

Besides the standard state-dependent configuration, we also test here a state-independent configuration
for each model. The idea is sparked by the ML interpretability results indicating that static predictors and
time indicators are “important” features, i.e. among top-ranked predictors, in particular for 10m wind
speed predictions (see again Section 4.2). In addition, the foreseen advantages of using state-independent
configurations in research or operational settings are multiple: building large training datasets is simple
and fast, no critical time processing is involved as all operations are performed offline, the possibility
to check the statistical model output before dissemination is an asset. Besides, when using a state-
independent configuration, the estimated systematic and residual errors are location and time-specific but
independent of the forecast-of-the-day. As an application, the derived model of the forecast-observation
discrepancy could for example help detect spurious observations in an enhanced quality control scheme.

The configuration setup can be summarized as follows. The bias-corrected forecast f̂ is derived as the
difference between the raw IFS forecast f and the error estimate ê applying one of the 2 following
configurations:

State-dependent configuration: f̂ = f − ê(d,s, t) (4)

State-independent configuration: f̂ = f − ê(s, t) (5)

Technical Memorandum 896 7



Statistical modelling of 2m temperature and 10m wind speed forecast errors

Figure 2: Illustrative example of the problem at hand based on synthetic data. a) We are first interested in
predicting the forecast error e = f − o as a function of a predictor x. Model 1 provides the best estimate of
the error as a function of x as represented by the solid red line. The residual error corresponds to the squared
distance between the red line and the black dots. b) As a second step, Model 2 is built to capture the residual error
e = ( f̂ −o)2 as a function of x. The resulting estimated residual error is represented by the red line. In this simple
example, Models 1 and 2 are both linear regression fits with 2 parameters each.

where d are state-dependent predictors, s static predictors, and t time indicators. In both cases, the bias-
corrected forecast is a function of the IFS forecast of the day, but the error correction part is weather
dependent only in the state-dependent configuration. The exact form of the function ê(·) depends on the
ML method applied as described below.

3.1 Linear regression

To fit a function using linear regression, the functional form of the fit coefficients that we are trying to
find must be linear. For example, consider

ê(x) = c0 + c1 x+ c2 x2.

We have a list of values of x, the “predictor”, and a list of values of e, the “predictand” and we want to
find the values of the fit coefficients, c0, c1 and c2, also known as the “parameters”. The function itself
is non-linear due to the x2 term, but each term is linear in the fit coefficients. Given values of x and
e(x), linear regression then finds the fit coefficients that minimise the squares of the differences between
the function ê(x) and the values of e provided. See for example Press et al. (2007) for a more detailed
explanation.

Here we consider quadratic functions of our predictors. With two predictors x and y and quadratic terms,
a quadratic model takes the form:

ê(x,y) = c0 + c1 x+ c2 y+ c3 x2 + c4 xy+ c5 y2

with 6 unknown parameters to fit in this simple example. The precise number of unknown parameters
depends on the number of predictors, for example 66 parameters with 10 predictors, 231 parameters with
20 predictors, and so on.
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3.2 Random forest

Random forest (RF) is a non-parametric technique that consists in building a collection of trees. Each
tree is a decision tree that partitions a multidimensional dataset into successively smaller subdomains.
Each partition of the data consists in splitting the data into two groups based on some threshold applied
to one of the predictors. Predictors and thresholds are chosen in order to maximize the diversity of the
response variable among the resulting groups. Each new group is itself split into two, and so on until
some stopping criterion is reached. In a prediction situation, the current values of the predictors draw a
path in the tree until a final leaf. The forecast takes the mean value of the response variable in the final
group (leaf).

Our implementation makes use of the scikit-learn Python library (Pedregosa et al., 2011). In the interest
of computational time, training is performed on a subsample of the dataset by randomly selecting 1%
of the total available training data. The models for the prediction of systematic and residual errors are
trained on 2 different randomly selected subsamples. The main hyper-parameters associated with the RF
models are the number of trees and the maximum depth of each tree. The hyper-parameters selected for
the different experiments presented in this study are shown in Table 2.

2m temperature 10m wind speed
state-dependent state-independent state-dependent state-independent

number of trees 200 100 100 50
maximum depth of each tree 25 13 15 10

Table 2: Hyper-parameters settings for the different random forest models.

3.3 Neural network

Here we use a multi-layer perceptron (MLP), also known as a fully-connected neural network as our
neural network design. We choose 4 hidden layers, with 32 hidden neurons, resulting in approximately
4000 trainable parameters (the precise number depends on the number of predictors used). For hidden
layers, we use the Swish activation function, for output layers we use no activation function. We build
and train these models using Tensorflow/Keras. Models are fitted using the Adam optimizer, with a
learning rate of 10−3. We train to minimise the mean-squared error for 20 epochs (passes through the
training set) with a batch size of 128. Early stopping, after the validation loss has failed to decrease for 6
epochs, and learning rate reduction (again based on the validation loss) are also employed, but the results
were not found to be sensitive to these choices. We also explored increasing the number of trainable
parameters, through increases in hidden neurons and hidden layers, but these increases did not return a
noticeable reduction in losses on the testing dataset.

4 Predictor selection and ranking

4.1 Backwards stepwise elimination

To select predictors we use backwards stepwise elimination and linear regression of quadratic polynomi-
als. The algorithm proceeds as follows:

Technical Memorandum 896 9
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1. Each predictor is removed from the full list of n predictors one at a time and the regression is
performed. We then have n regression models each fitting n−1 predictors.

2. Each of these regression models is then used to forecast the training data. The predictor that cor-
responds to the smallest reduction in RMSE between the model and the training data, is discarded.
The list of predictors is then one shorter than when we started.

3. The entire procedure is then repeated to find and remove the next least “important” predictor. This
is repeated until there is one predictor left.

Applying the resulting models to predict the validation data indicates that backwards elimination is suf-
ficient, see Fig. 3. Note that if two predictors both contribute the same information, removing either one
will not reduce the RMSE, and one of the two will be randomly selected as unimportant. The algorithm
only considers it “important” to include one of these two predictors in a model. Some of our predictors
are highly correlated, for example, the skin temperature and the temperature on the lowest model level,
at the station locations, have a correlation coefficient of 0.97 over the training data set.

Results in Fig. 3 serve as a basis for predictor selection of the models with no restrictions in the choice
of predictors (contrary to the state-independent configurations). As a complementary tool, RF impurity
importance, as discussed below, is also explored. Eventually, the final set of predictors is selected scruti-
nizing ML interpretability plots with a critical (human) eye. For example, wind speed components at the
lowest model level are ranked poorly for 2m temperature predictions in Fig. 3 but we included them in
the list because they are considered important by RF models. Also, the land-sea mask is added to our list
as deemed important from a practical point of view. The list of selected predictors for each configuration
(state-dependent and state-independent) and for each variable (2m temperature and 10m wind speed) is
detailed in Table 2.1.

4.2 Random forest impurity importance

The interpretability of RF models is facilitated by the so-called feature importance results. Indeed,
RF algorithm allows identifying the more valuable predictors in the process of building decision trees.
Predictor importance is measured by the mean decrease in impurity where impurity is measured by the
Gini coefficient (a metric proportional to the area under the relative operating characteristics curve).
The mean decrease in impurity corresponds to the total decrease in node impurity averaged over all
trees (Louppe et al., 2013). It is worth noting that this measure favours predictors with high cardinality,
i.e. predictors with many unique values. In our case, many of our predictors take a lower number of
unique values than others (e.g. elevation is constant at each station). For this reason, backwards stepwise
regression is considered as our tool of choice for predictor selection.

Nevertheless, predictor impurity importance is key for the interpretability of RF models. The ranking of
the predictors for the models of 2m temperature and 10m wind speed errors is shown in Figure 4 and
5, respectively. Predictor importance for models of systematic errors (Model 1) and of residual errors
(Model 2) are provided separately as 2 different RF models are trained consecutively. Our findings are
the following:

• For 2m temperature, boundary layer height forecasts, temperature forecasts at various levels in the
atmosphere and the ground, and wind speed forecasts play together a key role in estimating 2m
temperature systematic errors.
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Figure 3: RMSE of 2m temperature (left) and 10m wind speed (right) forecasts (against SYNOP observations) as
a function of the number of predictors used. Results for the summer test period only. For each plot, the top point
is the RMSE of the default forecast and the following ones after bias correction with a linear regression model
with increasing incrementatly the number of predictors. The order of the predictors is obtained using backwards
stepwise regression (see text).
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• For 10m wind speed, besides predictors related to the wind itself, static predictors and time in-
dicators appear particularly important. Verification results presented in Section 5 confirm that
state-independent configurations offer competitive solutions for 10m wind speed predictions.

• Predictor importance for residual errors is dominated by one or two predictors, namely the forecast
itself and, for 2m temperature, the boundary layer height. These predictors are also important for
systematic error prediction. This result suggests that, in a 2-model approach, systematic error
prediction could serve as a predictor for the prediction of residual errors (not tested here).

0.04 0.06mean decrease in impurity
Lowest model level temperature 19

2m temperature 9
Time of day 4

Surface solar radiation 12

2m dew point 5

Elevation difference 13

Boundary layer height 1
Standard deviation of sub-grid orography  7

Cos(time of day) 20

Top soil layer temperature 2
Sensible heat flux 8

Top soil layer frozen (1) or not (0) 21
Snow depth 18Skin temperature 17

Surface pressure 14
Sin(day of year) 10Station elevation 11
Land sea mask 15Log(station - model elevation) 16

Surface thermal radiation flux 6
Lowest model wind speed 3

Systematic error

0.04 0.06 0.08 0.10mean decrease in impurity

Lowest model level temperature 17

2m temperature 8
Time of day 13Surface solar radiation 14

2m dew point 5

Elevation difference 20

Boundary layer height 2

Standard deviation of sub-grid orography  9

Cos(time of day) 16

Top soil layer temperature 7
Sensible heat flux 3

Top soil layer frozen (1) or not (0) 19Snow depth 18

Skin temperature 1

Surface pressure 10Sin(day of year) 11
Station elevation 15

Land sea mask 12

Log(station - model elevation) 21

Surface thermal radiation flux 4Lowest model wind speed 6

Residual error

Figure 4: Predictor importance for the prediction of 2m temperature systematic errors (left) and residual errors
(right). Importance is estimated with RF mean decrease in impurity. The error bars indicate the inter-trees
variability.

5 Verification results

5.1 Forecast bias

We first focus on the bias to assess the ability of the ML models to correct for systematic errors. Forecast
bias (or mean error) is computed as the mean difference between forecasts and observations. We look at
two types of score aggregation: one spatial aggregation leading to scoring as a function of the forecast
lead time, and one temporal aggregation at each station location. Results of the former are presented in
Fig. 6 while results of the latter are presented in Fig. 7 and Fig. 8 for 2m temperature and 10m wind
speed, respectively.

In Fig. 6, we compare forecast performance when applying the standard lapse rate correction as de-
scribed in Section 2.1 (Default), linear regression (LR), random forest (RF), neural network (NN), and
a combination of the 3 different ML models (Combined). At this stage we only show results for the
state-dependent configurations (i.e. with no restriction on the choice of predictors). In Figs 7 and 8, the
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Figure 5: Predictor importance as in Fig. 4 but for 10m wind speed.

maps focus on the results of the combined models only. For each plot, we distinguish winter and summer
results.

The strong diurnal cycle of the bias almost disappears after postprocessing as shown in Fig. 6. The
original daily cycle in these plots reflects the daily cycle of the forecast error over Europe where more
stations are located. All 3 ML methods perform equally well on average. The bias of 2m temperature
forecast seems to slightly increase with lead time in summer. The forecast step could be included as a
predictor to capture potential bias drift with forecast horizon if the intention is to apply models trained at
short lead times for bias correction of forecasts at longer lead times. Interestingly, the bias of 10m wind
speed forecast exhibits the same pattern before and after postprocessing but with a significantly lower
amplitude.

At the station level, when looking at each ML model separately, bias correction can perform differently
for different models (not shown). The combined model approach benefits from this diversity. Overall,
large reductions in forecast bias are visible in various regions of the world for both seasons and weather
variables. For 2m temperature in Fig. 7, we note a reduction of the large positive biases dominating
the Northern Hemisphere and the negative biases along the Tropics. For 10m wind speed in Fig. 8, we
see a clear reduction of the bias in Easter-Europe, over the Indian subcontinent, and the South-American
continent.

The distribution of stations is uneven around the world as illustrated in Figs 7 and 8. Data pre-processing,
in the form of upscaling, could help homogenise the data before training for systematic errors. In our
experiments, ML models are biased towards Europe because of the higher number of station measure-
ments available through GTS in this region. Regions with low data density could benefit from training
on a larger area in order to increase the training data sample. However, reversely, training on European
stations only improves postprocessed forecasts over Europe but degrades performance on a global scale
(not shown).

5.2 Forecast accuracy

Forecast accuracy is mainly assessed with the root-mean-square error (RMSE). In addition to the LR, RF,
NN, and combined predictions for the models with no restrictions in terms of predictor choice, we also
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Figure 6: Forecast bias as a function of the forecast lead time. Forecast of 2m temperature (left) and 10m wind
speed (right), in winter (top) and in summer (bottom). Zero bias is indicated by a black horizontal line.

2m temperature - Winter 2020-2021 - Bias before correction (deg. C)

-4 -2 -1 -0.5 0 0.5 1 2 4

2m temperature - Winter 2020-2021 - Bias after correction (deg. C)

-2.66 -2 -1 -0.5 0 0.5 1 2 2.66

2m temperature - Summer 2021 - Bias before correction (deg. C)

-2.48 -2 -1 -0.5 0 0.5 1 2 2.48

2m temperature - Summer JJA 2021 - Bias after correction (deg. C)

-2.1 -2 -1 -0.5 0 0.5 1 2 2.1

Figure 7: Forecast bias of 2m temperature forecasts before (left) and after (right) correction using the combined
model in winter (top) and summer (bottom). Results are aggregated over all lead times.
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10m wind speed - Winter 2020-2021 - Bias before correction (m/s)

-3.96 -2 -1 -0.5 0 0.5 1 2 3.96

10m wind speed - Winter 2020-2021 - Bias after correction (m/s)

-2.62 -2 -1 -0.5 0 0.5 1 2 2.62

10m wind speed - Summer 2021 - Bias before correction (m/s)

-3.01 -2 -1 -0.5 0 0.5 1 2 3.01

10m wind speed - Summer 2021 - Bias after correction (m/s)

-2.3 -2 -1 -0.5 0 0.5 1 2 2.3

Figure 8: Forecast bias as in Fig. 7 but for 10m wind speed.

show here results for the combined predictions of the simpler state-independent configurations. Indeed,
we only show results for the combined state-independent predictions as the combination improves the
performance with respect to any state-independent-based models taken separately (not shown).

Global RMSE averages as a function of the forecast lead time are shown in Fig. 9. RMSE is reduced
by around 10-15% for all lead times by all ML models with no self-imposed restrictions on the choice
of predictors. The difference between ML models is much smaller than their difference to the default
uncorrected forecast. For 2m temperature, the NN model performs slightly better than for the others and
for 10m wind speed RF predictions are slightly better than the others. In all cases, the linear combination
of models either slightly outperforms any single model or is extremely close. Changing the size and dates
of the training data, quality control of the training data, and predictor selection appeared more important
than the choice of the underlying ML method.

Building models using only static predictors and time indicators emerges as an appealing approach to
postprocessing: a substantial share of the expected RMSE improvement with postprocessing is achieved
with these simple and cost-effective model configurations. In general terms, there is a trade-off between
complexity and applicability in an operational context on the one hand and postprocessed forecast perfor-
mance on the other hand. For example, the combination of models leads to better results than individual
models alone but at the cost of multiplying the models to be trained and maintained. Similarly, the com-
bination of models of different types (as illustrated above) leads to better results than combining variants
of the same model, as for example RF with different hyper-parameters (not shown).

Changes in RMSE are larger where RMSE errors are initially larger. There are great geographic varia-
tions in the RMSE of the default forecast for both 2m temperature and 10m wind speed forecasts (not
shown). For example, the Alps are associated with an RMSE of around 4oC, while in northern France the
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Figure 9: Forecast RMSE as a function of the forecast lead time. Forecast of 2m temperature (left) and 10m wind
speed (right), in winter (top) and in summer (bottom).

2m temperature - Winter 2020-2021 - RMSE change (deg. C)

-2.1 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 2.1

10m wind speed - Winter 2020-2021 - RMSE change (m/s)

-2.1 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 2.1

2m temperature - Summer 2021 - RMSE change (deg. C)

-2.1 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 2.1

10m wind speed - Summer 2021 - RMSE change (m/s)

-2.1 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 2.1

Figure 10: Change in performance in terms of RMSE after bias correction. Blue colors indicate an improvement
achieved with postprocessing. Forecasts of 2m temperature (left) and 10m wind speed (right), in winter (top) and
in summer (bottom). Results are aggregated over all lead times.
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Figure 11: Same as Figure 9 but for the aggregated correlation coefficients.

RMSE is 1-1.5oC. The broad pattern of change is the same for all ML models, with the larger reductions
in RMSE being in regions of high forecast RMSE. For both variables, RMSE has reduced in most parts
of the world with some exceptions where all statistical models do not perform well as for example in
East Asia for 2m temperature in winter or Central-Europe for 10m wind speed also in winter. We believe
an increase in the size of the training dataset could help in such situations.

Finally, we also assess the strength of the linear relationship between forecasts and observations. At each
station, the correlation coefficient between forecasts and observations is computed when observation
measurements are available over the whole verification period (to avoid computing correlation coeffi-
cients on a small number of forecast/observation pairs). Coefficients are aggregated separately for each
lead time in Fig. 11 and are consistent with RMSE results shown in Fig. 9. The correlation coefficient
results also suggest that situation-dependent bias correction with ML techniques improves the ability of
the forecast to capture the day-to-day weather variations.

5.3 Forecast uncertainty

Models for systematic and residual errors are developed sequentially (see Section 3). A second model
(Model 2) focuses on the residual forecast error after bias correction. The resulting prediction is called
forecast uncertainty and aims to reflect the level of confidence one can have in a forecast. On average,
large (small) forecast uncertainty should be associated with large (small) forecast error. Statistical consis-
tency between predicted forecast uncertainty and actual forecast error is called reliability and is checked
with the help of reliability plots. The reader not familiar with these concepts could refer to Section 2.2
in Leutbecher and Palmer (2008).

In Figure 12, perfect reliability is indicated with a diagonal line. Results for all 3 types of ML approaches
show good performance of the uncertainty models: overall the dots are close to the diagonal. Errors larger
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than expected can occur when the forecast uncertainty is close to 0 (in particular for 2m temperature
prediction in winter with NN and LR). We also see a general tendency of the NN models to under-predict
forecast errors. The combined model provides in most cases a more reliable forecast.

The predicted forecast uncertainty could serve as a basis for delivering probabilistic forecasts. The first
and second moments of an underlying forecast probability distribution can be derived from the systematic
and residual error models, respectively. The uncertainty is valid at the point scale and so encompasses
potential representativeness errors that cannot be captured by ensemble forecasting techniques. Also, as
future work, the benefit of ML-based uncertainty models could be demonstrated using simple statistical
models of representativeness errors as benchmark (as proposed recently in Ben Bouallègue et al., 2020).

6 Conclusion

In this study, we performed statistical postprocessing of ECMWF’s near-surface temperature and wind
forecasts using 3 types of ML methods: linear regression, random forest, and neural network. After a rig-
orous selection of predictors, ML models are trained to predict situation-dependent bias and uncertainty
of the high-resolution IFS global forecasts. Two distinct statistical models are used to infer systematic
errors on the one hand and residual (random) errors on the other hand. This 2-model approach is applied
to all 3 ML methods and feature importance analysis is performed for each error model individually.
The source of random errors can therefore be explored independently of the source of systematic errors,
with the first results indicating a close connection between the two types of error sources. The ML-
based statistical models allow delivering postprocessed forecasts not only at locations of observation
measurements but also at any other points on the globe. The promising results obtained for deterministic
forecasts at short lead times encourage further research involving the ECMWF ensemble forecasts as
well as longer lead times. In addition, the discussed ML approaches would be easily transferable to other
weather variables such as precipitation.

Weather-dependent bias correction with ML techniques notably improves the forecast, with a reduction
between 10 and 15% in terms of RMSE for all lead times and variables envisaged here. In essence, our
study shows that the accuracy of the postprocessed forecasts does not depend so much on the choice of
the ML method but more crucially on the selection of predictors, the size of the training and test datasets,
and the quality control applied to the data. In this context, we have identified ML-based solutions for
forecast postprocessing with different levels of complexity in terms of practical implementation. state-
independent postprocessing configurations that only rely on predictors available before the start of the
forecast are simple to implement and easy to maintain. Reduction in forecast error can be further im-
proved with the help of more complex configurations involving state-dependent predictors and/or the
combinations of ML models. Finally, the good performance of the forecast uncertainty models opens
new horizons for the generation of calibrated probabilistic weather forecasts based on statistical models.
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Figure 12: Reliability plots showing the uncertainty/error relationship for 2m temperature (left) and 10m wind
speed (right) postprocessed forecasts, verifying over summer (top) and winter (bottom). The forecast uncertainty
(x-axis) corresponds to the square root of the residual error prediction, the actual forecast error (y-axis) corre-
sponds to the RMSE of the bias-corrected forecast. Perfect reliability is indicated with a dashed diagonal line. For
each plot, a histogram shows the number of cases in each forecast uncertainty category.
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