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Calculating the Cosine of the Solar Zenith Angle S ECMWF

Abstract:

The cosine of the solar zenith angle (cossza) is a key component in Mean Radiant Temperature
(MRT). Mean Radiant Temperature is used in the calculation of the Universal Thermal Climate
Index (UTCI) and can be used in the calculation of Globe Temperature a component of the Wet
Bulb Globe Temperature (WBGT), both of which are important thermal comfort and heat stress
indices. It has previously been demonstrated that in numerical weather prediction services
cossza should be integrated over a time step for the most accurate results. Here, we present the
comparison of the operational cossza being used to create ERAS-HEAT, an instantaneous
approach and a Gauss-Legendre Integration cossza. We further calculate MRT and UTCI for
the ERA5-HEAT method and the methodology in the thermofeel library and see discrepancies
in the approaches of on average -1.5K for MRT and -0.42K for UTCI. We suggest that the
methodology in the thermofeel library supersedes the operational ¢ code and is published
alongside the existing ERAS-HEAT dataset in addition to forecast data being published, for
users to make their own comparisons and extend this data’s usefulness. We also suggest that a
sensitivity analysis of the UTCI is carried out to aid better understanding of this thermal
comfort index.

Introduction

The cosine of the solar zenith angle (cossza) is the angle between the sun’s rays and the vertical
(Aktas & Kirgicek, 2021). It is a key component in the calculation of mean radiant temperature
(MRT), (Di Napoli et al., 2020; Vanos et al., 2021) which is used to calculate other thermal
and heat indexes such as the Universal Thermal Climate Index (UTCI) (Fiala et al., 2012; Di
Napoli et al., 2021) and the Globe Temperature component of Wet Bulb Globe Temperature
(WBGT) (De Dear, 1987; Guo et al., 2018). In addition, MRT has been shown to be a better
predictor of mortality than air temperature (Ta) which is one of the main impacts of extreme
heat (Thorsson et al., 2014).

Each heat index has its benefits and limitations for modelling human thermal comfort. It has
been shown for operation forecasts (i.e ECMWF) the most accurate version of cossza is a
numerical integration over a forecast time step (Hogan & Hirahara, 2016). Different
approaches to provide a cossza over a time step can be employed. These include integration
methods as well as a simpler instant cossza.

Here we provide an overview of the current operational method for using cossza. Cossza is part
of the ERAS-HEAT dataset (Di Napoli et al., 2021). We further compare this to an
instantaneous method and a Gauss-Legendre Quadrature approximation of an integral,
available as part of the new python thermal comfort library thermofeel (Brimicombe, et al.,
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2021, 2022). This allows us to make recommendations for both thermofeel (Brimicombe, et
al., 2021, 2022) and ERAS5-HEAT (Di Napoli et al., 2021).

Methods

To calculate the cossza there are a number of different approaches that can be taken because
an instantaneous cossza (hereafter instant) is required for the exact recorded time of the
observation. Whereas using numerical weather prediction services leads to the requirement to
calculate the integrated average cossza over a time step period, to have an accurate cossza. As
such thermofeel provides both an instant cossza and an integrated cossza.

Instant cossza

Instant cossza is the simplest approach to calculating a cossza, it is calculated using equation 1
and 2 (Hogan & Hirahara, 2015, 2016). It involves the solar declination angle which is the
angle between the equator and the center of the earth the center of the sun. In addition, it
involves the local solar time.

Uo = sind sin ¢ + cos & cos ¢ cos h
[1]
6 is the solar declination angle and ¢ is latitude, h is the local hour angle.
h=T+ A+ m
[2]

T is local solar time and A is longitude.

Integrated cossza

Integrated cossza is the method currently used in operations at ECMWEF to calculate the ERAS-
HEAT dataset it can be summarized by equation 3 (Hogan & Hirahara, 2015, 2016). It also
takes into account sunrise and sunset when the value of cossza reduces to zero.

cos § cos ¢ (sin hpyg, — SiN Apyin)

Uom = sind sin ¢ +

hmax - hmin
[3]

6 is the solar declination angle and ¢ is latitude, hmax is the end time of a time step and hmin is
the beginning time of the time step.

Gauss-Legendre Quadrature integrated cossza
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An accurate way to reduce the cost to a computer, in terms of computational power and time
taken of integrating a cossza is to use an approximate numerical integration method and apply
it to an instant cossza. Empirical experiments were carried out to compare Gauss-Legendre
Quadrature to a Simpsons integral rule and Gauss-Legendre Quadrature chosen because it
incurs in less redundant calculations when called over multiple time steps, since it does not
evaluate the function at the interval boundaries(Zienkiewicz et al., 2005; Babolian et al., 2005;
Goldstein, 1965). The Gauss-Legendre Quadrature is outlined in equation 4 where f(X) is
equation 1 and visually in figure 1. § is the i-th coordinate of interval boundaries at which the
function for cossza instant is evaluated and w is the i-th weight factor for the numerical integral
corresponding to the i-th coordinate.

n

hmax Nonax — hmi Nonax — hmi Rmin + h
f f(x)dx ~ max 2 mmz a)lf< max 2 min El + min 2 max)

hmin i=1

[4]

R B

Split cossza over a time step
in n intervals.

\ 4

2
| —_—

Evaluate the cossza instant
function for the area between
n intervals in a step.

Calculate the discrete
summation of n interval terms.

Figure 1: a schematic outlining the steps (1 to 3) taken to calculate a discrete summation integrated
cossza using the instant cossza method (Le., the distinct colours in step 2) in combination with the
Gauss-Legendre quadrature approximation.

Mean Radiant Temperature

The mean radiant temperature can be defined as the incidence of radiation on a body. For a
numerical weather prediction service, it requires 5 input radiations (surface-solar-radiation-
downwards, surface net solar radiation, total sky direct solar radiation at surface, surface
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thermal radiation downwards, surface net thermal radiation) in addition to the cosine of the
solar zenith angle (cossza). The full methodology for mean radiant temperature is available in
Di Napoli et al., 2020 and is summarized in table 1 and equations 5 and 6.

sur surf

0.25
a; .
Elr | (fa Sdn,d1ffuse | fa Sup | fp I*)]}

surf surf
p

* 1 dn up
MRT" = —3f, L, + £, L

[5]

0.998 — 2
fp = 0.308cos Y W

[6]

Table 1: The radiation variables that are used in the calculation of the MRT in Equations 5
and 6. Table 1 from Di Napoli et al., 2020

Name Symbol/Equation

Surface solar | Sdnsurf=Sdn,directsurf+Sdn,diffusesurfSsurfdn=Ssurfdn,direct+Ssurfdn,diffuse
radiation
downwards

Surface net | Snetsurf = Sdnsurf — SupsurfSsurfnet=Ssurfdn—Ssurfup
solar radiation

Direct solar Sdn,directsurfSsurfdn,direct
radiation at
the surface

Surface Ldnsurf Lsurfdn
thermal

radiation
downwards

Surface net Lnetsurt=Ldn surf—Lupsurf
thermal
radiation

A key component of Mean radiant Temperature is known as Istar this is defined as “radiation
intensity of the Sun on a surface perpendicular to the incident radiation direction” (Di
Napoli et al, 2020) in the current operational code this is calculated using equation 7. Where
Direct Solar Radiation (dsrp) is available I* is equal to this variable.

I *= fdir / cossza (where cossza > 0.01)
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[7]

Universal Thermal Climate Index

The UTCI is a bio-thermal comfort index which makes use of the meteorological parameters
of 2m temperature, water vapour pressure, 10m wind speed and mean radiant temperature and
a body model it is estimated by a 6-order polynomial which is summarized by equations 9 and
10 (Brode et al., 2012; Fiala et al., 2012; Di Napoli et al., 2021).

UTCI(Ta,Tr,Va,Pa) = Ta+ Of fset(Ta,Tr,Va, Pa)

[9]

Where Ta= air temperature, Tr= mean radiant temperature, Va= wind speed Pa= water vapour

pressure

= X —
Pa Ps 100

[10]

Where Ps = Saturation Vapour Pressure and ¢= relative humidity percent.

Results

The implementation of the integrated cossza (figure 2a) visually is different from the other
cossza methods implemented, being clipped at the top of the parabola for the 42" time step
after the initial date of 21 May 2021.The difference between the integrated cossza and the
Gauss-Legendre cossza is at most +0.1° (Figure 2d).The instant cossza has the largest area with
complete darkness indicated by 0° values in (figure 2c¢). In addition, visually the instant cossza
covers a slightly different area than the integrated approaches (figure 2¢). This is because it is
for the instant time at the 42" time step whereas the integrations are the average of step 39" to
42", Further, both the integrated cossza (figure 2a) and the Gauss-Legendre cossza (figure 2b)
have a small gradient than the instant cossza (figure 2c) which can be seen in the color gradient
in figure 2. This allows for sunset and sunrise to be considered more accurately because there
is a greater range in cossza values between maximum sun and darkness.
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a) Integrated Cossza
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Figure 2: Showing the difference cossza approaches for 42hr lead time from 21 May on a 3 hour time
Step, a) the current operational (integrated) cossza for ERA5S-HEAT calculated in the c coding
language, b)an average of an gaussian integration of the instant cossza for a time step, c) an Instant
cossza for a given hour and d) the difference between parts a and b of this figure.

The biggest difference is more than +10K between the operational MRT (figure 3a) and the Gauss-
Legendre method (figure 3b) employed by thermofeel to calculate MRT in the area surrounding North
America (120W,20W,20S,60N) for the 42" step after an initial date of 21 May 2021 around where the
continent is experiencing it’s maximum cossza value (figure 3¢). Whilst there are up to -5SK anomalies
evident for North America (figure 3c¢). Notably the current operational calculation of MRT does not
consider the continent of Antarctica (figure 3a) and as such this is cropped out in all output plots.

In addition, considering the medium range forecast for the initial date 21 May 2021 00UTC, the
maximum positive anomaly is 19K. In comparison, the largest negative anomaly is -28K. However, the
difference in the mean anomaly over all time steps is -1.5K. This demonstrates that the difference in the
methods is more evident in the extremes of the distribution of MRT.

In comparison, the biggest difference for the UTCI mirrors the patterns seen for the MRT. There is
around a +5K difference between the operational UTCI (figure 4a) and the thermofeel Gauss-Legendre
UTCI (figure 4b) in areas around North America, where cossza is at its maximum (figure 4c). Whilst
there is a -10K anomaly where cossza is at its maximum (figure 4c). When considering the medium
range forecast for the initial date 21 May 2021 00UTC, the maximum positive anomaly is 6.6K, whereas
the mean anomaly is -0.42K.
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In addition, there is a noticeable difference between both MRT and UTCI values (figures 5 and 6) when
dsrp is present in the calculation of MRT using thermofeel in comparison to when it is approximated
using fdir and cossza (equation 7). The biggest difference is in Greenland at up to +17K for MRT (figure
5¢) and +6K for the UTCI (figure 6¢). For MRT at the 42" time step after an initial date of 27 July 2021
the mean anomaly between the approaches is +2K, whilst the min is 0K and the max +17K. In
comparison the mean anomaly at the same time step for UTCI is 0.62K, the min is also 0K and the max
anomaly is 6.5K.
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a) Operational MRT
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Figure 3: the operational ¢ mean radiant temperature (top), the thermofeel mean radiant temperature
(middle) and the anomaly plot of the approaches (bottom). For the 42" step after the initial date 21
May 2021 at 00UTC.

8 Technical Memorandum No. 895



Calculating the Cosine of the Solar Zenith Angle S ECMWF

a) Operational UTCI
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Figure 4: the operational ¢ universal thermal climate index(top), the thermofeel universal thermal
climate index (middle) and the anomaly plot of the approaches (bottom). For the 42nd step after the
initial date 21 May 2021 at 00UTC.
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a) MRT without DSRP
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Figure 5: thermofeel MRT without dsrp(top), the thermofeel mean radiant temperature with dsrp
(middle) and the anomaly plot of the approaches (bottom). For the 42" step after the initial date 27
July 2021 at 00UTC.
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(middle) and the anomaly plot of the approaches (bottom). For the 42" step after the initial date 27

July 2021 at 00UTC.
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Discussion

We recommend that the Gauss-Legendre integrated cossza and the thermofeel methodology supersedes
the operational ¢ code used to calculate the ERAS-HEAT dataset. This is because the thermofeel method
removes the clipping at the top of the parabola that is present in the ¢ code (figure 2).

There is a substantial difference between the Gauss-Legendre integrated cossza employed in the
thermofeel methodology to calculate MRT and UTCI in comparison to the operational ¢ code currently
creating the ERAS-HEAT dataset (Brimicombe et al., 2022; Di Napoli et al., 2021). This is more so
evident in the extremes of the distribution of both UTCI and MRT. This suggests that the ERAS-HEAT
dataset may be underestimating heat stress values while overestimating cold stress values, which could
have implications for the health sector who can use heat stress forecasts to make lifesaving decisions
(Blazejezyk et al., 2012; Jendritzky & Tinz, 2009; Di Napoli et al., 2019; Urban et al., 2021). The
biggest difference is observed around where cossza is at its maximum (figure 3 and 4). However, the
observed differences are larger when the step duration is bigger, and therefore the magnitude of error is
less at 1 hour time step (i.e., ERA-5) in comparison to a 6 hourly forecast time step (i.e., after a 144-
step). Further, there is a substantial difference between both MRT and UTCI values when dsrp is used
in the place of fdir in the MRT calculation (equation 6 and 7).

We therefore recommend that if ERAS-HEAT is rereleased using the thermofeel methodology with fdir
in the MRT calculation alongside the existing ‘legacy’ dataset available that the documentation
indicates that differences are observed when dsrp is used in the place of fdir to be transparent with users.
We recommend that the full forecast data is released as calculated using fdir for MRT using thermofeel
to aid with decisions that are increasingly being made about thermal comfort conditions as a beta
forecast and urge that dsrp be released in IFS (on all lead times) as a priority (Brimicombe et al., 2021,
2022).

In the ERAS-HEAT dataset Antarctica is currently cropped out and this is because of the many missing
values that occur in this region (Di Napoli et al., 2021). We recommend that when the data is rereleased
using the methodology introduced using the thermofeel library that Antarctica remains part of the
dataset and that missing values and anomalous values are assigned as such, this is of benefit because it
demonstrates to users that Antarctica does exist within the dataset but is often outside the range of the
UTCI method (Brdde et al., 2012).

In addition, the UTCI and its components would benefit from a sensitivity analysis. We know that the
windy and extreme cold conditions of Antarctica are outside the remit of the UTCI method, and
previously it has been demonstrated that high MRT and low wind speeds lead to a higher UTCI values
(Pappenberger et al., 2015), but, there is current understanding of which combination of the
meteorological components of the UTCI (2m Air Temperature, MRT, Saturation Vapour Pressure and
Wind Speed), lead to its hottest and coldest values. Such an analysis would allow us to better understand
this thermal comfort index.

In addition, we suggest that the saturation vapour pressure method over ice is investigated in the
calculation of saturation vapour pressure, a key component of the UTCI (Brdde et al., 2012; Hardy,
1998; Di Napoli et al., 2021). Currently the methodology for water saturation water vapour pressure is
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used universally, whereas for colder regions where ice is present on the ground the optimum approach
is slightly different (Hardy, 1998). This could be useful as it could make the values for Antarctica within
the range of the UTCI method and allow cold stress to be considered, which is currently not always
possible.

Conclusion

We have demonstrated that the thermofeel methodology for calculating the variables of cossza, mrt and
utci should supersede the operational ¢ code that creates the ERAS-HEAT dataset. We recommend that
it is used to create an ERAS-HEAT version 2 beta and is published alongside the legacy dataset,
allowing for users to make their own comparisons as well as, the full forecast dataset as beta. In addition,
we urge that dsrp is made operational in IFS so that a more accurate MRT can be calculated for the
forecasts from thermofeel. In addition, we recommend that Antarctica is no longer cropped from the
dataset, allowing users to recognize where data is missing and where it is present. Further, we
recommend a sensitivity analysis of the UTCI is carried out to improve understanding of what
combinations of the meteorological components lead to the highest and lowest values. Finally, the
saturation vapour pressure over ice should be explored for the continent of Antarctica. Overall, the
method introduced in thermofeel will allow for ERAS-HEAT to be readily expanded to operational
forecasts and other thermal comfort indices, benefitting many users of ECMWF data.
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