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REVISION HISTORY

Changes since Cy45r1

• Chapter 9, update to section: SEKF soil anlaysis based on the EDA to compute the Jacobians, and
SMOS soil moisture assimilation.

Changes since CY43R1

• Chapter 6, minor revision to sections on Calculation of forecast-error variances, Diagnosis of background
error variances through the EDA.

Changes since CY41R2

• Chapter 5, minor revisions to all sections.
• Chapter 6, minor revisions to section: Diagnosis of background error variances through the EDA;

Diagnosis of online background error covariances.
• Chapter 8, update to section: The 24-hr forecast error contribution to observations.
• Chapter 9, minor revisions to sections: 2D Optimal Interpolation (screen-level analysis and snow analysis).
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Chapter 1

Overview
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1.1 INTRODUCTION

This documentation of 4D-Var serves as a scientific guide to the data assimilation code within ECMWF’s
Integrated Forecasting System (IFS). The documentation is divided into a number of chapters. This first
chapter provides an overview of ECMWF’s data assimilation system, a brief history of its evolution and a
description of the basic scientific formulation.

The second chapter describes the practical implementation of the multi-resolution incremental method for 4D-
Var data assimilation (the multi-resolution version has been used operationally since January 2003, Cy25r3),
and the solution algorithm including minimization and preconditioning. The tangent linear physics that is an
important part of the variational algorithm is described in Chapter 3. Thereafter follows a description of the
background term (Chapter 4) and a chapter on observation-related parts of the data assimilation algorithm
(Chapter 5) though the main documentation of observations is to be found in Part 1. Chapter 6 deals with
the computation and cycling of background and analysis errors including the recent use of variances and
covariances based on the Ensemble of Data Assimilations (EDA). Chapter 7 is on control of gravity waves in
the minimization cycle. Diagnostic tools for investigation of the performance of the assimilation system are
described in Chapter 8. Chapter 9 describes the land surface analysis, including the screen level parameters,
the soil analysis and the snow analysis, Chapter 10 describes the sea surface temperature and sea-ice analysis.
Finally Chapter 11 provides summary information about the main unix-scripts and important files, and a
schematic of the data flow between the various jobs steps that constitute a data assimilation cycle.

1.2 SCIENTIFIC PUBLICATIONS

The scientific description of 3D/4D-Var has been published in a series of papers in the Quarterly
Journal of the Royal Meteorological Society (QJRMS), in ECMWF workshop proceedings and Technical
Memoranda over the years. The incremental formulation was introduced by Courtier et al. (1994). The
ECMWF implementation of 3D-Var was published in a three-part paper by Courtier et al. (1998), Rabier et al.
(1998) and Andersson et al. (1998). The original observation operators for conventional data can be found
in Vasiljevic et al. (1992). The methods for assimilation of TOVS radiance data and ERS scatterometer
data were developed by Andersson et al. (1994) and Stoffelen and Anderson (1997), respectively. The
pre-operational experimentation with 4D-Var has been documented in three papers by Rabier et al.
(2000), Mahfouf and Rabier (2000) and Klinker et al. (2000). The background term has been published
by Derber and Bouttier (1999), with more recent developments described by Fisher (2003). EDA-based
background error variances and covariances were introduced in 2011 and 2013, as discussed in Section 1.3.

Papers of data usage and impact include a study of commercial aircraft data (Cardinali et al.,
2003), scatterometer impact (Isaksen, 1997; Isaksen and Stoffelen, 2000; Isaksen and Janssen, 2004),
conventional and satellite humidity data (Andersson et al., 2004), ozone analysis (Dethof and Holm,
2004), time series of frequent data (Andersson et al., 2001), wind profiler data (Bouttier, 2001b;
Andersson and Garcia-Mendez, 2002), TOVS radiance data (McNally et al., 1999), water-vapour radiances
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from geostationary satellites (Munro et al., 2004; Köpken et al., 2004), and the use of high-volume satellite
data in general (Thépaut and Andersson, 2003). An more complete overview of data usage at ECMWF is
included in the reanalysis review paper by Dee et al. (2011).

1.3 BRIEF HISTORY OF 3D- AND 4D-VAR IN ECMWF OPERATIONS

3D-Var was implemented in ECMWF operations on 30 January 1996, and was replaced on 25 November 1997
by 4D-Var. The two three-part series of QJRMS papers mentioned above basically describe the two schemes
as they were at the time of their implementation. However, there have been very significant developments of
the variational data assimilation system during its time in operations. Major code-upgrades have taken place in
connection with migrations to new computers. 3D-Var was first implemented on a CRAY C90 shared-memory
parallel computer system and was migrated to a distributed-memory Fujitsu VPP700 machine in September
1996 (Dent et al., 1997). Further migrations of the codes took place in May 2000 to a Fujitsu VPP5000, and in
March 2003 to an IBM P690, and later in 2004 to an IBM P690+. A history of the evolution of ECMWF super-
computing is available at http://www.ecmwf.int/services/computing/overview/supercomputer history.html.
The current IBM implementation of the assimilation system utilizes both shared-memory (OpenMP) and
distributed-memory (MPI) parallelism. A general list of changes to the operational forecasting system is
available at http://www.ecmwf.int/products/data/technical/model id/index.html.

The observation handling and data screening modules have also developed rapidly to keep pace with the
changing computer environment, and the arrival of new observational data sets. The codes inherited from
OI were replaced with new codes at the time of the migration to Fujitsu in 1996. The need for improved
parallelism and rapidly increasing data volumes lead to the development of the Observation DataBase (ODB)
software (see ODB documentation), facilitating in March 2003 the move to the IBM computers and the
introduction of high-spectral resolution satellite data (first AIRS and then IASI in 2009) as well as the use
of radio occultation data (GPSRO) in 2008. The quality control, data selection and screening algorithms
are described in the paper by Järvinen and Undén (1997), and variational quality control of observations
in Andersson and Järvinen (1999). Since 2009 the variational quality control of conventional observations uses
the Huber norm (Tavolato and Isaksen, 2010).

One of the most important aspects of a variational assimilation is the specification of background errors.
The original formulation of Courtier et al. (1998) was replaced in May 1997 by that of Derber and Bouttier
(1999). The latter formulation is still used as described in Chapter 4, including improvements such as non-linear
balance (January 2003, Cy25r3, Fisher (2003)), wavelet-Jb (April 2005, Cy29r1, Fisher (2006)), introduction
of ozone as an analysis variable (Dethof and Holm, 2004) in October 1999 (Cy21r4), the new humidity
analysis (Hólm et al., 2002) in October 2003 (Cy26r3), and Jb for GEMS variables (Benedetti and Fisher,
2006). The cycling algorithms for analysis and background errors (Fisher and Courtier, 1995, and Chapter 6)
were introduced in 1996. The calibration of background error statistics is since October 1999 based on
an ensemble of 3D-Var data assimilations, updated in January 2003 to statistics based on a 4D-Var
ensemble (Fisher, 2003). Since May 2011 the EDA (Isaksen et al., 2010) provides flow-dependent background
error standard deviations for vorticity on each cycle (Bonavita et al., 2012). Since November 2013 (Cy40r1)
the EDA is also used to compute online estimates of the background error correlation model (wavelet-Jb), as
described in Chapter 6.

6-hourly 4D-Var was introduced operationally in 1997, at resolution T213L31, with two iterations of the outer
loop: the first at T63L31 with 50 iterations (simplified physics) and the second with 20 iterations (with tangent-
linear physics, at same resolution). In April 1998 the resolution was at TL319. In June 1998 the radiosonde/pilot
usage was revised (i.e. use of significant levels and temperature instead of geopotential) and we started using
time-sequences of data (Järvinen et al., 1999), so-called 4D-screening. The data assimilation scheme was
extended higher into the atmosphere on 10 March 1999, when the TL319L50 model was introduced, which in
turn enabled the introduction in May 1999 of ATOVS radiance data (McNally et al., 1999). In October 1999
the vertical resolution of the boundary layer was enhanced taking the number of model levels to a total of L60.
In summer 2000 the 4D-Var period was extended from 6 to 12 hours (Bouttier, 2001a), whereas the ERA-40
configuration (Uppala et al., 2005) was built as an FGAT (first guess at the appropriate time) of 3D-Var with
a period of 6 hours. In November 2000, the horizontal resolution of 4D-Var was increased to TL511L60, with
inner loop resolution enhanced from T63L60 to TL159L60 using the linearized semi-Lagrangian scheme. We
moved to three inner loops in June 2007.
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In January 2003 the 4D-Var solution algorithm was comprehensively revised (in Cy25r4, Andersson et al., 2003)
to take advantage of the efficiency of conjugate gradient minimisation (with pre-conditioning, as introduced one
year earlier) and a multi-resolution incremental technique (Veerse and Thépaut, 1998; Trémolet, 2005). This
is the 4D-Var solution algorithm that is presented here in Chapter 2. The early delivery suite was introduced
in June 2004 (in Cy28r2, Haseler, 2004).

In February 2006, the outer loop resolution of 4D-Var was increased to TL799L91, with inner loop resolution
enhanced to TL255L91. During 2007 and 2008 the moist linear physics was improved in three IFS cycles; the
details are explained in Chapter 3. Then in January 2010 the outer loop resolution was increased to TL1279L91,
with unchanged inner loop resolution. The ERA-Interim reanalysis also used 12 hour 4D-Var at TL255L60
outer loop resolution, with TL159L60 inner loop resolution (Dee et al., 2011). The outer loop resolution is
the same as that of the forecast model.

Weak contraint 4D-Var (Trémolet, 2003) was introduced in September 2009, with EDA variances in May 2011
and EDA-based covariances in November 2013.

1.4 INCREMENTAL FORMULATION OF VARIATIONAL DATA
ASSIMILATION

In 3D/4D-Var an objective function J is minimized. The cost function consists of three terms:

J = Jb + Jo + Jq + Jc (1.1)

measuring, respectively, the discrepancy with the background (a short-range forecast started from the previous
analysis), Jb, with the observations, Jo, with the model error, Jq, and with the slow manifold of the atmosphere,
Jc. The Jq term is under active development and is not described further here, but see Fisher et al. (2011).
The Jc-term controls the amplitude of fast waves in the analysis and is described in Chapter 2. It is omitted
from the subsequent derivations in this section.

In its incremental formulation (Courtier et al., 1994), we write

J(δx) =
1

2
δxTB−1δx+

1

2
(Hδx− d)TR−1(Hδx− d) (1.2)

δx is the increment and at the minimum the resulting analysis increment δxa is added to the background xb

in order to provide the analysis xa given by

xa = xb + δxa (1.3)

B is the covariance matrix of background error while d is the innovation vector

d= yo −Hxb (1.4)

where yo is the observation vector. H is a suitable low-resolution linear approximation of the observation
operator H in the vicinity of xb, and R is the covariance matrix of observation errors. The incremental
formulation of 3D/4D-Var consists therefore of solving for δx the inverse problem defined by the (direct)
observation operator H, given the innovation vector d and the background constraint. The gradient of J is
obtained by differentiating (1.2) with respect to δx to give

∇J = (B−1 +HTR−1H)δx−HTR−1d (1.5)

At the minimum, the gradient of the objective function vanishes, thus from (1.5) we obtain the classical result
that minimizing the objective function defined by (1.2) is a way of computing the equivalent matrix-vector
products given by

δxa = (B−1 +HTR−1H)−1HTR−1d=BHT(HBHT +R)−1d (1.6)

where B and R are positive definite, see e.g. Lorenc (1986) for this standard result. HBHT may be interpreted
as the square matrix of the covariances of background errors in observation space while BHT is the rectangular
matrix of the covariances between the background errors in model space and the background errors in
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observation space. 3D-Var uses the observation operator H explicitly and statistical models (B and R) are
required only for describing the statistics of the background errors in model space and the observation error in
observation space. Consequently, in 3D/4D-Var it is easy, from an algorithmic point of view, to make use of
observations such as TOVS radiances, which have quite a complex dependence on the basic analysis variables.
The background term and background error covariance modelling (i.e. B) are described in Chapter 4 and
observation operators H are described in Chapter 5.
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Chapter 2

4D variational assimilation

Table of contents
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2.6 3D variational assimilation (with the first-guess at appropriate time)

2.6.1 Introduction

2.6.2 Solution algorithm

2.6.3 Main differences with respect to 4D-Var

2.6.4 Data selection

2.1 INTRODUCTION

This part of the documentation covers the top level controls of 4D-Var. It gives a detailed description of
the solution algorithm, and the various steps that are performed during a 4D-Var simulation (SIM4D). The
procedure consists of nested iterations, called inner and outer loops, which communicate through files that
either contain meteorological fields, observations, or parameters. The data flow is documented in Chapter 11.
The interpolation of model fields to observation points (OBSHOR) and the organization of the data in memory
(yomsp, yommvo) is described in Chapter 5. The structure of the computation of the observation cost function
and its gradient, managed by the routines OBSV and TASKOB can also be found in Chapter 5. The background
term and the ‘change-of-variable’ operators are explained in Chapter 4.

2.2 SOLUTION ALGORITHM

2.2.1 The incremental method

The adopted solution algorithm is incremental (Courtier et al., 1994), which allows for considerable flexibility
with respect to the computer expense of the various job-steps of the 4D-Var minimisation. In the incremental
approach the highest possible resolution is used for the computation of the model trajectory, and for calculating
the departures between observations and model, whereas a lower-resolution model (its adjoint and tangent
linear) are used for the iterative and relatively costly computation of analysis increments (Trémolet, 2004;
Radnóti et al., 2005). The lower-resolution iterations (the inner-loops) can optionally be nested within a set
of outer-loop iterations at full resolution (Trémolet, 2005). Apart from the resolution, the cost of the inner-
loops will depend also upon the complexity of the inner-loop model, e.g. the use of simpler or more complete
representations of the physical processes (Janisková et al., 2002; Tompkins and Janisková, 2004).

In a further ‘multi-resolution’ extension to the incremental method (Veerse and Thépaut, 1998) the inner-loop
resolution is increased with each iteration of the outer-loop. A schematic is shown in Fig. 2.1. In particular, the
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Figure 2.1 Schematic of the revised 4D-Var solution algorithm implemented in January 2003 (Cy25r4).
Outer loops are performed at high resolution (currently T1279) using the full non-linear model. Inner
iterations are performed at lower resolution (first T159, then T255) using the tangent-linear forecast
model, linearised around a 12-hour succession of model states (‘the trajectory’) obtained through
interpolation from high resolution (S denotes the truncation operator, J the cost function and x the
atmospheric state vector).

information about the shape of the cost-function obtained during the early low-resolution iterations provides
a very effective pre-conditioner (Chapter 6) for subsequent iterations at higher-resolution, thus reducing the
number of costly iterations. The inner-loops can be particularly efficiently minimised using the conjugate
gradient method, provided the cost-function is purely quadratic (Fisher, 1998), i.e. the operators involved in
the definition of the cost function (the model and the observation operators) are purely linear. For this reason,
the inner-loops have been made entirely linear, with the non-linear effects gathered at the outer-loop level.
The convergence properties of the outer-loop iterations have been investigated by Trémolet (2005).

2.2.2 The job-steps

In the CY37R2 operational configurations the assimilation window is 12-hours long, running from 09–21 UTC to
produce the 12 UTC analysis and forecast products, and from 21–09UTC for the 00 UTC production (Haseler,
2004). Several different job steps are performed.

(i) Comparison of the observations with the background at high resolution to compute the innovation
vectors. These are stored in the NCMIFC1-word of the ODB (the observation database) for later use in
the minimization. This job step also performs screening (i.e. blacklisting, thinning and quality control
against the background) of observations (see Part 1). The screening determines which observations will
be passed for use in the main minimisation. Very large volumes of data are present during the screening
run only, for the purpose of data monitoring. The model trajectory is interpolated to the resolution of
the next job step and written out.

(ii) First minimization at low resolution to produce preliminary low-resolution analysis increments, using
simplified tangent-linear physics, and tangent-linear observation operators. The eigenvectors of the
analysis Hessian are computed and will be used to precondition subsequent inner-loop iterations.

(iii) Update of the high-resolution trajectory to take non-linear effects partly into account. Observed
departures from this new atmospheric state are stored in the ODB and the analysis problem is re-
linearized around the updated model state. Variational quality control is computed, and the resulting
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QC weights will be used in the subsequent minimisation. The updated model trajectory is interpolated
to the resolution of the next job step and written out.

(iv) Second main minimization at increased resolution with more complete representation of tangent-linear
physics. Step (iii) and (iv) are repeated if necessary.

(v) Formation of the high-resolution analysis (described below) and comparison of the analysis with all
observations (including those not used by the analysis, for diagnostic purposes).

Each of the job steps is carried out by a different configuration of IFS. They are commonly named as follows.

(i) The first trajectory run: includes a model integration, comparison to observations, and observation
screening (quality control and data selection) and is sometimes called the screening run. NCONF= 2,
LSCREEN= .TRUE.

(ii) The first minimization: uses simplified physics, typically run at low resolution. This job step includes
estimation of analysis and forecast error variances, and calculation of Hessian eigenvectors for pre-
conditioning of subsequent minimisation(s). NCONF= 131, LSPHLC= .TRUE., LAVCGL= .TRUE.

(iii) The first trajectory update: applies the analysis increments obtained in the first minimisations and
performs another forecast integration with comparison to observations. This provides a new linearisation
state for the next minimisation. NCONF= 1, LOBS= .TRUE.

(iv) The second (and subsequent) minimization: uses more complete tangent-linear physics, typically
higher resolution increments. NCONF= 131, LSPHLC= .FALSE.

(v) Late 4D-start runs: the analyses (type= an) at the main synoptic hours (00, 06, 12, 18),
that fall within the assimilation window, are formed in separate quick job-steps by adding the low-
resolution increment to the penultimate high-resolution trajectory of the corresponding time (no forecast
integration). See also schematic in Chapter 11.

(vi) The final trajectory runs: carries out verification screening – that is comparison between
observations and final analysis. In the final trajectory job-steps with NUPTRA= 999 the final analysis
(type= 4v) is formed (Bouttier, 2001a), by adding the low-resolution increment to the background
(at initial time), and integrating to the analysis times. NCONF= 1, LOBS= .TRUE., NUPTRA=
NRESUPD

The steps (iii) and (iv) are referred to as the second iteration of the outer loop, and these can optionally
be iterated further to incorporate additional non-linear effects. The trajectory update is not normally done in
3D-Var. The inner loop takes place within the main minimization, job steps (ii) and (iv).

2.2.3 Interpolation of trajectory and increments

A truncation operator (shown as S in the schematic, Fig. 2.1 above) is required to take the trajectory fields
from high to low resolution. This is done using appropriate grid-point interpolations for the surface grid-point
fields, whereas upper-air fields are truncated spectrally. Humidity and ozone (and any other grid-point fields)
are interpolated in grid-point space to the resolution of the inner loops. Initial time model cloud fields are
interpolated to lower resolution using the so-called ‘full-pos’ configuration of IFS. Trajectory cloud fields and
trajectory of physical tendencies are generated in a (low resolution) model integration in which the model
state is replaced by the interpolated trajectory at each time instance for which it is available. The trajectory
handling is managed by the module TRAJECTORY.

The spectral and grid-point analysis increments produced by the minimisation are read in by the routine
RDFPINC. The spectral fields are padded with zeroes for the wave numbers not represented in the inner-loops.
The increments for the spectral model variables (vorticity, divergence and logarithm of surface pressure) are
added to the background fields. The temperature increments are added to the temperature of the background
(after it has been converted from virtual temperature) and the resulting temperature analysis is converted back
to virtual temperature. The humidity and ozone increments are read in as grid-point fields and interpolated
to the outer-loop resolution and added to the background. Checks for negative values are applied to humidity
and ozone (and trace gasses).

It was found that the TL model was unstable in the mesosphere in certain situations. This was resolved by
smoothing the trajectory fields if the inner-loop resolution is T255 or higher. It is implemented as a fourth-
order diffusion filter applied to the spectral trajectory fields, reducing the amplitude of the shortest wave by
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a factor five. This is done in TRAJ MAIN just before the fields are written to files in ifstraj. The filtering
is controlled by the variables FILTERFACTOR, FILTEREXPO, FILTERRESOL in NAMVAR. In addition, it
was found necessary to reduce the amplitude of the analysis increments near the top of the model. They are
tapered to zero applying the factor REDINC, over the topmost NLEV REDINC levels (NAMJG), in RDFPINC.

2.2.4 Minimization, preconditioning and control variable

In practice, it is necessary to pre-condition the minimization problem in order to obtain a quick convergence.
As the Hessian (the second derivative) of the objective function is not accessible, Lorenc (1988) suggested
the use of the Hessian of the background term Jb. The Hessian of Jb is the matrix B. Such a preconditioning
may be implemented either by a change of metric (i.e. a modified inner product) in the space of the control
variable, or by a change of control variable. As the minimization algorithms have generally to evaluate several
inner products, it was found more efficient to implement a change of variable (under CHAVAR, CHAVARIN,
etc.). Algebraically, this requires the introduction of a variable χ such that

Jb = χTχ (2.1)

Comparing (1.2) and (2.1) shows that χ=B−1/2δx satisfies the requirement. χ thus becomes the
control variable of the preconditioned problem (see Section 4.2). A single-observation analysis with such
preconditioning converges in one iteration.

The Jb-based pre-conditioning is sufficient when the B-term dominates over the observation term of the
Hessian. With increasing amounts of observational information, and in cases with locally dense observation
coverage, the observation term can be dominant over the background term in defining the shape of the cost-
function (its second derivative). The combined Lanczos/conjugate gradient method allows computation of the
leading eigenvectors and eigenvalues of the Hessian while solving for the analysis, essentially at no extra cost.
This method is fully described in Chapter 6, and it is used for all inner-loop iterations. The Hessian eigenvector
information obtained at low resolution is used as pre-conditioner at subsequent inner-loop iterations at higher
resolution. This has been shown to be a very effective way of reducing the number of iterations required at
higher inner-loop resolutions.

2.3 TOP-LEVEL CONTROLS

The routines CVA1, CVA2 and FORECAST ERROR control the variational configurations of IFS. The flow
diagram of CVA1 and CVA2 is shown in Fig. 2.2. The spectral and grid-point first guess fields (FG) have been
read in to the SP7-arrays and GP7-arrays (in YOMSP) by SUECGES, called from SUJBSTD within the Jb
setup, see Subsection 4.3.3. At the start of CVA1 additional setups for the variational configurations are done
(SU1YOM). The SP3-arrays and GFL-arrays, i.e. the current model state, (in YOMSP) are filled by a call to
the setup routine SUINIF in the routine SUVAZX, and only for the first minimisation job-step. For subsequent
minimisations the initial state for analysed variables must come from the previous minimisation, i.e. a warm
start. This is achieved by getting the control vector YVAZX by calling GETMINI and performing an inverse
change of variables (calling CHAVARIN) to transform the control vector to model variables (SP3/SP2-arrays
and GFL-arrays). Non-analysed fields (e.g. cloud fields) are read by a call to SUINIF earlier in SUVAZX.

After minimisation is complete one final simulation is performed in CVA2 or FORECAST ERROR. This
simulation is diagnostic, and characterized by the simulation counter being set to 999, NSIM4D= NSIM4DL,
yomvar. The observation departure from the low-resolution analysis, yo −Hxa

LR, is computed and stored in
the NCMIOMN-word of the ODB. Finally at the end of CVA2 and FORECAST ERROR, respectively, the
updated ODB is written to disk, using the routine WRITEOBA.

2.4 A SIMULATION

2.4.1 The cost function and its gradient

A simulation consists of the computation of J and ∇J . This is the task of the routine SIM4D, see Fig. 2.3
for the flow diagram. The input is the latest value of the control variable χ in the array VAZX, computed by
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Figure 2.2 Flow diagram for subroutines CVA1 and CVA2.

M1QN3, or CONGRAD. First Jb and its gradient are computed (see Section 4.2) using

Jb = χTχ

∇χJb = 2χ
(2.2)

The gradient of Jb with respect to the control variable is stored in the array VAZG (YOMCVA).

(i) Copy χ from VAZX to SP3-arrays (YOMSP) using the routine CAIN.
(ii) Compute x, the physical model variables, using CHAVARIN so that

x= δx+ xb = Lχ+ xb (2.3)

(iii) SUBFGS computes δx= x− xg, where xg is the guess (not necessarily equal to the background).
(iv) Perform the direct integration of the linear model, using the routine CNT3TL, and compare with

observations. See Section 2.5.
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Figure 2.3 Flow diagram for the subroutine sim4d.

(v) Calculate Jo for which OBSV is the master routine.
(vi) Perform the adjoint model integration using CNT3AD, and observation operators’ adjoint.
(vii) Calculate ∇xJo, and store it in SP3.
(viii) Jc and its gradient are calculated in COSJC called from CNT3AD, if LJC is switched on (default) in

namvar.
(ix) Transform ∇xJo +∇xJc to control variable space by applying CHAVARINAD.
(x) Copy ∇χJo +∇χJc from SP3 and add to ∇χJb, already in the array VAZG, using CAIN.
(xi) Add the various contributions to the cost function together, in EVCOST, and print to log file using prtjo.
(xii) Increase the simulation counter NSIM4D by one.

The new J and ∇χJ are passed to the minimization algorithm to calculate the χ of the next iteration, and
so on until convergence (or the maximum number of iterations) has been reached.

2.4.2 Interface between control variable and model arrays

The purpose of the routine CAIN (the canonical injection) is to identify those parts of the model state that
should be included in the variational control variable. This is controlled by on/off switches such as NVA2D
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and NVA3D (yomcva) initialized in SUALCTV. The scalar product used is the one defined by the array SCALP
(in yomcva, set up in the routine SCALJGS called from SUSCAL), which is 1 if m= 0, and 2 otherwise. This
allows the compression of arrays of the type VAZX while using the L2 norm on the sphere with real fields in
spectral space.

The control vector currently consists of four parts, as defined in the module CONTROL VECTORS residing
in the ifsaux library. Any of the following four parts can be absent.

(i) The initial-condition control-variables that define the original 4D-Var problem.
(ii) A representation of model error (for weak-constraint 4D-Var), see Trémolet (2003).
(iii) The TOVS control vector (LTOVSCV), used to estimate surface skin temperature and simplified cloud

variables (pressure and fraction) at the radiance field-of-view locations.
(iv) Components for the limited-area model ALADIN.

The organisation of elements of the control-vector is now quite flexible and allows for future planned extensions,
such as observation bias coefficients (e.g. for radiance data, and wavelet-Jb components).

2.5 THE ASSIMILATION WINDOW

In 4D-Var, observations are organized in time-slots (currently half-hourly) as described in the ODB
documentation. The cost-function measures the distance between a model trajectory and the available
information (background, observations) over an assimilation interval or window. For a 12-hour window, it
is either (09 UTC–21 UTC) or (21 UTC–09 UTC), see Haseler (2004). Equation (1.2) (see Chapter 1) is
replaced by

J(δx) =
1

2
δxTB−1δx+

1

2

n∑

i=0

(Hiδx(ti)− di)
TR−1

i (Hiδx(ti)− di) (2.4)

with subscript i the time index. Each i corresponds to a half-hour time slot. δx is as before the increment at
low resolution at initial time, and δx(ti) the increment evolved according to the tangent linear model from
the initial time to time index i. Ri and B are the covariance matrices of observation errors at time index i
and of background errors respectively. Hi is a suitable linear approximation at time index i of the observation
operator Hi. The innovation vector is given at each time step by di = yo

i −Hix
b(ti), where xb(ti) is the

background propagated in time using the full non-linear model and yo
i is the observation vector at time index

i.

2.6 3D VARIATIONAL ASSIMILATION (WITH THE FIRST-GUESS AT
APPROPRIATE TIME)

2.6.1 Introduction

3D-Var is a temporal simplification of 4D-Var. The simplest way to implement a 3D-Var within the context of
an existing 4D-Var scheme is to replace the tangent-linear (and its adjoint) model integration within the inner
loops (as defined in the previous section) by the identity operator (LIDMODEL = .TRUE. in yomtnewt.F90).
This approach has indeed been adopted, as it saves on maintenance of scripts and codes. It is this 3D-Var
version that was used for the production of the ERA-40 re-analysis (Uppala et al., 2005) and it was used until
14 March 2006 in ECMWF operations within the BC-suite to generate timely boundary conditions for the
participating member states.

In this version of 3D-Var as much as possible of the 4D-Var structure is maintained. The available observations,
typically over the period of a 6-hour assimilation window, are compared with a model integration at high
resolution. The comparison between observation and model is thus performed at the appropriate time: therefore
the abbreviation 3D-FGAT (first-guess at appropriate time). This configuration is activated via the switch
LFGAT= .TRUE. in namvar.h.

2.6.2 Solution algorithm

The tangent-linear model in 4D-Var evolves the analysis increment over time, within the assimilation window.
In 3D-FGAT no such evolution takes place: one static increment in produced. The valid time of this increment
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is not at the initial time of the window as in 4D-Var, but at the central time. The increment is added
to the background field, which forms the analysis at the central time. This has the consequence that a
trajectory update from the start of the assimilation window cannot be performed. The 3D-FGAT configuration
is therefore based on one single outer-loop without iteration. There are nevertheless two minimisation steps.
The first provides analysis error and background error estimates required for cycling, and also pre-conditioning
vectors (Hessian eigenvectors) that are used in the second minimisation job-step. The resolution of the first
minimisation is typically lower (T42) than for the main one (e.g. T159).

Scatterometer de-aliasing is active and variational quality control is activated approximately halfway into the
minimisation, rendering the problem non-linear (and the cost function non-quadratic). The use of conjugate-
gradient minimisation is thus prevented. The M1QN3 algorithm is used instead.

2.6.3 Main differences with respect to 4D-Var

The main differences with respect to the standard operational 4D-Var configuration are as follows.

(i) Variational quality control is carried out within the inner-loop iterations (LQVARQC= .FALSE.).
(ii) The scatterometer de-aliasing is performed within the inner-loop iterations (LQSCAT = .FALSE.).
(iii) Use of M1QN3 instead of conjugate gradient minimisation, due to the cost-function being quadratic.
(iv) The Jc term based on a digital filter is not used (LJCDFI = .FALSE.).
(v) No iteration at outer-loop level.
(vi) LTRAJHR = .FALSE., which means that the observation operators are linearized around the low-

resolution trajectory, which is generated through an integration by the full non-linear model (at the
resolution of the minimisation) at the beginning of the minimisation job-step. CVA1 calls CNT2 to do
this.

2.6.4 Data selection

The observational data are stored in time-slots within the ODB (just as in 4D-Var). The data selection criteria
are applied in the same way as in 4D-Var, allowing time sequences of data to be used also in 3D-FGAT. The
3D scheme is however unable to extract temporal information from the data, and produces an analysis of the
temporal average of the FGAT departures. Optionally the screening data selection rules can be applied once
for the entire (6-hour) assimilation window, which would pick only the data closes to the analysis centre time.
This is called ‘3D-screening’ and was the practice in the original operational 3D-Var configuration.
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Chapter 3

Tangent-linear physics
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3.1 INTRODUCTION

The linearized physics describes six processes: vertical diffusion, subgrid-scale orographic effects, non-rographyc
gravity wave drag, radiation, large-scale condensation/precipitation and convection. In order to prevent spurious
unstable perturbations from growing, a number of simplifications have been defined for these schemes with
respect to the non-linear physical parametrization schemes (described in Part IV: Physical processes) used in
the forecast model. All simplified parametrizations are called in each minimization of 4D-Var.

This text is focused on brief scientific description of the linearized physical parametrization schemes together
with some technical aspects. More detailed scientific issues can be found in the mentioned literature references.
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3.2 SET-UP

The full linearized physics package currently in operational use is activated by setting the following switches
in namelist NAMTRAJP:

• LEVDIF2 (vertical diffusion),

• LEGWDG2 (subgrid-scale orographic gravity wave drag),

• LEGWWMS2 (non-orographic gravity wave drag),

• LERADI2, LERADS, LERADN2 and LERADSW2 (radiation),

• LENCLD2 (large-scale condensation/precipitation),

• LECUMF2 and LECUMFS2 (in namelist NAMCUMFS) (moist convection),

In addition, the following switches must be set to .TRUE.: LEPHYS and LAGPHY (also necessary to activate
the ECMWF non-linear physics) in namelist NAEPHY and LETRAJP (to activate storage of the trajectory at
t−∆t) in namelist NAMTRAJP.

Tunable parameters of the improved physics (which should not in principle be modified) are defined in SUPHLI.
The logical LPHYLIN (namelist NAMTLEVOL)is used to activate the simplifications and/or modifications
associated with the linear package in the non-linear physics. This variable is set to .FALSE. by default, but is
forced to .TRUE. before starting tangent-linear (TL) and adjoint (AD) computations in CNT3TL and CNT3AD.
Thus this switch remains .TRUE. for the linearized physics called in EC PHYS TL and EC PHYS AD.

3.3 MIXED-PHASE THERMODYNAMICS

The thermodynamical properties of the water mixed phase are represented by a differentiable weighting function
between T0 = 0◦C and Tice =−23◦C given by

α(T ) =
1

2
[1 + tanh{µ(T − Tcrit)}] (3.1)

with µ= 0.15 (RLPALP1) and Tcrit = Tice +
T0−Tice√

2
(RLPTRC).

The tuning parameter µ controls the intensity of the smoothing, and the temperature Tcrit has been chosen
to give α= 0.5 for the same temperature as in the operational quadratic formulation (see function FCTTRE).

This weighting function is used by the large-scale condensation and moist-convection routines.

3.4 VERTICAL DIFFUSION

Vertical diffusion applies to wind components, dry static energy and specific humidity. The exchange coefficients
in the planetary boundary layer and the drag coefficients in the surface layer are expressed as functions of
the local Richardson number (Louis et al., 1982). Analytical expressions are generalized to the situation of
different roughness lengths for heat and momentum transfer.

For any conservative variable ψ (wind components u, v; dry static energy s; specific humidity q), the tendency
of its perturbation ψ′ produced by vertical diffusion is

∂ψ′

∂t
=

1

ρ

∂

∂z

(
K(Ri)

∂ψ′

∂z

)
(3.2)

where ρ is the air density and Ri is the Richardson number.

In the planetary boundary layer, the exchange coefficient K is given by

K = l2
∥∥∥∥
∂V

∂z

∥∥∥∥f(Ri) (3.3)

where f(Ri) is a function of the Richardson number and l is the local mixing length (see below).

16 IFS Documentation – Cy47r3



Part II: Data Assimilation

3.4.1 Upper-air

Stable conditions

In stable conditions (Ri > 0), the respective values of f(Ri) for heat/moisture and momentum are computed
using the Louis et al. (1982) formulation, which reads

f(Ri) =





1

1 + 2bRi(1 + dRi)−0.5
for momentum

1

1 + 2bRi(1 + dRi)0.5
for heat/moisture

(3.4)

with b= 5 and d= 1.

The vertical profile of the mixing length is computed using Blackadar (1962) as

l=
κ(z + z0)

1 + κ (z+z0)
λ

(3.5)

where z0 is the roughness length and κ= 0.4 is von Kármán’s constant. The asymptotic mixing length, λ, is
set to 120 m for momentum inside the PBL, 60 m otherwise.

Unstable conditions

In unstable situations (Ri < 0), the Monin-Obukhov theory is applied and the stability functions are derived
from (Dyer, 1974; Hogström, 1988)

f(Ri) =

{
(1− 16Ri)0.5 for momentum

(1− 16Ri)0.75 for heat/moisture
(3.6)

The vertical profile of the mixing length in the unstable case also follows Blackadar (1962) (see 3.5), with λ
set to 150 m for both momentum and heat/moisture.

3.4.2 Surface

To parametrize the turbulent fluxes at the surface, the drag coefficients (i.e. the exchange coefficients between
the surface and the lowest model level) are computed. The neutral coefficients CMN and CHN are written as

CMN =
κ2

[
ln
(
z+z0M
z0M

)]2 and CHN =
κ2[

ln
(
z+z0M
z0M

)
ln
(
z+z0M
z0H

)] (3.7)

The drag coefficients for momentum are computed as

CM =





1

1 + 2bRi√
1+dRi

CMN if Ri > 0

(
1− 2bRi

1 + 3bcCMN

√
z+z0M
z0M

|Ri |

)
CMN if Ri < 0

(3.8)

The surface exchange coefficients for dry static energy and specific humidity are

CH =





1

1 + 3bRi
√
1 + dRi

CHN if Ri > 0

(
1− 3bRi

1 + 3bcCHN

√
z+z0M
z0M

|Ri |

)
CHN if Ri < 0

(3.9)

The empirical coefficients b (RLPBB), c (RLPCC) and d (RLPDD) are set to 5 in SUPHLI.

The same mixed layer parametrization as in the fully-fledged non-linear vertical diffusion scheme is also included
(for details, see Part IV: Physical processes - 3.3 The exchange coefficients above the surface and mixed layer).
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3.4.3 Regularization

Until cycle Cy33r1, perturbations of the exchange coefficients were neglected (K ′ = 0), in order to prevent
spurious unstable perturbations from growing in the linearized version of the scheme (Mahfouf, 1999). From
Cy33r1 onwards, regularization was introduced for exchange coefficients between upper model levels to include
partial perturbations of these coefficients.

3.4.4 Flow chart

The simplified diffusion scheme VDFMAINS can be called from CALLPAR when the logical switch for linearized
physics LPHYLIN is set to .TRUE..

The linear versions of the vertical diffusion scheme are called from the drivers VDFMAINSTL and
VDFMAINSAD. The ensemble of routines that prepare the surface exchange coefficients and associated
surface quantities needed for the solution of the vertical diffusion equations are part of the routine
SURFEXCDRIVERSTL and SURFEXCDRIVERSTL. At this moment the surface arrays are not evolved in
time, though the routines are coded for computing perturbations of: the roughness length (VDFUPDZ0TL,
VDFUPDZ0AD), the surface boundary conditions for T and q (VDFSURFTL, VDFSURFAD), the
surface exchange coefficients (VDFEXCSTL, VDFEXCSAD) and the equivalent evapotranspiration efficiency
(VDFEVAPTL, VDFEVAPAD). This can be activated in the future by setting the logical switch LENOPERT
set to .FALSE. in NAMTRAJP. The current default version is .TRUE. (i.e. no perturbation is required for the
surface arrays).

Other computations performed in VDFMAINSTL and VDFMAINSAD involve the calculation of exchange
coefficients above the surface layer (VDFEXCUSTL , VDFEXCUSAD), the solving of the diffusion equations
for momentum (VDFDIFMSTL, VDFDIFMSAD) and dry static energy and moisture (VDFDIFHSTL,
VDFDIFHSAD, as well as the incrementation of tendencies for wind, temperature and specific humidity
(VDFINCRSTL, VDFINCRSTL.

The logical LEKPERT in NAMTRAJP controls the perturbations of the exchange and drag coefficients. When
set to .FALSE. (default), the perturbations would be set to 0. In the current 4D-Var computation, LEKPERT
is set to .TRUE., which means that the regularized exchanged coefficients (as described above) are used.

3.5 SUBGRID SCALE OROGRAPHIC EFFECTS

Only the low-level blocking part of the operational non-linear scheme developed by Lott and Miller (1997)
(see documentation on ECMWF non-linear physics) is taken into account in the tangent-linear and adjoint
calculations. The deflection of the low-level flow around orographic obstacles is supposed to occur below an
altitude Zblk such that ∫ 2µ

Zblk

N

|U| dz ≥Hncrit
(3.10)

where Hncrit
is a critical non-dimensional mountain height (GFRCRIT= 0.5), µ is the standard deviation of

subgrid-scale orography, N is the vertical stability and U is the wind vector.

The deceleration of the wind due to the low-level blocking is given by

(
∂U

∂t

)

blk

=−Cd max

(
2− 1

r
, 0

)
σ

2µ

(
Zblk − z

z + µ

)0.5
(B cos2 ψ + C sin2 ψ)

U|U|
2

=A(U|U|) (3.11)

where

Cd is the low-level drag coefficient (GWAKE = 1)
σ is the mean slope of the subgrid-scale orography
γ is the anisotropy of the subgrid-scale orograph
ψ is the angle between the low-level wind and the principal axis of topography
B = 1− 0.18γ − 0.04γ2

C = 0.48γ + 0.3γ2
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r = (cos2 ψ + γ sin2 ψ)/(γ cos2 ψ + sin2 ψ)

Since the final wind tendency produced by the low-level drag parametrization is obtained from the following
partially implicit discretization of (3.11)

(
∂U

∂t

)

blk

=− β

β + 1

Un−1

2∆t
(3.12)

where β =A|Un−1|2∆t, the corresponding perturbation is

(
∂U

∂t

)

blk

=− β′

(β + 1)2
Un−1

2∆t
− β

β + 1

U′n−1

2∆t
(3.13)

Finally, the local dissipation heating is computed in the same way as in the non-linear scheme, together with
the associated perturbation.

The main tangent-linear and adjoint routines, GWDRAGTL and GWDRAGAD, are called from CALLPARTL
and CALLPARAD respectively. The depth of the low-level blocking layer is determined in GWSETUPTL and
GWSETUPAD, while the low-level blocking effect described by (3.12) is computed at the end of GWDRAGTL
and GWDRAGAD. As mentioned above, the representation of wave breaking is currently not activated in the
linearized code by setting the constant RLPDRAG to zero in SUPHLI. Note that RLPDRAG is only used when
logical LPHYLIN is .TRUE., otherwise GKDRAG is used (set to 0.3 in SUGWD).

3.6 NON-OROGRAPHIC GRAVITY WAVE DRAG

The non-linear scheme for non-orographic gravity wave (nonorog-gw) (Orr et al. (2010)) has been used
operationally in the forecast model since September 2009 (cycle 35R3). Tangent-linear and adjoint versions
were developed in order to reduce discrepancies between the full non-linear and linearized versions of the
model. This parametrization scheme is based on Scinocca (2003). The latter is a spectral scheme derived
from the Warner and McIntyre (1996) scheme which represents the three basic mechanisms of conservative
propagation, critical level filtering, and non-linear dissipation. Since the full non-hydrostatic and rotational wave
dynamics considered by Warner and McIntyre (1996) is too costly for operational models, only hydrostatic and
non-rotational wave dynamics are employed.

The dispersion relation for a hydrostatic gravity wave in the absence of rotation is

m2 =
k2N2

ω̃2
=
N2

c̃2
(3.14)

where k, m are horizontal and vertical wavenumbers, while ω̃ = ω − kU and c̃= c− U are the intrinsic
frequency and phase speed (with c being the ground based phase speed and U the background wind speed in
the direction of propagation), respectively.

The launch spectrum, which is globally uniform and constant, is given by the total wave energy per unit mass
in each azimuth angle φ following Fritts and Nastrom (1993) as

Ẽ(m, ω̃, φ) =B
( m

m∗

)s N2ω̃−d

1−
(
m
m∗

)s+3 (3.15)

where B, s and d are constants, and m∗ = 2πL is a transitional wavelength. Instead of the total wave
energy Ẽ(m, ω̃, φ), the momentum flux spectral density ρF̃ (m, ˜ω, φ) is required. This is obtained through
the group velocity rule. In order to have the momentum flux conserved in the absence of dissipative processes
as the spectrum propagates vertically through height-varying background wind and buoyancy frequency, the
coordinate framework (k, ω) is used instead of (m, ω̃) as shown in Scinocca (2003).

The dissipative mechanisms applied to the wave field in each azimuthal direction and on each model level
are critical level filtering and non-linear dissipation. After application of them, the resulting momentum flux
profiles are used to derive the net eastward ρF̄E and northward ρF̄N fluxes. The tendencies for the (u, v)
wind components are then given by the divergence of those fluxes obtained through summation of the total
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momentum flux (i.e. integrated over all phase speed bins) in each azimuth φi projected onto the east and
north directions, respectively:

∂u

∂t
= g

∂(ρF̄E)

∂p
(3.16)

∂v

∂t
= g

∂(ρF̄N )

∂p
(3.17)

where g is the gravitational acceleration and p is the pressure.

In order to eliminate the artificial noise in TL computations caused by the introduction of this scheme, it was
necessary to implement some regularizations. These included rewriting buoyancy frequency computations in the
non-linear scheme in height coordinates instead of pressure coordinates and setting increments for momentum
flux in the last three spectral elements (high phase speed) of the launch spectrum to zero.

The simplified non-linear version of the non-orographic gravity wave drag scheme can be found in
routine GWDRAG WMSS. TL and AD versions of the non-orographic gravity wave drag scheme (routines
GWDRAG WMSSTL and GWDRAG WMSSAD) are activated by setting LEGWWMS2 to .TRUE. in namelist
NAMTRAJP. The schemes would then be used with the prescribed time frequency GTPHYGWWMS. The
necessary regularizations are activated by setting logical switch LREGWWMS in namelist NAMTRAJP.

3.7 RADIATION

The radiation scheme solves the radiative transfer equation in two distinct spectral regions. The computations
for the longwave (LW) radiation are performed over the spectrum from 0 to 2820 cm−1. The shortwave (SW)
part of the scheme integrates the fluxes over the whole shortwave spectrum between 0.2 and 4.0 µm. The
scheme used for data assimilation purposes must be computationally efficient to be called at each time step
and at the full spatial resolution for an improved description of the cloud-radiation interactions during the
assimilation period (Janisková et al., 2002).

3.7.1 The short-wave radiation scheme

The linearized code for the shortwave radiation scheme has been derived from the ECMWF original non-linear
scheme developed by Fouquart and Bonnel (1980) and revised by Morcrette (1991), and which was previously
used in the operational forecast model. In this scheme, the photon-path-distribution method is used to separate
the parametrization of the scattering processes from that of molecular absorption. Upward F ↑

sw and downward
F ↓
sw fluxes at a given level j are obtained from the reflectance and transmittance of the atmospheric layers as

F ↓
sw(j) = F0

N∏

k=j

Tbot(k) (3.18)

F ↑
sw(j) = F ↓

sw(j)Rtop(j − 1) (3.19)

Computations of the transmittance at the bottom of a layer Tbot start at the top of atmosphere and work
downward. Those of the reflectance at the top of the same layer Rtop start at the surface and work upward.
In the presence of cloud in the layer, the final fluxes are computed as a weighted average of the fluxes in the
clear sky and in the cloudy fractions of the column as

Rtop = CcloudRcloud + (1 − Ccloud)Rclear (3.20)

Ttop = CcloudTcloud + (1− Ccloud)Tclear (3.21)

In the previous equations, Ccloud is the cloud fractional coverage of the layer within the cloudy fraction of the
column (depending on the cloud-overlap assumption).

The non-linear version of the shortwave radiation scheme (described in details in section IV: Physical processes
- 2.2. The pre-Cy32r2 shortwave radiation scheme) used six spectral intervals with transmission functions
derived from a line-by-line code (Dubuisson et al., 1996).

The non-linear scheme is reasonably fast for application in 4D-Var and has, therefore, been linearized without a
priori modifications. The only modification with respect to the non-linear model is using two spectral intervals
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with transmission functions (instead of six intervals used in the former operational non-linear model) in order
to reduce the computational cost.

3.7.2 The longwave radiation scheme

The longwave radiation scheme, operational in the ECMWF forecast model until June 2000, was a band
emissivity type scheme (Morcrette, 1989). This scheme has been replaced by the Rapid Radiation Transfer
Model (RRTM: (Mlawer et al., 1997) in June 2000. The complexity of the RRTM scheme for the longwave
part of the spectrum makes accurate computations expensive. In the variational assimilation framework, the
former operational scheme (Morcrette, 1989) has been linearized. In this scheme, the longwave spectrum
from 0 to 2820 cm−1 is divided into six spectral regions. The transmission functions for water vapour and
carbon dioxide over those spectral intervals are fitted using Padé approximations on narrow-band transmissions
obtained with statistical band models (Morcrette et al., 1986). Integration of the radiation transfer equation
over wavenumber ν within the particular spectral regions gives the upward and downward fluxes.

The incorporation of the effects of clouds on the longwave fluxes follows the treatment discussed by
(Washington and Williamson, 1977). The scheme calculates first upward and downward fluxes (F ↑

0 (i) and

F ↓
0 (i)) corresponding to a clear-sky atmosphere. In any cloudy layer, the scheme evaluates the fluxes assuming

a unique overcast cloud of emissivity unity, i.e. F ↑
n (i) and F ↓

n(i) for a cloud present in the nth layer of the
atmosphere. The fluxes for the actual atmosphere are derived from a linear combination of the fluxes calculated
in the previous steps with some cloud overlap assumption in the case of clouds present in several layers. Let
N be the number of model layers starting from the top of atmosphere to the bottom, Ci the fractional cloud
cover in layer i, the cloudy upward F ↑

lw and downward F ↓
lw fluxes are expressed as:

F ↑
lw(i) = (1− CCN,i)F

↑
0 (i) +

N∑

k=i

(CCi,k+1 − CCi,k)F
↑
k (i) (3.22)

F ↓
lw(i) = (1− CCi−1,0)F

↓
0 (i) +

i−1∑

k=1

(CCi,k+1 − CCi,k)F
↓
k (i) (3.23)

where CCi,j is the cloudiness encountered between any two levels i and j in the atmosphere computed using
a certain overlap assumption.

In the case of semi-transparent clouds, the fractional cloudiness entering the calculations is an effective cloud
cover equal to the product of the emissivity (εcld) due to condensed water and gases in the layer by the
horizontal coverage of the cloud cover. This is the so called effective emissivity approach. The detailed
description of this longwave radiation scheme can be found in Section IV - Physical processes (2.2. The
pre-Cy22r3 longwave radiation scheme).

To reduce a computational cost of the linearized longwave radiation for data assimilation, the transmission
functions are only computed for H2O and CO2 absorbers (though the version taking into account the whole
spectrum of absorbers is also coded). The cloud effects on LW radiation are only computed to the level defined
by the current cloud top height.

3.7.3 Cloud overlap assumptions

Cloud overlap assumptions must be made in atmospheric models in order to organize the cloud distribution
used for radiation and precipitation/evaporation computations. A cloud overlap assumption of some sort is
necessary to account for the fact that clouds often do not fill the whole grid box. The maximum-random
overlap assumption (originally introduced in Geleyn and Hollingsworth, 1997) is used operationally in the
ECMWF model (Morcrette, 2000). Adjacent layers containing cloud are combined by using maximum overlap
to form a contiguous cloud and discrete layers separated by clear-sky are combined randomly as

CC i,j = 1− (1− Ci)

j−1∏

k=i+1

[
1−max(Ck, Ck−1)

1− Ck−1

]
(3.24)

where CC i,j is cloudiness encountered between any levels i and j in the atmosphere and Ck is the cloud
fraction of the layer k located between levels k and k + 1.

IFS Documentation – Cy47r3 21



Chapter 3: Tangent-linear physics

3.7.4 Cloud optical properties

Considering the cloud-radiation interactions, it is not only the cloud fraction or cloud volume, but also cloud
optical properties that matter. In the case of shortwave radiation, the cloud radiative properties depend on
three different parameters: the optical thickness δc, the asymmetry factor gc and the single scattering albedo
ωc. They are derived from Fouquart (1987) for the water clouds, and Ebert and Curry (1992) for the ice clouds.
The optical thickness δc is related to the cloud liquid/ice water amount uLWP by :

δc = uLWP

(
ai +

bi
re

)
(3.25)

where ai and bi are defined from Ebert and Curry (1992) for ice particles and are set to respectively 0 and 3/2
for water particles. The mean effective radius of the size distribution of the cloud water droplets is defined by
re. For water clouds, re is set to 13 µm over oceans and to 10 µm over continents. When ice cloud optical
properties were initially introduced in the radiation code, the effective radius was set to 40 µm. However,
observations indicate that the effective radius of ice crystals increases with temperature, usually attributed
to accretion from falling crystals. In the current scheme, account is taken of this by using the diagnostic
formulation of Ou and Liou (1995):

re = 326.3 + 12.42× Ti + 0.197× T 2
i + 0.0012× T 3

i (3.26)

where Ti =min(T,−23oC). The effective radius is then limited within the interval 30–60 µm.

In the two spectral intervals of the shortwave scheme, the asymmetry factor gc is fixed to 0.865 and 0.910,
respectively and ωc is given as a function of δc following Fouquart (1987):

ωc1 = 0.9999− 5× 10−4 exp(−0.5δc) (3.27)

ωc2 = 0.9988− 2.5× 10−3 exp(−0.05δc) (3.28)

These cloud shortwave radiative parameters have been fitted to in-situ measurements of stratocumulus clouds
(Bonnel et al., 1983).

The optical properties of ice clouds are expressed as:

ωi = ci − dire (3.29)

gi = ei + fire (3.30)

where the coefficients are derived from Ebert and Curry (1992).

Cloud longwave optical properties are represented by the emissivity εcld related to the condensed water amount
and by the condensed water mass absorption coefficient kabs. The emissivity εcld is related to the condensed
water amount by:

εcld = 1− exp(−kabsuLWP ) (3.31)

where kabs is the condensed water mass absorption coefficient obtained following Smith and Shi (1992) for the
water clouds and Ebert and Curry (1992) for the ice clouds. uLWP is the condensed water path. kabs depends
upon the water phase (ice or water) and upon temperature. A spectral dependency can also be included.

Linearized shortwave and longwave radiation schemes are activated using the logical switch
LERADSN2=.TRUE. in the namelist NAMTRAJP.

To use the tangent-linear (TL) and adjoint (AD) versions of the shortwave radiation scheme, LERADSW2
should be set to .TRUE. in NAMTRAJP. The default value is set to .FALSE.. To decrease a computational cost
of the shortwave radiation in data assimilation, the number of spectral intervals is reduced to two (six intervals
are used in the forecast model) during minimization. The number of spectral intervals NSW is changed in
CVA1. This change also requires to read several parameters for two spectral intervals. This is done in set-up
routines SUSWN, SUCLOPN and SUAERSN.

The TL/AD longwave radiation scheme can be activated by setting LERADLW2=.TRUE. in the namelist
NAMTRAJP (the default value is .FALSE.). To use a time/memory optimized version of the code, additional
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set-up (requirement for the shorter loops inside of NPROMA by setting LOPTLWPR=.TRUE. and definition of
the number of loops inside of NPROMA, currently NLOOPLW=3) should also be included in NAMTRAJP. For
further optimization, cloud effects on the longwave radiation are only computed to the certain level determined
from the cloud top height. This is activated by LWLCLHR=.TRUE. in NAMTRAJP. Using this optimization,
computational cost is decreased, but TL and AD results are not bit reproducible. If reproducibility is required
in 4D-Var (LREPRO4DVAR=.TRUE.) the switch LWLCLHR is automatically set to .FALSE.. The same can
be achieved by using default value for LWLCLHR, which is .FALSE..

The linearized radiation schemes are called from RADINATL and RADINAAD, where the computation
of radiation fluxes is performed. Tendencies produced by the linearized longwave and shortwave radiation
are computed in RADHEATTL and RADHEATAD. All those routines are called from CALLPARTL and
CALLPARAD, respectively.

RADLSWTL and RADLSWAD are the drivers for the computation of the solar and thermal fluxes by calling
specialized routines for shortwave radiation (SWTL and SWAD) and for longwave radiation (LWTL and LWAD).

3.8 LARGE-SCALE CONDENSATION AND PRECIPITATION

The original version of the simplified diagnostic large-scale cloud and precipitation scheme currently used in
the minimization of 4D-Var is described in Tompkins and Janisková (2004). This scheme replaced the much
simpler large-scale precipitation parametrization of Mahfouf (1999), which was used in operations until Cy33r1.

The physical tendencies of temperature and specific humidity produced by moist processes on the large-scale
can be written as

∂q

∂t
= −C + Eprec +Dconv (3.32)

∂T

∂t
= L(C − Eprec −Dconv) + Lf(F −M) (3.33)

where C denotes large-scale condensation (negative if evaporation), Eprec is the moistening due to the
evaporation of precipitation and Dconv is the detrainment of cloud water from convective clouds. F and
M correspond to the freezing of rain and melting of snow, respectively. L and Lf are the latent heats of
vaporisation/sublimation and fusion, respectively.

3.8.1 Stratiform condensation

The subgrid-scale variability of humidity is assumed to be represented by a uniform distribution with half width
W . Condensation inside the model gridbox occurs whenever gridbox mean relative humidity, RH , exceeds a
critical threshold, RHcrit. The half width of the distribution is given by

W = qsat
{
1−RHcrit − κ(RH −RHcrit)

}
(3.34)

The critical relative humidity threshold, RHcrit, is assumed to be dependent on reduced pressure σ = p/psurf ,
through

RHcrit = 0.7σ(1− σ)(1.85 + 0.95(σ − 0.5)) (3.35)

κ is a coefficient that reduces the width of the uniform distribution when RH increases and it also depends
on σ as

κ=max(0, 0.9(σ − 0.2)0.2) (3.36)

Equation (3.34) together with the assumption of a uniform distribution yields the following relationships for
stratiform cloud cover, Cstrat, and cloud condensate specific ratio, qstratc :

Cstrat = 1−
√

1−RH

1−RHcrit − κ(RH −RHcrit)
(3.37)

qstratc = qsatC
2
strat

{
κ(1−RH) + (1− κ)(1 −RHcrit)

}
(3.38)

where qsat is the saturation specific humidity.

Figure Fig. 3.1 displays the variations of stratiform cloud cover, Cstrat, as a function of relative humidity for
various settings of parameter κ.
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Figure 3.1 Stratiform cloud cover, Cstrat, as a function of grid-box mean relative humidity for various
values of parameter κ (see top left legend). Relative humidity ranges between RHcrit and unity (i.e. grid
box is entirely saturated).

3.8.2 Convective contribution

The impact of convective activity on large-scale clouds, which is particularly important in the tropics and
mid-latitude summers, is accounted for through the detrainment term coming out of the convection scheme
(see Section 3.9). The additional cloud cover, Cconv, and cloud condensate, qconvc , resulting from convection
are computed as

Cconv = (1 − Cstrat)
{
1− exp

(−δuMu∆t

ρ∆z

)}
(3.39)

qconvc = δuMuq
u
l

∆t

ρ∆z
(3.40)

where δu (unitless), Mu (in kg m−2 s−1) and qul (in kg kg−1) are the detrainment rate, mass flux and cloud
liquid water content in the convective updraught, respectively. ∆t and ∆z denote the model time step and
model layer depth, while ρ is the air density.

3.8.3 Precipitation formation

The formation of precipitation from cloud condensate, qc, is parameterized according to Sundqvist et al.
(1989). The corresponding tendency writes

(∂qc
∂t

)

prec
=−C0 qc

{
1− exp

[
−
(

qc
Cqcritc

)2]}
(3.41)

where C = Cstrat + Cconv is used to obtain in-cloud condensate amounts. The critical cloud water threshold,
qcritc is set to 3×10−4 kg kg−1 if precipitation evaporation is activated, 6×10−4 kg kg−1 otherwise. The
conversion factor C0 is set to 3.33×10−4 s−1. Note that the Bergeron-Findeisen mechanism and collection
processes are disregarded in the current version of the simplified scheme.

In the code, the new cloud water content after precipitation formation is calculated as

qnewc = qc exp(−D) (3.42)

where the quantity D is computed as

D = C0 ∆t

{
1− exp

[
−
(

qc
Cqcritc

)2]}
(3.43)

It is worth noting that precipitation formed from cloud liquid water at temperatures below the freezing point
is assumed to freeze instantly, which corresponds to term F in (3.33).
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3.8.4 Precipitation evaporation

The scheme partially accounts for the overlap of precipitation with the subgrid clear-sky distribution of humidity
fluctuations (uniformly distributed). Precipitation evaporation computations are based on the mean specific

humidity, qclrprec, in the clear-sky portion through which precipitation is falling, denoted f clr
prec. Consistent with

the maximum overlap assumption made in the calculations of total cloud cover and precipitation fraction, it is
hypothesized that f clr

prec corresponds to the moistest part of the uniform distribution, as illustrated in Fig. 3.2.

Figure 3.2 Illustration of the uniform distribution of specific humidity over the model grid box with
various quantities referred to in the text.

From this, one can show that

qclrprec = qsat −
f clr
prec(qsat − q)

(1− C)2
(3.44)

where q denotes the gridbox mean specific humidity.

Precipitation evaporation is parameterized following Kessler (1969):

(∂q
∂t

)

evap
= f clr

precβ(qsat − qclrprec) (3.45)

where β is given by

β = 5.44× 10−4

{(
p

psurf

) 1
2 Pclr

5.9× 10−3f clr
prec

}0.577

(3.46)

where Pclr denotes precipitation in the clear-sky fraction of the grid box. Equation (3.45) is solved implicitly
to take into account the reduction of qsat due to evaporative cooling, which yields the moistening associated
to precipitation evaporation:

Eprec =
f clr
precβ∆t(qsat − qclrprec)

1 + β∆t
[
1 + Lv

cp

∂qsat
∂T

] (3.47)

Finally, the loss of precipitation through evaporation (in kg m−2 s−1) is simply expressed as ∆Pevap =
−Eprec∆p/(g∆t).

3.8.5 Phase partitioning

A simple diagnostic partitioning based on temperature is used to separate cloud condensate into liquid and
ice. The liquid water fraction, αl, is calculated as

αl =





0.545× tanh
[
0.17(T − 266.41) + 1

]
if T < 273.15 K

1 if T ≥ 273.15 K
(3.48)
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3.8.6 Code

The computations performed in the simplified large-scale cloud and precipitation scheme are performed
in subroutine CLOUDST, which is called from the main physics routine CALLPAR. LENCLD2 (namelist
NAMTRAJP) is the main switch that activates this simplified scheme in non-linear and linearized (tangent-
linear and adjoint) integrations. The switch LEVAPLS2 (namelist NAMTRAJP) controls the activation of the
precipitation evaporation computations (default setting is .FALSE.). The tangent-linear and adjoint versions
of the scheme are CLOUDSTTL and CLOUDSTAD, respectively.

SET-UP OF PARAMETERS

Defined in subroutines SUCLDP and SU0PHY.

3.8.7 Regularization

Special care had to be taken to avoid the spurious growth of some perturbations in the tangent-linear and
adjoint versions of the simplified large-scale cloud and precipitation code. Problematic perturbations are
artificially reduced, as described below. Switch LREGCL should be set to .TRUE. in namelist NAMTRAJP to
activate these regularizations in the linearized code. In the following, the prime symbol is employed to denote
perturbations.

CLOUDSTTL/CLOUDSTAD:

• After (3.37): C′
strat = C′

strat ×





−1.2 Cstrat + 0.94 if 0.2<Cstrat < 0.7
0.1 if 0.7≤ Cstrat < 0.95

0.1
√
(1− Cstrat)/(1− 0.95) if Cstrat ≥ 0.95

• D′ is scaled by 0.01 in autoconversion of cloud water to precipitation (3.43).

3.9 MOIST CONVECTION

The original version of the simplified mass-flux convection scheme currently used in the minimization of 4D-Var
is described in Lopez and Moreau (2005). It replaced the much simpler convective parametrization of Mahfouf
(1999), which was used in operations until Cy33r1. Through time, the original scheme from Lopez and Moreau
(2005) has been updated so as to gradually converge towards the full convection scheme used in high-resolution
10-day forecasts (see Chapter 6 of Part IV). The transport of tracers by convection has also been added.

The physical tendencies produced by convection on any conservative variable ψ (dry static energy, wind
components, specific humidity, cloud liquid water) can be written in a mass-flux formulation as Betts (1997)

∂ψ

∂t
=

1

ρ

[
(Mu +Md)

∂ψ

∂z
+Du(ψu − ψ) +Dd(ψd − ψ)

]
(3.49)

The first term on the right hand side represents the compensating subsidence induced by cumulus convection on
the environment through the mass flux, M . The other terms accounts for the detrainment of cloud properties
in the environment with a detrainment rate, D. Subscripts u and d refer to the updraughts and downdraughts
properties, respectively. Evaporation of cloud water and precipitation should also be added in (3.49) for dry
static energy, s= cpT + gz, and specific humidity, q.

3.9.1 Equations for updraught and downdraught

The equations describing the evolution with height of the convective updraught and downdraught mass fluxes,
Mu and Md (units kg m2 s−1), respectively, are

∂Mu

∂z
= (ǫu − δu)Mu (3.50)

∂Md

∂z
= −(ǫd − δd)Md (3.51)

where ǫ and δ respectively denote the entrainment and detrainment rates (in m−1). A second set of equations
is used to describe the evolution with height of any other characteristic, ψ, of the updraught or downdraught,
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namely

∂ψu

∂z
= −ǫu(ψu − ψ) (3.52)

∂ψd

∂z
= ǫd(ψd − ψ) (3.53)

where ψ is the value of ψ in the large-scale environment.

In practice, (3.50) and (3.51) are solved in terms of µ=M/Mbase
u , where Mbase

u is the mass flux at cloud
base (determined from the closure assumptions as described further down). µ is equal to 1 at cloud base
for the updraught and is set to −0.3 at the Level of Free Sinking (LFS) in the case of the downdraught.
The LFS is assumed to be the highest model level (below the level of minimum moist static energy) where a
mixture of equal parts of cloud and saturated environmental air at the wet-bulb temperature becomes negative
buoyant with respect to the environmental air. In other words, LFS corresponds to the starting level of the
downdraught. The solution profiles of µ values are eventually multiplied byMbase

u to obtain the final mass-flux
profiles.

3.9.2 Triggering of moist convection

The determination of the occurrence of moist convection in the model is based on whether a positively buoyant
test parcel starting at each model level (iteratively from the surface and upwards) can rise high enough to
produce a convective cloud and possibly precipitation. Shallow convection is first tested for by considering a
parcel rising from the lowest model level. New test parcels starting from model levels of increasing altitude
are then considered to identify deep convection, this time. This procedure is repeated until deep convection is
found or until the departure altitude of the parcel reaches about 15 km.

The initial characteristics of the test parcel originating from the lowest model level (to test for shallow
convection) are derived from surface sensible and latent turbulent heat fluxes (Js and Jq, respectively). The
initial vertical velocity of the test parcel is assumed to be equal to the convective-scale vertical velocity, w∗,
defined as

w∗ = 1.2

(
u3∗ − 1.5

gzκ

ρT

[Js
cp

+ 0.608T
Jq
Lv

])
(3.54)

where κ=0.4 is the von Karman constant and the friction velocity u∗ is set to a constant value of 0.1 m s−1.

Following Jakob and Siebesma (2003), the temperature excess, ∆Tu, and moisture excess, ∆qu, of the test
parcel with respect to the environment are prescribed as

∆Tu =−1.5
Js

ρcpw∗
and ∆qu =−1.5

Jq
ρLvw∗

(3.55)

For a test parcel initiated higher than the lowest model level (i.e. deep convection test), its initial vertical
velocity is arbitrarily set to 1 m s−1, while its temperature and moisture excesses are assumed to be

∆Tu = 0.2 K and ∆qu = 1× 10−4 kg kg−1 (3.56)

Furthermore, in the lowest 60 hPa of the atmosphere that typically correspond to the mixed-layer depth
over oceanic regions, the updraught values of the dry static energy and moisture at the departure level k
are initialized as suk = s̃k + cp∆Tu, where the tilde symbol represents a 50 hPa layer average, instead of
suk = sk + cp∆Tu as for departure levels above the 60 hPa mixed-layer.

If convection is found for the parcel initiated from the lowest level, it is classified as shallow convection if cloud
depth is lower than 200 hPa. If convection is found for a parcel initiated above the lowest model level, it is
classified as deep convection provided cloud depth exceeds 200 hPa. A grid point affected by both shallow and
deep convection is treated as deep convection. Note that mid-level convection is not distinguished from deep
convection.
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3.9.3 Entrainment and detrainment

Updraught

For deep convection, the entrainment rate to be used in (3.50) and (3.52) for the updraught is specified as:

ǫu =

{
ENTRORG2×

[
1.3−min(RH, 1)

]
min

(
1,
(
qsat

qbasesat

)3)
for z > zbase

0 otherwise
(3.57)

where ENTRORG2= 1.75× 10−4 m−1. ǫu is therefore a function of the local relative humidity in the
environment, RH, and of the ratio between the local saturation specific humidity, qsat, and its value at the
base of the convective cloud.

For shallow convection, the entrainment rate is set to twice (ENTSHALP2) the value computed in (3.57) for
deep convection.

Turbulent detrainment in the updraught is specified as

δ∗u =

{
DETRPEN2×

[
1.6−min(RH, 1)

]
for deep convection

ǫu
[
1.6−min(RH, 1)

]
for shallow convection

(3.58)

where DETRPEN2 = 0.75× 10−4 m−1.

Updraught detrainment is also assumed to occur inside the convective cloud wherever the vertical gradient of
updraught kinetic energy (∂w2

u/∂z) and buoyancy are negative (i.e. usually in the upper part of the convective
cloud). Eventually, the total detrainment rate, δu, between model levels k + 1 and k is given by

δu = max

(
δ∗u, 1−

√
(w2

u)k
(w2

u)k+1

)
(3.59)

Any remaining updraught mass flux is supposed to be detrained at the level where wu vanishes.
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Downdraught

For all types of convection, the entrainment rate in the downdraught is set to

ǫd =

{
ENTRDD2 + ǫorg for ztopde ≤ z ≤ zLFS
0 elsewhere

(3.60)

where ENTRDD2 = 3× 10−4 m−1. Subscript topde denotes the model level corresponding to the top of the
60 hPa atmospheric layer just above the surface. Note that the value of ǫd∆z is capped to a maximum of 0.3.
The organized entrainment term, ǫorg, is derived from (Nordeng, 1994) as

ǫorg =

{
g
Tv,d−Tdrd−T̄v

T̄v

}

(wLFS
d )2 −

∫ z
zLFS

{
g
Tv,d−Tdrd−T̄v

T̄v

}
dz

(3.61)

where wLFS
d is the vertical velocity in the downdraught at the LFS (set to −1 ms−1). The evaporation rate in

the downdraft at a given level corresponds to the downdraft precipitation rate and is simply given as

ed =
g

∆p
(qd − q̂d)Md (3.62)

where qd is the value of the downdraft humidity before saturation adjustment and q̂d is the humidity after the
saturation adjustment. The value of the rain water content in the downdraft used in (3.61) is estimated as
rd = ed∆p/(gMu).

Detrainment in the downdraught is defined as

δd =





1
ztopde

Mtopde

d

Md
for z < ztopde

ENTRDD2 for ztopde ≤ z ≤ zLFS
0 for z > zLFS

(3.63)

This formulation ensures a downward linear decrease of downdraught mass flux to zero at the surface.

Special case of momentum

To describe momentum exchange between the updraught and the environment, the entrainment rate is specified
as a linear combination of the entrainment and detrainment rates that are applied to all other variables (as
given in (3.57) and (3.59))

ǫmom
u =






ǫu + 2δu in all types of convection
ǫu + 3δu at the top three levels of deep convective cloud
0 otherwise

(3.64)

3.9.4 Precipitation formation

The formation of precipitation from the cloud water contained in the updraught (qul ) is parameterized according
to Sundqvist et al. (1989). The corresponding tendency writes:

(∂qul
∂z

)

prec
= −C0 CBF qul

{
1− exp

[
−
(
qul
qcritl

)2]}
(3.65)

where the critical cloud water threshold, qcritl is set to 5×10−4 (resp. 3×10−4) kg kg−1 over land (resp. sea).
Conversion factors C0 and CBF (Bergeron-Findeisen mechanism) are given by:

C0 =
1.4× 10−3

0.75wu
(3.66)

CBF =





1 + 0.5
√
min(TBF − Tice, TBF − Tu) if Tu < TBF

1 if Tu ≥ TBF

(3.67)
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where wu and Tu are the vertical velocity and the temperature of the updraught, and Tice=250.16 K (−23◦C)
and TBF=268.16 K (−5◦C).

In the code, (3.65) is integrated over each model layer during the updraught ascent. The new cloud water
content in the updraught at a given model level k after precipitation formation is expressed as a function of
the initial upraught cloud water content at model level k + 1 and of the additional amount of condensate
(Cond) produced by convection during the ascent from levels k + 1 to k (by convention, model level number
increases downwards):

(qul )k = (qul )k+1 exp(−D) + Cond
1− exp(−D)

D
(3.68)

where the quantity D is computed as

D = C0 CBF ∆z

{
1− exp

[
−
(
(qul )k+1

qcritl

)2]}
(3.69)

It is worth noting that precipitation formed from cloud liquid water at temperatures below the freezing point
is assumed to freeze instantly.

3.9.5 Closure assumptions

One needs to formulate so-called closure assumptions to compute the convective updraught mass-flux at cloud
base, Mbase

u , from quantities that are explicitly resolved by the model.

Deep convection

The closure is based on the balance between the convective available potential energy (CAPE) in the subgrid-
scale updraught and the total heat release (HEAT ) in the resolved larger-scale environment. CAPE and
HEAT are computed as vertical integrals over the depth of the convective cloud as

CAPE =

∫

cloud

g

(
T u
v − Tv

Tv
− qul

)
dp (3.70)

HEAT =

∫

cloud

g
( 1

cpT

∂s

∂z
+ 0.608

∂q

∂z

)
(µu + µd) dz (3.71)

where Tv denotes virtual temperature.

To account for non-equilibrium convective situations, an extra term corresponding to the departure of CAPE
from equilibrium is computed following Bechtold et al. (2014) as

CAPEbl =−τbl
1

T⋆

∫ pbase

psurf

∂T̄v
∂t

∣∣∣∣
bl

dp (3.72)

In (3.72), the tendency ∂T̄v/∂t|bl includes all boundary-layer processes other than convection, i.e. turbulent
diffusion, radiation and advection; therefore the corresponding tendencies must be available before calling the
convection scheme. The temperature scale T⋆ = c−1

p gH is set to 1 K and different boundary-layer time-scales
τbl are used over land and water (namely the convective turnover time-scale over land and the advective
time-scale over water)

τbl =





Hcld

wu
over land

Hbase

ūbl
over water

(3.73)

where wu is the updraught vertical velocity averaged over the cloud depth, Hcld, while Hbase is the cloud base
height and ūbl the average horizontal wind speed in the subcloud layer.

With this definition CAPEbl can also be seen as an efficient sine filter on CAPE. CAPEbl is set to zero for
convection originating above the boundary layer.
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Finally, the cloud-base mass flux for deep convection situations is given by:

Mbase
u =

CAPE − CAPEbl
HEAT × τ

(3.74)

where τ is an adjustment timescale (in seconds), which is expressed as

τ = (1 + 264/nT)Hcld/wu (3.75)

where nT denotes the spectral truncation.

Shallow convection

The closure assumption links the moist-energy excess at cloud base, δhbase, to the moist-energy convergence
inside the sub-cloud layer (SCL), δhSCL. The two latter quantities are defined as

δhbase =
[
cp(Tu − T ) + Lv(q

u + qul − q)
]

base
(3.76)

δhSCL =

∫

SCL

(
cp
∂T

∂t
+ Lv

∂q

∂t

) dp

g
(3.77)

Eventually, the cloud-base mass flux for shallow convection is given by:

Mbase
u =

δhSCL

δhbase
(3.78)

3.9.6 Flow chart

The computations performed in the simplified cumulus convection scheme are performed in the subroutines
shown in Fig. 3.3. LECUMFS and LECUMFS2 are the two main switches to activate this simplified
convection scheme in non-linear and linearized (tangent-linear and adjoint) integrations, respectively (namelist
NAMCUMFS).

CUCALLN2: Provides interface of routines for cumulus parametrization. It is called from CALLPAR and returns
updated tendencies of T, q, u, v and chemical tracers, as well as convective precipitation rates.

CUMASTRN2: Master routine for convection scheme. Also performs the convective closure and computes the
momentum transport by convective draughts.

CUININ2: Initializes variables for convection scheme (including vertical interpolation to half model levels).

CUBASEN2: Triggering of convective updraught. Calculates condensation level and sets updraught base
variables and first-guess cloud type.

CUPDRA: Computes preliminary updraught ascent to evaluate convective cloud top and base heights.

CUASCN2: Calculates actual ascent in updraught.

CUDDRAFN2: Calculates the downdraught descent.

CUFLX2: Calculates final convective fluxes and surface precipitation rates taking into account of
melting/freezing and the evaporation of falling precipitation.

CUDTDQN2: Calculates the tendencies of T and q from convection.

CUDUDV2: Calculates the tendencies of u and v from convection.

CUCTRACER2: Calculates the tendencies of tracer fields due to the transport by convection.

EXTERNALS

SATUR: Computes saturation specific humidity.

CUADJTQS: Calculates super/sub-saturation and adjusts T and q accordingly.

All subroutines listed above have tangent-linear and adjoint versions with extension TL and AD, respectively.
Of course, in the adjoint code, the calling order of the subroutines shown in Fig. 3.3 is reversed.
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CUMASTRN2 CUININ2

CUASCN2

CUDDRAFN2

CUFLX2

CUBASEN2 CUPDRA CUADJTQ(S)

CUADJTQ(S)

CUADJTQ(S)

CUCALLN2 SATUR

CUDTDQN2

CUDUDV2

CUCTRACER

Figure 3.3 Structure of the simplified convection scheme for data assimilation.

SET-UP OF PARAMETERS

Defined in subroutine SUCUM2 called from SUPHEC.

3.9.7 Regularization

Special care had to be taken to avoid the spurious growth of some perturbations in the tangent-linear and
adjoint versions of the simplified convection code. In most cases, problematic perturbations are artificially
reduced or even set to zero, as described below for each affected routine. Switch LREGCV should be set to
.TRUE. in namelist NAMCUMFS to activate these regularizations in the linearized code. In the following, the
prime symbol is employed to denote perturbations.

CUMASTRN2TL/AD:

• (δhbase)
′ is multiplied by 0.1 in computation of Mbase

u for shallow convection.

• (Mbase
u )′ is scaled by 0.2 in test whether δhSCL/(δhbase)

2 > 103.

• (Mbase
u )′ is scaled by 0.25 for both deep and shallow convection.

CUBASEN2TL/AD:

• w′
∗ = 0 if w∗ < 0.5 m s−1 (convective-scale velocity).

• Buoyancy perturbation is scaled by 0.35 in updraught initialization.

CUASCN2TL/AD:
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• (ǫorgu )′ is scaled by 0.1.

•
( w2

u(k)
w2

u(k+1)

)′
is set to 0 in organized detrainment computations.

• w′
u is set to





0 if wu < 0.1 m s−1

0.1× w′
u if wu ≥ 0.1 m s−1

•
(
qsat
qbasesat

)′
is set to 0 in turbulent entrainment computations.

• Buoyancy perturbation is scaled by 0.33 in updraught computations.

CUPDRATL/AD:

• Buoyancy perturbation is scaled by 0.33 in updraught computations.

SUCUMF2:

• Mass-flux limiter, RMFCFL2, is set to 1 to avoid instabilities in implicit solver.

3.10 TRAJECTORY MANAGEMENT

The ECMWF physics uses the tendencies from the dynamics and variables at t−∆t as input to compute
the tendencies of a given process (represented by the operator P) for a prognostic variable ψ. Therefore

ψn+1 − ψn−1
u

2∆t
= P(ψn−1

u ) (3.79)

where the variable ψu has already been updated by the dynamics and by the previous physical processes
(which are called in the following order: radiation; vertical diffusion; subgrid-scale orographic effects; moist
convection; large-scale condensation).

Thus

ψn−1
u = ψn−1 +

(
∂ψ

∂t

)

dyn

+

(
∂ψ

∂t

)

phys

(3.80)

In (3.79), if the operator P is non-linear, its linearization around the basic state ψn−1
u , will require to

store the model state at time step n− 1 (trajectory at t−∆t) as well as the tendencies produced by
the dynamics (∂ψ/∂t)dyn. The physical tendencies from the previous processes (∂ψ/∂t)phys, require an
additional call to the non-linear routines in the adjoint computations (CALLPARAD) and a local storage
of the partial tendencies.

The storage of the trajectory at t−∆t is performed in EC PHYS by the routine STORE TRAJ PHYS
called before the driver of the ECMWF physics CALLPAR. Fields are stored in grid-point space in an array
TRAJ PHYS. This array is allocated in the module TRAJ PHYSICS, where also the number of the fields
to be stored is defined.

The following three-dimensional fields are stored.

(i) For the atmosphere: the prognostic variables (wind components, temperature, specific humidity)
and their tendencies produced by adiabatic processes, the vertical velocity, the long-wave fluxes and
the solar transmissivity.

(ii) For the soil: the prognostic variables for temperature and moisture content (used to compute the
surface fluxes from the trajectory in the linear vertical-diffusion scheme).

(iii) For the tiles (i.e. vegetation (surface cover) types): u- and v-stress, surface sensible heat
flux, surface evaporation and skin temperature.

A number of two-dimensional fields used at time step t−∆t need to be stored: surface pressure, surface
fluxes, skin temperature, skin reservoir, snow reservoir, roughness lengths (mainly for the vertical diffusion).

The preliminary computations (pressure and geopotential at full and half model levels, astronomy
parameters) are performed in EC PHYS TL and EC PHYS AD before calling the driver of the tangent-linear
physics CALLPARTL or the driver of the adjoint physics CALLPARAD, and after reading the trajectory
fields from GET TRAJ PHYS.
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Chapter 4

Background terms

Table of contents
4.1 Introduction

4.2 Description of the algorithm

4.2.1 The wavelet correlation matrix and gridpoint variances

4.2.2 The multivariate error correlations between variables: ‘balance’

4.2.3 The univariate variable transform: ‘gaussianization’

4.3 Implementation

4.3.1 The Jb information structure: SPJB VARS INFO

4.3.2 User input

4.3.3 Input files

4.3.4 Initial setup

4.3.5 Change of variable

4.4 Model error background term

4.1 INTRODUCTION

The background term described in Courtier et al. (1998) was replaced in May 1997 by a new formulation
by Bouttier et al. (1997), and replaced again in April 2005 by a wavelet-based covariance model (Fisher
(2004), Fisher (2003)). The two older formulations are still part of the IFS but will not be described in this
documentation. The model error background term used in weak-constraint 4D-Var is described in the last
section.

4.2 DESCRIPTION OF THE ALGORITHM

We use the following notation.

(i) B is the assumed background error covariance matrix.
(ii) δx= (δζ, δη, δ(T, psurf), δq, δo3, . . .)

T is the low-resolution analysis increment (i.e. model field
departures from the background) of vorticity, divergence, temperature and surface pressure, specific
humidity, ozone mass mixing ratio and . . ., on model levels.

(iii) A tilde ·̃ denotes a univariate transform of the increments with more Gaussian error statistics than the
original increments.

(iv) A subscript ·u denotes a multivariate transform of the increments with less correlated error statistics
than the original increments. Dynamic and other balance relationships are included here.

The incremental variational analysis problem, (1.2) of Chapter 1, is rewritten in the space defined by the
change of variable δx= Lχ (Section 1.4) where L satisfies LLT =B so that Jb takes a simple form. In
operational practice, the initial point of the minimization is either the background (in which case δx= χ= 0)
or the control vector saved from an earlier minimization. The minimization is carried out in the space of χ.
At the end of the minimization, the analysis increments are reconstructed in model space by δx= Lχ. In
order to compare with observations, x is reconstructed using (2.4), in each simulation. Thus the variational
analysis can be performed using only transformations from minimization space to model space (CHAVARIN).
The transformation from model space to minimization space is never required. In particular, L is not required
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to be invertible, and may even be rectangular. This is the case in the “wavelet” Jb formulation described here,
where the dimension of the control vector is considerably larger than the dimension of the model state vector.

The background-error covariance matrix B is implied by the design of L, which currently has the form

L=KLu (4.1)

where K is a balance and variable transform operator going from the set of variables δx̃u to the model variables
δx.

The Lu operator defines the covariance matrix for δx̃u as

Bu = LuL
T
u (4.2)

So far, the formulation is quite general. Now, we restrict Lu to a simple form and choose a particular balance
and variable transform operator K.

The covariance matrix Bu is assumed to be block-diagonal, with no correlation between the parameters, so
that

Bu =




Cζ 0 0 0 0 0
0 Cηu 0 0 0 0
0 0 C(T,psurf )u 0 0 0
0 0 0 Cqu 0 0
0 0 0 0 Co3 0

0 0 0 0 0
. . .




(4.3)

The matrix Lu is similarly block-diagonal, with diagonal blocks Lζ , Lηu , L(T,psurf )u , Lqu , Lo3, (etc.). However,
these sub-matrices are rectangular. Each sub-matrix is treated identically in the code, except for differences in
the coefficients used to describe the covariances, so we will consider just one sub-matrix, Lζ .

4.2.1 The wavelet correlation matrix and gridpoint variances

The “wavelet” Jb formulation was devised to allow both spatial and spectral variation of the horizontal and
vertical covariances of background error. Only a brief description is given here. The reader is referred to Fisher
(2004) for a mathematical justification of the method, and also to Fisher (2003).

Simultaneous spatial and spectral variation of horizontal and vertical covariances is achieved by dividing the
control vector up into several parts, each of which corresponds to a band of total spherical wavenumbers,
n. For each band, the elements of the control vector are arranged on a linear reduced Gaussian grid that is
appropriate to the spectral truncation corresponding to the highest wavenumber in the band. The wavenumber
bands overlap, with the result that exactly two bands use linear grids corresponding to the full model resolution.
The cutoff wavenumber decreases by approximately a factor of

√
2 for each subsequent band and the number of

gridpoints reduces by a factor of two, so that the total number of elements of the control vector is approximately
three times larger than a gridpoint representation of the model fields.

Information about the vertical and horizontal correlations is stored in the form of sets of vertical covariance
matrices. There is one set of matrices for each wavenumber band, and for each band the symmetric square-
roots of these matrices are stored on a horizontal grid that is somewhat coarser than the grid used for the
band’s control vector elements.

The transformation of the control vector to model space, represented by Lζ , consists of the following steps.
First, for each wavenumber band, each vertical column of the grid is multiplied by the square-root of the
covariance matrix (from the set corresponding to the wavenumber band) that is nearest to the grid column.
Next, the control vector elements are transformed to spectral space. Since the wavenumber bands overlap,
there are now more than one (in fact, exactly two) sets of spectral coefficients for each spherical wavenumber,
n. These sets of coefficients are combined in a weighted sum to give a conventional spectral description of the
model fields. For each wavenumber, the sums of squares of the weights is equal to one. In fact, the weights are
the square-roots of triangle functions that decay to zero towards the boundaries of each wavenumber band,
and take the value one at the centre of the band. As a result, the vertical covariance associated with each
wavenumber is effectively linearly interpolated between the covariance matrices defined for each band, and the
horizontal covariance is defined by a piecewise-linear function of n.
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The final step of the transformation Lζ is to transform the spectral fields to the model grid, and to multiply
by the assumed standard deviations of background error.

4.2.2 The multivariate error correlations between variables: ‘balance’

The operator K first applies a multivariate ‘balance’ operator to obtain variables with less correlated errors,
and then a univariate variable transform is applied to obtain variables with more Gaussian error statistics. The
multivariate part of K currently accounts for dynamic balance in spectral space (nonlinear balance and quasi-
geostrophic omega equation) and thermodynamic balance between humidity and temperature in gridpoint
space (moist-adiabatic relationship in cloud covered fraction of gridbox). In general, any multivariate error
correlations will be included here.

(a) Dynamic balance in spectral space

After the control variable has been multiplied by the background error standard deviations, the contribution
due to dynamic balances is added back in spectral space, currently defined by the following transformations
for temperature, surface pressure and divergence only:

δ(T, psurf) =Nδζ +Pδηu + δ(T, psurf)u

δη = (M+Q2)δζ + δηu +Q1δ(T, psurf)
(4.4)

The matrix blocks M, N, P, Q1 and Q2 are in general not invertible, however the balance operator K is.
The M, N and P operators used to define balance have a restricted algebraic structure. M and N are both
the product of a so-called horizontal balance operator H and vertical balance operators M , N such that

M =MH

N=NH
(4.5)

The H operator is a block–diagonal matrix of identical horizontal operators transforming the spectral
coefficients of vorticity, independently at each level, into an intermediate variable Pb which is a kind of
linearized mass variable. The horizontal operators in H are defined analytically as linearized versions of the
non-linear balance equation:

∇2Pb = (f + ζ)× vψ +
1

2
∇(vψ · vψ) (4.6)

where vψ = k×∇ψ is the rotational wind.

This equation is simplified, by treating model levels as if they were pressure levels, and is linearised about the
background state to provide a linear equation for increments in Pb as a function of vorticity increments.

The matrices Q1 and Q2 are also defined analytically, as simplified and linearised versions of the quasi-
geostrophic omega equation: (

σ∇2 + f2
0

∂2

∂p2

)
ω′ =−2∇ ·Q (4.7)

(Here, Q is the Hoskins’ Q-vector: a function of temperature and rotational wind.)

Once again, model levels are treated as if they were pressure levels, and the stability parameter, σ is assumed to
be a function of pressure. This allows the equation to be separated into a set of small tri-diagonal systems that
can be solved non-iteratively to give divergence increments as a linear function of vorticity and temperature
increments.

The M , N and P operators all have the same structure: block-diagonal, with one full vertical matrix per
spectral component. The vertical matrices depend only on the total wavenumber n, and are calculated by
linear regression. (For example, in the case of the operator N , the regression is between δP and δ(T, psurf).)

Calibration of the statistically-derived operators of the balance operator is performed outside the IFS using
programs developed by Francois Bouttier.
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(b) Thermodynamic balance in gridpoint space

The contribution to humidity coming from the thermodynamic relation with temperature is now added back
in gridpoint space,

δq̃ = δq̃u +QqT
qb

qs(T b)

L

Rv(T b)2
δT (4.8)

where δq̃ = δq/qs(T
b) (see below), qs(T

b) is the saturation specific humidity at the background temperature
T b, L is the latent heat for mixed phase and Rv is the gas constant for water vapour. This relationship
between humidity and temperature changes is derived from the Clausius-Clapeyron equation which gives the
heat generated by a given phase-change of water vapour in clouds. The coefficient QqT is determined by a
statistical regression as function of the background relative humidity rhb and model level. QqT starts from
zero in cloud free grid boxes, estimated as rhb below about 80% relative humidity, and goes to unity as rhb

approaches 1. The regression coefficient QqT does resemple a simplified statistical model of cloud cover. The
humidity-temperature balance is put to zero in supersaturated (wrt mixed phase) areas and in the stratosphere
(determined by a tropopause diagnosed from the background fields).

The statistical regression for obtaining QqT is performed outside the IFS using programs developed by Eĺıas
Hólm.

4.2.3 The univariate variable transform: ‘gaussianization’

The last step is to transform any variables that have been ‘gaussianized’ back to the model variables. Currently
only humidity has been transformed to another variable to obtain more Gaussian error statistics,

δq = qs(T
b)δq̃ (4.9)

For the other variables δT = δT̃ , etc. It is important to note that this is a linear transform in the inner loops,
whereas a non-linear transform may really be what is required to account for the non-Gaussianity at this stage.
The non-linear aspect of the transform is dealt with at the outer loop level in the variational framework,
see Hólm et al. (2002) for a discussion.

4.3 IMPLEMENTATION

4.3.1 The Jb information structure: SPJB VARS INFO

The Jb code is required to be sufficiently flexible to allow the incorporation of new variables, and to allow the
choice of analysed variables to differ from the choice of model variables. This is achieved through a separation
of the arrays used by Jb from the model arrays, and is controlled by a “structure” (Fortran derived type)
containing information about the Jb variables: SPJB VARS INFO. This structure is ubiquitous throughout the
Jb code.

SPJB VARS INFO is defined in YOMJG, and is a one-dimensional array with one element for each analysed
variable. Analysed variables may be either three-dimensional (for example, vorticity) or two-dimensional (e.g.
surface pressure).

Each element of SPJB VARS INFO is a structure with the following elements:

• IGRIBCODE
• IGRIBCODE FCE
• IPT
• IPTJB
• IPTFCE
• IPTBG
• L IN SPA3
• L IN SPA2
• L IN SPGFL
• L IN GPGFL
• COR STRING
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The first two elements give the GRIB parameter codes used to identify the variable and the corresponding
background error fields. These may be different since, for fields involved in the balance operator,
IGRIBCODE FCE refers to the unbalanced component of the field, whereas IGRIBCODE refers to the full
(balanced plus unbalanced) field.

The elements IPT, IPTJB, IPTFCE and IPTBG are indexes into various arrays. IPT indicates which field in
the model’s SPA3, SPA2, SPGFL or GFL arrays corresponds to the analysed variable. IPTJB provides an index
into the (spectral) Jb arrays, SPA3JB and SPA2JB. IPTFCE locates the variable in the forecast-error array
FCEBUF, and IPTBG locates the corresponding background fields in SP7A3, GP7A3 or SP7A2.

Four logical flags, L IN SPA3, L IN SPA2, L IN SPGFL and L IN GPGFL, show where in the model’s various
arrays the variable is stored. These flags are used in conjunction with the element IPT to locate the model’s
equivalent of the analysed variable.

The final element of SPJB VARS INFO is a character string. This is used to match the variable with the
covariance matrices in the input file “wavelet.cv”.

4.3.2 User input

The initial setup of Jb is performed by SUJB. The user can input, via NAMJG, the number of analysed variables
(N SPJB VARS). GRIB parameter codes for these variables (M GRIBCODES) and for the corresponding
background error fields (M GRIBCODES FCE), and also the character strings that identify the corresponding
covariance matrices (C COR STRINGS), are input via NAMJBCODES.

These inputs are sufficient for SUJB to construct the information structure, SPJB VARS INFO. The
correspondence between analysis fields and model fields is derived by looking up the grib code of the analysed
variable in the model’s GMV and GFL structures. If none of the inputs is specified, the analysis defaults to 6
variables: vorticity, divergence, temperature, surface log-pressure, humidity and ozone.

Background error statistics for wavelet Jb may be calculated by setting LJBWSTATS to TRUE. In this case,
the code expects to read a large set of background states as spectral GRIB fields. The states are expected to
be produced by an analysis ensemble with N BGMEMBERS members and covering N BGDATES dates. Inter-
member differences are calculated for each date, and the statistics of background error are calculated from
this set of differences. (Statistics may be calculated using the “NMC method” by regarding, for example, a set
of 48-hour forecasts as member 1, and a set of 24-hour forecasts as member 2.) The filename for each state
is constructed as a six-character prefix (CINBGSTATES) followed by a string of the form “mXXX dYYY”,
where XXX is in the range 1. . . N BGMEMBERS, and YYY is in the range 1. . . N BGDATES.

Calculation of the statistics is performed in SUJBWAVGEN and associated subroutines. At the end of the
calculation, a file called “wavelet.cv” is written. Note that calculation of the Jb statistics is largely single-
threaded.

4.3.3 Input files

The IFS requires three input files to define Jb. The covariance matrices that define the vertical and horizontal
correlations are read from “wavelet.cv”. This file also contains power spectrum information which is used to
determine global mean vertical profiles of standard deviations of background error. Coefficients for the balance
operator are read from “stabal96.bal”, and standard deviations of background error are read from “errgrib”.

4.3.4 Initial setup

SUJBWAVELET0 determines the number of wavenumber bands and their wavenumber boundaries by reading
header information from the statistics file “wavelet.cv”. Next, the spherical transforms and grid layouts
corresponding to the cutoff wavenumbers for each band are defined by a call to SUJBWAVTRANS. This
information is stored in the structure GRID DEFINITION (YOMWAVELET).

Some allocation of arrays is carried out in SUALGES, and the control vector is allocated in SUALCTV.
Coefficients for the humidity variable and for the balance operators are initialised by SUJBCHVAR and
SUJBBAL, respectively.
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Most of the setup for “wavelet Jb” is performed by SUJBWAVELET and SUJBWAVALLO. The main tasks
are to read the input file, which contains the symmetric square-roots of the vertical covariance matrices. To
reduce the size of the input file, each matrix has an associated “skyline”, which identifies the first and last
element in each row (or column, since the matrices are symmetric) that is significantly different from zero.
Only the matrix elements between these limits are stored in the file.

In addition to the covariance matrices, the input file also contains power-spectrum information about the
analysed variables. This is used to construct global-mean profiles of background error standard deviation.

The covariance matrices are stored in the structure WAVELET VCORS, together with information about their
grid layout.

The final part of the Jb setup is to read the background fields (SUECGES), and to initialise the standard
deviations of background error (SUINFCE).

4.3.5 Change of variable

The change of variable, CHAVARIN, implicitly defines the background error covariance model. It consists of
three steps: CVAR2IN implements multiplication of control vector by the matrix denoted L in Section 4.2.
The transformed variables are inserted into the model’s arrays by JBTOMODEL. This may involve spectral
transforms, since the Jb variables are all spectral, whereas model variables may be held as gridpoint fields.
Finally, the background state is added to the model fields by ADDBGS.

The control vector for the minimization contains several components besides those related to Jb. Within
CVAR2IN all these components are handled, and the Jb components are dealt with by a call to CVAR3IN. In
CVAR3IN a call to SQRTBIN applies the vertical and horizontal correlations (JGCORI) and multiplies by the
standard deviations of background error (CVARGPTL). The next step in CVAR3IN is to apply the dynamic
balance operator via calls to BALNONLINTL, BALVERT and BALOMEGATL. The final step in CVAR3IN is
a call to JBCHVARI which includes the humidity related thermodynamic balance and ‘gaussianization’ change
of variable.

Note that CVARGPTL calls TRANSINV WAVELET and TRANSDIR WAVELET to perform the spectral
transforms required to convert variables between spectral and gridpoint representations. Here these routines
implement spectral transforms using the information stored in GRID DEFINITION. They do not implement
wavelet transforms.

JGCORI calls JBVCOR WAVELETIN once for each band of wavenumbers to perform the main part of the
wavelet Jb change of variable. JBVCOR WAVELETIN has three steps. First, each column of the control vector
is multiplied by the square-root of a vertical covariance matrix. This is performed by JBVCORG. Next, the
gridpoint fields are transformed to spectral space by a call to TRANSDIR WAVELET. The coefficients are
multiplied by the appropriate weights by WAVXFORM, and the weighted coefficients are added into the arrays
PSPA3JB and PSPA2JB.

The calls to JBVCORG are the most expensive part of the wavelet Jb code. The calls are performed within an
Open-MP loop over NPROMA blocks. For each grid column and each analysis variable, the nearest covariance
matrix is identified by a call to JBMATINTERP, and the column is multiplied by the square-root of the
covariance matrix. A considerable saving of computational time is achieved by taking into account the fact
that elements outside the matrix “skyline” (see above) are known to be zero.

4.4 MODEL ERROR BACKGROUND TERM

The weak-constraint 4D-Var formulation that has been implemented in the IFS introduces an additive model
error forcing term to the model prognostic equations which is active in the data assimilation cycle only:

xk =Mk,k−1(xk−1) + η for k = 1, . . . , N. (4.10)

In the current implementation (Laloyaux et al. (2020)), the model error forcing is assumed to be additive and
constant within the 12-hour assimilation window. The model error forcing is applied to temperature, vorticity,
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divergence and logarithm of surface pressure. The weak-constraint 4D-Var cost function can be written as

JWC(x0, η) =
1

2

(
x0 − xb0

)T
B−1

(
x0 − xb0

)
+

1

2

N∑

k=0

(Hk(xk)− yk)
T
R−1
k (Hk(xk)− yk)

+
1

2

(
η − ηb

)T
Q−1

(
η − ηb

)
(4.11)

where ηb is the prior estimate of the model forcing estimated from the previous assimilation cycle. This ”forcing”
formulation of weak-constraint 4D-Var estimates simultaneously the initial state x0 and model forcing η that
best fit the observations and the background information given their respective error covariances matrices.

In September 2009, weak constraint 4D-Var was introduced for the first time in the ECMWF operational
system with its implementation in the IFS cycle 35R3. It was deactivated in June 2013 in cycle 38R2 when
the vertical resolution was upgraded from 91 to 137 levels and reintroduced in July 2017 in cycle 43R3. The
model error covariance matrix Q was estimated using an ensemble of forecasts perturbed by the SPPT scheme
and was only activated above 40 hPa to prevent unacceptable degradation of the analysis quality and forecast
skill. A new formulation of the model error covariance matrix was computed from the timeseries of the model
error estimated by the 43R3 weak-constraint formulation based on the SPPT formulation. This new sample
model error covariance matrix is given by

Qη =
1

N − 1

N∑

i=1

(ηi − η̄)(ηi − η̄)T

where ηi is the model error estimated over a 12-hour assimilation window and η̄ is the average model error
estimated over the whole assimilation period. The weak-constraint 4D-Var with this model error covariance is
active above 125 hPa in the HRES system starting with IFS cycle 47R1 and has been extended to the EDA
starting with IFS cycle 47R3.
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Chapter 5

Observation-related processing (Jo)

Table of contents
5.1 Introduction

5.2 Horizontal interpolation to observation points
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5.2.2 Implementation

5.2.3 Diagnostics

5.3 Cost function
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5.3.2 Jo tables

5.4 Correlation of observation error

5.5 Variational quality control

5.5.1 Description of the method

5.5.2 Implementation

5.6 Variational bias correction

5.6.1 Variational estimation of the bias parameters

5.6.2 Modular implementation

5.1 INTRODUCTION

The observation operators provide the link between the analysis variables and the observations (Lorenc, 1986;
Pailleux, 1990). The observation operator is applied to components of the model state to obtain the model
equivalent of the observation, so that the model and observation can be compared. The operator H in (1.4)
signifies the ensemble of operators transforming the control variable x into the equivalent of each observed
quantity, yo, at observation locations. The 3D/4D-Var implementation allows H to be (weakly) non-linear,
which is an advantage for the use of satellite radiance data, scatterometer data with aliased wind direction,
cloud and precipitation data, for example. In this chapter we define the aspects of observation processing
that are integrated into the data assimilation method, particularly the calculation of departures and the Jo
costfunction, along with VarQC, VarBC and the modelling of correlated observation error. See part 1 for more
information on specific observing systems, observation operators, screening, thinning, blacklisting and other
tasks that are not tied to a particular assimilation algorithm.

5.2 HORIZONTAL INTERPOLATION TO OBSERVATION POINTS

5.2.1 Overview

Currently it is assumed that each observation equivalent can be computed from a single vertical profile of
model data. That is, it is assumed that each observation operator can be written as H =HvHh(x) where Hh

is horizontal interpolation of model data to the location of the observation.Hh is performed for all observations
within a time-slot directly after the corresponding model time step has been performed. The output of Hh is a
vertical profile of model data for each observation location. These profiles are stored in a data structure called
the GOM-arrays, and used later in the vertical part of the observation operator Hv performed in HOP, called
from OBSV. So-called two-dimensional GOM-arrays have been developed, to permit horizontal integration,
initially for limb-sounding and radio-occultation data. However, now they are also used for slant-path radiative
transfer for nadir satellite observations. The orientation and locations of the two-dimensional GOM-arrays (e.g.

IFS Documentation – Cy47r3 43



Chapter 5: Observation-related processing (Jo)

one vertical plane per observation) is then determined by the satellite viewing geometry. The Hv operator for
those data receive the vertical plane of model data as input, or in the case of slant path radiative transfer,
just the slant path itself.

Interpolation is only one of the issues involved in the GOM arrays: as important is the mapping from one
parallel representation to another. For the model fields, the globe is broken into contiguous regions that
can be handled by separate MPI tasks. In contrast, observations are scattered among MPI tasks so that
the observation processing can be load-balanced. A set of tables created by MKGLOBSTAB MODEL and
MKGLOBSTAB OB describes the mapping between the tasks where the model fields are located and the
tasks where the observations are stored. The main functions of the GOMs are:

(i) To assemble model fields including the haloes (e.g. model points owned by different MPI tasks) and
carry out the horizontal interpolation to observation locations.

(ii) To do the message-passing that sends the interpolated model fields to the right tasks for the observations.
The reverse of this process is done in the adjoint case, with special attention paid to keeping the results
bit-reproducible. Message passing can take a lot of computer time, so it has to be carefully optimised,
and the number of models fields included in the interpolation needs to be limited.

5.2.2 Implementation

For OOPS, all of the computations around the GOM arrays have been encapsulated in objects of
CLASS SUPERGOM. However, most of the GOM code is found in the lower-level module GOM MOD. Only
its public interface should be of concern to the rest of the IFS; it is designed so that its internal workings
are private. In the minimisation there are two instances of the GOM object in use: YDGOM5 for the direct
fields and YDGOM for the TL and adjoint fields. GOM variables have their own naming convention, but it
is supposed to be as close as possible to the naming in the model itself, e.g. GFL and GMV arrays. GOM
variables are indexed using a derived type called GID, defined in gom mod. For example:

• GID%T = temperature
• GID%U = u-wind
• GID%L = cloud liquid water

To add a new GOM variable, follow the checklist in the header of GOM MOD or see the GOM user guide,
RD internal memorandum RD13-199.

Configuration is done in SUGOMS. In the minimisation, this is called twice, once for the settings of the
direct model fields (i.e. GOM5) and once for the TL/adjoint fields (i.e. GOM). Inside this routine, the logical
LDOBSTL indicates whether configuration is being done for the direct or the TL/adjoint.

There are two switches, each dimensioned by observation type and GOM variable ID. The first switch activates
GOM interpolation. For example, to make the vertical profile of temperature available in the observation
operator for clear-sky satellite observations:

GOM%LINTERP(NSATEM,GID%T) = .true.

Note that NSATEM=7 is the satellite obstype. The second switch determines how the horizontal interpolation
should be done, e.g:

GOM%INTERP TYPE(NSATEM,GID%T) = GINTERP%BILINEAR 4POINT

The main interpolation options are:

• ginterp%default - One of the following two, according to the value of the IFS configuration variable
NOBSHOR:

• ginterp%bilinear 4point - Bilinear 4 point interpolation, as provided by laidliobs. Default when
NOBSHOR=201.

• ginterp%bidimensional 12point - Bidimensional twelve point interpolation as provided by laiddiobs.
Default when NOBSHOR=203.

• ginterp%nearest neighbour - Nearest neighbour interpolation, as provided by laidlic
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The default is currently driven by the setting of NOBSHOR: NOBSHOR= 203 (bi-cubic) for the trajectory
jobs, but NOBSHOR= 201 (bi-linear) in the minimisation jobs. There are also a number of specific Meteo
France interpolation options that take special account of the surface type, e,g, the presence of ocean or land
in the model grid points used in the horizontal interpolation. Much of the interpolation code is shared with
the semi-Lagrangian advection scheme of the dynamics.

In the model code, SCAN2M contains the entry point for the horizontal interpolation of model data to
observation points. CLASS SUPERGOM%MODEL IN takes the model data. It requires model fields from
both the beginning and end of the timestep; the majority from before the timestep and afterwards, a few
derived quantities that are only available from the gridpoint model. An example is the vertical profile of
precipitation fraction, which is used in the assimilation of microwave observation in all-sky conditions.

In the observation operator HOP receives the interpolated model fields in the form of a GOM PLUS derived
type. they have been unpacked from the SUPERGOM at the level of TASKOB THREAD by a call to
CLASS SUPERGOM%MODEL IN. The GOM PLUS contains a number of derived model variables that are
not supplied to MODEL IN. For example, instead of wasting computer time interpolating the pressure profile
horizontally, the GOM PLUS recreates the pressure profile from the horizontally interpolated surface pressure
and the a and b coefficients. This principle applies to other variables that can be derived from the core
atmospheric state.

5.2.3 Diagnostics

The r.m.s. of the GOM arrays is printed if the switch LPRTGOM= .TRUE., (in YOMOBS). The default
is that the print is switched on. It can be located in the log file by searching for ‘Norm of interpolation
operator (GOM)’. The printing is done in the minimisation (i) when the GOM arrays contain the background
interpolated to the observation points, (ii) when it contains ∇Jo of the first simulation, (iii) when it contains
first TL perturbations after the initial call to the minimizer and (iv) when it contains∇Jo at the final simulation.

5.3 COST FUNCTION

5.3.1 Construction

The master routine controlling the calls to the individual observation operators is called HOP. This routine
deals with all different types of observations - see part 1 for more information. After HOP, DEPARTURE JO
computes the departures and the costfunction. It calls HDEPART, to calculate the departure z as

z= yo −Hx+ (yo −Hxb
HR)− (yo −HxbLR) (5.1)

where the two terms in brackets have been computed previously: the first one in the high resolution trajectory
run and the second one in the LOBSREF call, described in Section 2.2.

If LOBSTL then z is
z= yo −Hδx+ (yo −HxbHR)− yo (5.2)

which simplifies to what has been presented in Section 1.4.

Bias correction is also carried out at this point by subtracting the bias estimate (kept in the NCMTORB-word
of ODB) from the calculated departure.

Finally the departure is divided by the observation error σo (NCMFOE in ODB) to form the normalized
departure.

Departures of correlated data are multiplied by R−1, see Subsection 5.4. The division by σo has already taken
place in HDEPART, so R at this point is in fact a correlation (not a covariance) matrix.

The cost function is computed in HJO, as
Jo = zTz (5.3)

for all data, even for SCAT data when LQSCAT= .TRUE., as in current 4D-Var with quadratic cost-function.
When LQSCAT = .FALSE. (as in current 3D-Var configuration) the SCAT cost function combines the two
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ambiguous winds (subscripts 1 and 2) in the following way (also in HJO),

JSCAT =

[
J4
1J

4
2

J4
1 + J4

2

]1/4
(5.4)

These expressions for the cost function are modified by variational quality control, see Section 5.5. The cost-
function values are store in two tables, as detailed in Subsection 5.3.2.

HJO, also stores the resulting effective departure in the NCMIOM0-word of ODB, for reuse as the input to
the adjoint. The effective departure is the normalized departure after the effects of (vertical) observation error
correlation and quality control have been taken into account, zeff = zTR−1[QCweight], where the QC-weight
will be defined below, Section 5.5 .

In the adjoint routine DEPARTURE JOAD the input to the adjoint observation operators (the effective
departure) is read from the ODB. The expression for the gradient (with respect to the observed quantity)
is then simply

∇obsJo =−2zeff/σo (5.5)

which is calculated for all data. The adjoint code closely follows the structure of the direct code, with the
adjoint operators applied in the reverse order.

5.3.2 Jo tables

There are two different tables for storing the Jo values. One is purely diagnostic (JOT, yomcosjo.h), and is
used for producing the printed Jo tables in the log-file (PRTJO called rom EVCOST). JOT is a FORTRAN90
derived type with items containing cost function value, data count, observation error, background error and
codetype, for each observation type and for each observed variable (as defined by NVAR above).

The actual Jo-table is called FJOS (yomcosjo). FJOS is indexed by the absolute observation number,
iabnob =MABNOB(jobs, kset), so that the contributions from each individual observation can be summed
up in a predetermined order (in EVCOST), to ensure reproducibility, irrespective of number of processors and
tasks.

5.4 CORRELATION OF OBSERVATION ERROR

The observation error is assumed uncorrelated (i.e. the matrix R is diagonal) for all data. Optionally, by setting
LTC=.true., time-sequences of SYNOP/DRIBU surface pressure and height data (Järvinen et al., 1999) will
be time correlated. For radiance observations, the option exists to take inter-channel error correlations into
account, through the variable LIC OBSERR COR RAD1C set in DEFRUN.

The serial correlation for SYNOP and DRIBU data is modelled by a continuous correlation function ae−b(t1−t2)
2

where a=RTCPART= 0.3 and b=RTCEFT= 6.0 hours, under the switch LTC (namjo). The remaining
fraction 1− a of the error variance is assumed uncorrelated (see COMTC).

When R is non-diagonal, the ‘effective departure’ zeff is calculated by solving the linear system of
equations zeffR for zeff , using LAPACK routines SPOTRF (Choleski decomposition) and SPOTRS (backwards
substitution), as is done in COMTC.

A similar approach is taken to account for inter-channel error correlations if LIC OBSERR COR RAD1C is
activated for a radiance datum. The relevant routine is INTERCHAN OBSERR COR, called in HJO. For
inter-channel error correlations to be active, the correlation information has to be provided as part of an
instrument-specific error file which is read in the routine DEFRUN.

5.5 VARIATIONAL QUALITY CONTROL

The variational quality control, VarQC, has been described by Andersson and Järvinen (1999). It is a quality
control mechanism which is incorporated within the variational analysis itself. A modification of the observation
cost function to take into account the non-Gaussian nature of gross errors, has the effect of reducing the analysis
weight given to data with large departures from the current iterand (or preliminary analysis). Data are not
irrevocably rejected, but can regain influence on the analysis during later iterations if supported by surrounding

46 IFS Documentation – Cy47r3



Part II: Data Assimilation

data. VarQC is a type of buddy check, in that it rejects those data that have not been fitted by the preliminary
analysis (i.e. the current state vector), often because it conflicts with surrounding data.

5.5.1 Description of the method

The method is based on Bayesian formalism. First, an a priori estimate of the probability of gross error P (G)i
is assigned to each datum, based on study of historical data. Then, at each iteration of the variational scheme,
an a posteriori estimate of the probability of gross error P (G)f is calculated (Ingleby and Lorenc, 1993), given
the current value of the iterand (the preliminary analysis). VarQC modifies the gradient (of the observation
cost function with respect to the observed quantity) by the factor 1− P (G)f (the QC-weight),which means
that data which are almost certainly wrong (P (G)f ≈ 1) are given near-zero weight in the analysis. Data
with a P (G)f > 0.75 are considered ‘rejected’ and are flagged accordingly, for the purpose of diagnostics and
feedback statistics, etc.

The normal definition of a cost function is
Jo =− ln p (5.6)

where p is the probability density function. Instead of the normal assumption of Gaussian statistics, we assume
that the error distribution can be modelled as a sum of two parts: one Gaussian, representing correct data and
one flat distribution, representing data with gross errors. We write

pi =Ni[1− P (Gi)] + FiP (Gi) (5.7)

where subscript i refers to observation number i. N and F are the Gaussian and the flat distributions,
respectively, given by

Ni =
1√
2πσo

exp

[
−1

2

(
yi −Hx

σo

)2]
(5.8)

Fi =
1

Li
=

1

2liσo
(5.9)

The flat distribution is defined over an interval Li which in (5.9) has been written as a multiple of the
observation error standard deviation σo. Substituting (5.7) to (5.9) into (5.6), we obtain after rearranging the
terms, an expression for the QC-modified cost function JQC

o and its gradient ∇JQC
o , in terms of the normal

cost function JN
o

JN
o =

1

2

(
yi −Hx

σo

)2
(5.10)

JQC
o =− ln

(
γi + exp[−JN

o ]

γi + 1

)
(5.11)

∇JQC
o =∇JN

o

(
1− γi

γi + exp[−JN
o ]

)
(5.12)

∇JQC
o =∇JN

o wi (5.13)

where

wi = 1− γi
γi + exp[−JN

o ]
(5.14)

γi =
P (Gi)/(2li)

[1− P (Gi)]/
√
2π

(5.15)

5.5.2 Implementation

The a priori information, i.e. P (G)i and li, is set during the screening, in the routine HJO, and stored in the
NCMFGC1 and NCMFGC2-words of the ODB. Default values are set in DEFRUN, and can be modified by
the namelist namjo. VarQC can be switched on/off for each observation type and variable individually using
LVARQC, or it can be switched off all together by setting the global switch LVARQCG= .FALSE.. Since an
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as good as possible ‘preliminary analysis’ is needed before VarQC starts, it is necessary to perform part of the
minimization without VarQC, and then switch it on.

HJO computes JQC
o according to (5.11) and the QC-weight, wi, according to (5.14).

The 3D-Var assimilation system (Chapter 3) can handle non-quadratic cost functions because it is using the
M1QN3 minimization routine. This allows VarQC to be activated after NITERQC (40 by default) iterations
during the minimization process. The 4D-Var assimilation system (Chapter 2) by default use a conjugate
gradient minimization method that requires a strictly quadratic cost function. So in 4D-Var we use a quadratic
formulation of VarQC, controlled by LQVARQC (default .TRUE.).

In the non-quadratic formulation the QC-weight, wi, (5.14) is updated for each simulation based on the
normalized departure values calculated from the latest model state. However, to obtain a strictly quadratic
cost function the QC-weight is not allowed to change during the minimisation process, because the cost
function shape would then change. Also, when LQVARQC= .TRUE. it is not possible to activate VarQC in
the middle of the minimisation process, i.e. NITERQC MUST be zero, because this would otherwise introduce
a sudden jump in the cost function. Therefore, in 4D-Var assimilations VarQC is not applied during the first
outer-loop but only for the second (and possibly subsequent) outer-loop iteration(s).

The quadratic VarQC implementation satisfies the quadratic constraint by calculating the QC-weight, wi,
based on the high resolution trajectory fields and using this constant weight during the next minimisation
step. The cost function value is increased/reduced for each simulation during the minimisation by a factor
w∗
i (norm dep LR-norm dep HR), linearized in the vicinity of the high resolution cost function at norm dep HR.

For the minimisation the most important input is the modification of the gradient by the weight wi. During the
trajectory run the high resolution departure is stored in ROBODY(..,MDBIFC1(NUPTRA+1)) in HDEPART.
For each simulation during the next minimisation step the high resolution departure is read and normalized
by the final observation error in HJO HJO loop 1.3.2. This is used as input to the VarQC weight calculations
(loop 1.5.3–1.5.4 in HJO). It is assured that the same weight is used for each simulation in the minimisation if
LLQVARQC MIN = .TRUE., because ZFJOS HR(JOBS,JBODY) is constant during the minimisation. The
cost function value is calculated like Jo varqc LR = Jo varqc HR + w∗

i (norm dep LR-norm dep HR).

The a posteriori probability of gross error is stored in the ODB and passed to BUFR feedback. Storing in ODB
is done at the final simulation of the last minimisation if LQVARQC= .F., but done during the final trajectory
run if LQVARQC= .TRUE. in order to use the updated final trajectory for calculating the QC-weight based
on final high-resolution analysis values. This is done in HJO – see Subsection 5.3.

Variational quality control for time correlated observations: The same method as above is (by default) applied
for time correlated observations (LTC = .TRUE.). Here the high resolution departure values are required for
all the time correlated observations. This is achieved by storing the normalized high resolution departures in the
array RTCNDPHR in HJO and reading them in COMTC. They are then copied to local array ZTCNDPHR W
and then used instead of the low resolution departures in the calculation (overwriting ZOM1DEP W by high
resolution values).

5.6 VARIATIONAL BIAS CORRECTION

Variational bias correction (VarBC, Dee (2004)) of observations was first introduced into the IFS in Cy31r1.
VarBC works by including additional degrees of freedom (bias parameters) in the observational term of the
4D-Var cost function to account for possible systematic errors in selected observations and/or observation
operators. The systematic errors (or biases) are represented by linear predictor models, which can be formulated
separately for different groups of observations.

Configuration of the VarBC system involves specifications of:

observation classes: types of observations subject to VarBC (e.g. clear-sky radiances;
aircraft temperatures)

data groups: subsets within each class that share the same bias model (e.g.
individual radiance channels; reports from specified aircraft types)

bias predictors: information used to explain the bias in a given data group (e.g. layer
thickness; scan position; solar elevation)
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The bias correction b for an observation belonging to data group j is defined as

b=
Nj−1∑

i=0

βji p
j
i (5.16)

where the pji are the N j bias predictors associated with the group. The bias parameters βji are adjusted by
the variational analysis. By convention p0 ≡ 1, representing a globally constant component of bias, but the
other predictors can be flexibly defined. They may depend on properties of the observed atmospheric column,
on the state of the instrument, or on any other available information.

If Ng is the number of data groups, then the total number Np of bias parameters to be estimated is

Np =

Ng∑

j=1

N j (5.17)

The number N j of predictors used for each data group is typically between 1 and 10. As of Cy36r1, the
number Ng of data groups subject to variational bias correction is approximately 103, and the total number
Np of bias parameters used for this purpose is slightly less than 104.

5.6.1 Variational estimation of the bias parameters

Including the bias parameter vector β = {βji , i= 1, . . . , N j ; j = 1, . . . , Ng} in the variational analysis replaces
equation (1.2) by

J(δx, δβ) =
1

2
δxTB−1δx+

1

2
δβTB−1

β δβ +
1

2
(Hδx+ b(β) − d)TR−1(Hδx+ b(β) − d) (5.18)

where δβ = β − βb with βb a prior estimate, usually the result of the previous analysis cycle. The matrix Bβ

controls the adaptivity of the bias parameter estimates. We use a diagonal Bβ with elements

σ2
βj

i

= (σj)2/M j, i= 1, . . . , N j ; j = 1, . . . , Ng (5.19)

where σj is an estimate of the error standard deviation for a typical observation in group j, and M j is a
positive integer. This formula effectively provides the same weight to the prior estimate for βji as it would to
M j newly available observations.

The number M j in (5.19) is a stiffness parameter for the bias estimates associated with a data group. It
should be interpreted as the minimum sample size required to allow significant adjustment of the estimates
by VarBC. For satellite observations, the number of data per analysis cycle is typically much larger than the
number of bias parameters to be estimated. The background term in that case does not strongly affect the
bias estimates unless M j is extremely large. For data groups with typically small sample sizes, such as station
data, the effect of the stiffness parameter M j is mainly to control the time scale over which bias estimates
are allowed to vary.

Preconditioning of the joint minimisation problem (5.18) is based on a separately defined change-of-variable
for the bias control parameters, and is described in Dee (2004).

5.6.2 Modular implementation

VarBC is encapsulated in a Fortran object of class CLASS VARBC that is instantiated during IFS setup by
calling the method SETUP TRAJ or SETUP MIN. These routines read in the VARBC.cycle file which contains
the latest VARBC coefficients and auxiliary data including the background errors. Then, the VarBC object can
be used to perform all the necessary VarBC actions, such as the change-of-variable between bias parameter
space and control vector space that represents B−1

β , or to generate the bias correction b(β, p), given some
predictors p that are computed in the observation operator. This design will be refined further in the future
to more clearly separate the change-of-variable and control vector parts from the rest.

VarBC design is modular, with separate code modules for different observation classes. All information needed
by VarBC that is specific to the observations contained in a class is handled by the corresponding class module.
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This includes, for example, the exact definition of a data group, the choice of predictors for each group, the
option for initialising bias parameters for new groups, specification of the stiffness parameters, and various
other configuration choices. These are examples of class modules (more exist now):

varbc rad clear-sky radiance data
varbc allsky all-sky radiance data
varbc to3 ozone layer concentrations (MACC ozone, greenhouse gases, and aerosol

optical depth available in Cy36r4)
varbc tcwv total column water vapour data from MERIS
varbc airep temperature reports from aircraft (available in Cy36r4)

Several generic modules provide functions that are essentially independent of the type of data involved. These
are:

varbc setup to configure VarBC, administer VarBC data structures, set up
preconditioning, provide I/O functions

varbc pred to evaluate predictors
varbc eval to evaluate the bias models, including TL and AD

Communication between the various class-dependent code modules on the one hand and the generic modules
on the other is accomplished by assigning a unique key to each data group within a class. This key is a
character string created by the class module, which encodes into the key whatever information it needs in
order to uniquely identify the observations for that group. In the case of satellite radiance data, for example,
the key contains the satellite id, sensor number, and channel number associated with the group. Only the class
module needs to be able to decode the key. The generic modules communicate with the class modules simply
by reference to the keys. VarBC assigns a unique integer (index) to each key, and requests the class modules to
store this index in the ODB at varbc idx@body. From that point on, the IFS recognises observations that are
subject to VarBC simply by the presence of a positive VarBC index, and handles all VarBC-related operations
in essentially the same way, independently of the type of data involved, by reference to its VarBC index.

Each class module must have the following public interfaces to serve the generic code modules (”varbc xxx”
denotes the class module name):

varbc xxx config to configure itself
varbc xxx groups to identify the available data groups in its class
varbc xxx groupdescr to provide a printable description for a data group
varbc xxx varbcix to store the assigned varbc indices for all its data groups in the ODB
varbc xxx pred to provide configuration parameters needed to define and/or initialise the

bias predictor models
varbc xxx min to provide configuration parameters for the minimisation
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Chapter 6

Background, analysis and forecast errors

Table of contents
6.1 Nomenclature

6.2 Input and ‘massaging’ of background errors

6.3 Diagnosis of background-error variances

6.4 Calculation of eigenvalues and eigenvectors of the Hessian

6.5 The preconditioner

6.6 Calculation of analysis-error variances

6.7 Calculation of forecast-error variances

6.8 Diagnosis of background error variances through the EDA

6.9 Diagnosis of online background-error covariances

6.1 NOMENCLATURE

The calculation of standard deviations of background errors is unfortunately an area of confusing nomenclature.
“Standard deviations of background error” is quite a mouthful, so they are generally referred to simply as
‘background errors’ (likewise for standard deviations of analysis errors and forecast errors). Although inaccurate,
this nomenclature has been adopted in the following for the sake of brevity.

A second source of confusion is that the terms ‘background error’ and ‘forecast error’ are often used
interchangeably. This confusion has even crept into the code, where the buffer which contains the standard
deviations of background error is called FCEBUF. Such confusion is clearly unwise when discussing their
calculation. In the following, we describe the processing of error variances during a single analysis cycle. The
term ‘background error’ will be used exclusively to refer to the standard deviations of background error used
in the background cost function. The background errors are an input to the analysis. The term ‘forecast error’
will refer to an estimate of the standard deviation of error in a short-term forecast made from the current
analysis. The forecast errors are calculated by inflating an estimate of the standard deviation of analysis error,
and are an output from the analysis system. They provide background errors for the next analysis cycle.

6.2 INPUT AND ‘MASSAGING’ OF BACKGROUND ERRORS

Background errors for use in Jb are initialised by a call to SUINFCE. This is part of the Jb set-up, which is
described in Subsection 4.3.3.

As with most of the Jb code, the structure SPJB VARS INFO, described in Subsection 4.3.1, is important. At
the beginning of SUINFCE, this structure is examined to determine which variables are present in Jb, and to
locate the corresponding profiles of globally-averaged background error. Next, a call to IO INQUIRE is made
to determine which fields are present in the input file (filename errgrib), and to find details of their grid
resolution, etc.

The fields of background error are read by a call to IO GET, and interpolated to the model’s horizontal grid
using SUHIFCE.

Vertical interpolation requires knowledge of the background surface pressure. In addition, one method of
constructing humidity background errors requires knowledge of background values of specific humidity and
temperature. So, background fields in grid space are obtained either by a call to GET TRAJ GRID, or by
transforming the corresponding spectral fields.
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Before the vertical interpolation takes place, the locations of the different Jb variables within the background
error array FCEBUF are found by a set of calls to the internal subroutine LOOKUP, which interrogates
SPJB VARS INFO.

The large loop “VARIABLE LOOP” in SUINFCE loops over the fields of the input file. Each field is interpolated
onto model levels by a call to SUVIFCE (unless it is a surface field), and either stored in FCEBUF or used
to construct a field in FCEBUF. (For example, if background errors for vorticity are not available in the input
file, they are constructed by scaling zonal wind errors.)

Background errors for the humidity variable are treated as a special case, and generated after the main
loop over variables by a call to SUSHFCE. The calculation of background errors for humidity is described in
Subsection 4.3.4.

Next, one of two routines is called. SUMDFCE calculates a vertically averaged ‘pattern’ of background error.
This is required if the background errors are to be represented as a product of a vertical profile of global
mean error and a horizontal pattern. The pattern is stored in FGMWNE. (Note in particular that SUMDFCE
is called if horizontally-constant background errors are requested by setting LCFCE. In this case, all elements
of FGMWNE are set to one.)

Alternatively, SUPRFFCE is called to calculate global mean profiles of the input background errors. This is
the default. The profiles are stored in FCEIMN.

The final step in processing the background errors is performed by SUSEPFCE. This modifies the background
errors in one of two ways. If separable background errors have been requested, the contents of the background
error buffer are replaced by the product of the vertical profile stored in FCEMN and the horizontal pattern
stored in FGMWNE. Otherwise, the background errors for each variable at each level are multiplied by the
ratio of the corresponding elements of FCEMN and FCEIMN. The result of this operation is to adjust the
global mean profiles of background error to match those stored in FCEMN.

6.3 DIAGNOSIS OF BACKGROUND-ERROR VARIANCES

Background error variances for use in Jb and for observation first guess checks can be computed in two
distinct ways. If an Ensemble of Data Assimilations (EDA) is available, background errors can be directly
diagnosed from the EDA background forecasts - section 6.8. EDA-derived errors will be used if the logical
switch LEDA ERRORS IN is true. Otherwise they can be estimated by subroutine BGVECS, which is called
from FORECAST ERROR. One of two methods may be employed, depending on whether NBGVECS is equal
to, or greater than, zero. In either case, the estimated variances of background error are stored in the analysis
error buffer, ANEBUF (in YOMANEB).

If NBGVECS is zero, then background errors for variables which are explicitly present in the background error
buffer, FCEBUF, are copied into ANEBUF and squared. Errors for those variables whose background errors
are defined implicitly through the change of variable are estimated using simple scaling of appropriate explicit
errors. This scaling is performed by a call to ESTSIGA.

If NBGVECS is non-zero, then the variances of background error are estimated using randomization. This
method assumes that the change of variable transforms the background error covariance matrix into the identity
matrix. A sample of NBGVECS vectors drawn from a multi-dimensional Gaussian distribution with zero mean
and identity covariance matrix is generated by calls to RANDOM CTLVEC. These vectors are transformed
to the space of physical variables by CHAVARIN. The transformed variables form a sample drawn from the
distribution of background errors. A call to STEPOTL(‘0AA00A000’) transforms each vector to gridpoint
space and accumulates the sums of squares in ANEBUF. In addition, observation operators are applied to the
random variables to generate samples of background error in terms of radiance, for example. The sums of
squares of these observation-space variables are also accumulated to provide estimates of background error in
observation space.

Finally, the sums of squares of random vectors are divided by the number of vectors by a call to SCALEAE to
provide a somewhat noisy estimate of the variances of background error actually used in the analysis. Noise
may be filtered by a call to FLTBGERR, which transforms the variances to spectral coefficients, multiplies each
coefficient by cos2(min((n/NBGTRUNC), 1)π/2), and then transforms to grid space. The default is to filter
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with a very large value of NBGTRUNC. Effectively, the background errors are simply spectrally truncated.
It is highly recommended that the filtering is performed, since it prevents a grid-scale numerical instability
which occurs when the error growth model introduces spatial features which cannot be resolved by the spectral
control variable.

Flow-dependent background errors, valid at the end of the window may be generated by setting LBGM (namvar)
to TRUE. In this case, the tangent linear model is used to propagate each of the random background vectors
to the end of the analysis window. The eigenvectors of the analysis Hessian (see the next section) are also
propagated in time, by a call to CNT3TL from XFORMEV. For the normal case, LBGM is false, and background
and analysis errors are estimated at the beginning of the analysis window, and propagated using the simple
error-growth model described in section 6.7.

The background errors diagnosed by BGVECS may be written out for diagnostic purposes by setting LWRISIGB.
The errors are written by a call to WRITESD (called from FORECAST ERROR).

6.4 CALCULATION OF EIGENVALUES AND EIGENVECTORS OF
THE HESSIAN

The second stage in the calculation of analysis errors is to determine eigenvalues and eigenvectors of the Hessian
of the cost function. This is done using a combined Lanczos and conjugate-gradient algorithm, CONGRAD,
called from CVA1 under the control of LAVCGL. The reader is referred to Fisher (1998, ECMWF Seminar
proceedings pp364-385) for a detailed description of the CONGRAD algorithm. Note that CONGRAD requires
that the cost function is strictly quadratic.

CONGRAD starts by transforming the initial control variable and gradient to a space with Euclidian inner
product. Typically, this transformation is simply a multiplication by YRSCALPSQRT, but may also involve
preconditioning via calls to PRECOND. The transformed initial gradient is normalized to give the first Lanczos
vector. The Lanczos vectors are stored in the array YL ZCGLWK.

Each iteration of the conjugate-gradient/Lanczos algorithm starts by calculating the product of the Hessian
and the latest search direction. This is calculated as J ′′d = [∇J(x0 + d)−∇J(x0)], where d” is a vector of
unit length. This finite difference formula is exact, since the cost function is quadratic.

The main iteration loop calculates the sequence of gradients, and the sequence of coefficients according to
the the Lanczos recurrence. The sequence of control vectors that partially minimize the cost function is not
explicitly generated. Thus, unlike e.g. M1QN3, the control vectors passed to SIM4D do not lie on a path
towards the minimum, and the gradients returned by SIM4D do not, in general, decrease as the minimization
proceeds. The optimal control vector and the corresponding gradient can, however, be determined as a linear
combination of the Lanczos vectors.

In general, only the gradient is calculated at each iteration. It is required in order to monitor the convergence
of the minimization. Optionally, by setting L CHECK GRADIENT, the optimal point is also calculated, and
an additional call to SIM4D is made to evaluate the true gradient at the optimal point. This is useful as a
means of checking the assumption of linearity on which the algorithm is based. However, it doubles the cost
of the minimization.

The Lanczos algorithm produces a sequence of coefficients, which are stored in the arrays ZDELTA and ZBETA.
These correspond to the diagonal and sub-diagonal of a symmetric tri-diagonal matrix. The calculation of the
optimal point and the corresponding gradient require the solution of a linear system involving this matrix. This
is performed by the internal subroutine PTSV, which is a simple interface to the LAPACK routine SPTSV. In
addition, the eigenvalues of the tri-diagonal matrix are approximations to eigenvalues of the Hessian of the
cost function. These approximate eigenvalues are calculated every iteration, together with bounds on their
accuracy. As soon as the leading eigenvalue has converged sufficiently, it is monitored to check that it does
not increase. This provides a sensitive test that the algorithm is behaving correctly. Any increase in the leading
eigenvalue provides an early indication of failure (for example, due to a bad gradient) and the algorithm is
immediately terminated. The calculation is not aborted, since the test detects the failure of the algorithm
before the converged eigenvalues and eigenvectors become corrupted.
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A call to PREDICT RUNTIME is made every iteration. This subroutine attempts to predict how many iterations
will be required to minimize the cost function, and how long this is likely to take. These predictions are written
to STDERR.

After the last iteration, the converged eigenvectors of the Hessian are calculated by calling WREVECS.
Note that the criterion used to decide which eigenvalues have converged is relaxed at this stage to
‖J ′′v − λv‖ < ε‖v‖, where ε is given by EVBCGL. The default value for EVBCGL is 0.1.

Next, if required, upper and lower bounds for N − pT(J”)−1p (where N is the dimension of the control vector)
and −pT log2[(J”)

−1]p are calculated using the algorithm of Golub and Meurant (1994). These quantities
may be used to evaluate the information content of the analysis using the switch L INFO CONTENT.

Finally, CONGRAD calculates the the optimal control vector and gradient as a linear combination of the
Lanczos vectors, and transforms them from the Euclidian space used internally to the usual space of the
control variable.

6.5 THE PRECONDITIONER

CONGRAD allows the use of a preconditioner. The preconditioner is a matrix which approximates the Hessian
matrix of the cost function. The preconditioner used in CONGRAD is a matrix of the form

I+

L∑

i=1

(µi − 1)wiw
T
i (6.1)

where the vectors wi are orthogonal. The pairs {µi,wi} are calculated in PREPPCM, and are intended to
approximate some of the eigenpairs (i.e. eigenvalues and associated eigenvectors) of the Hessian matrix of the
cost function. They are calculated as follows.

A set of L vectors, ui, is read in using READVEC. These vectors may be in the space of the control vector
(if LEVECCNTL is true), or in model space (if LEVECCNTL is false). In the latter case, the vectors are
transformed to control space by calls to CHAVAR.

The vectors (transformed, if necessary to control space) are assumed to satisfy

I−
L∑

i=1

uiu
T
i ≈ (J ′′)−1 (6.2)

Vectors which meet this criterion can be written out from an earlier forecast error calculation by setting
LWRIEVEC.

The input vectors are not necessarily orthogonal, whereas the preconditioner requires a set of orthogonal
vectors. Let us denote by U the matrix whose columns are the vectors ui. A sequence of Householder
transformations is now performed to transform U to upper triangular. Let us represent this sequence of
Householder transformations by the matrix Q. Then QU is upper triangular, which means that (QU)(QU)T

is zero except for an L× L block in the top left hand corner.

It is clear that (QU)(QU)T has only L non-zero eigenvalues. Moreover, the non-zero eigenvalues are the
eigenvalues of the L× L block matrix, and the eigenvectors of (QU)(QU)T are the eigenvectors of the
block matrix, appended by zeroes. These eigenvalues and eigenvectors are calculated by a call to the LAPACK
routine SSYEV.

Now, since Q is an orthogonal matrix, we have QQT = I. So, we may write (6.2) as

I−QT(QU)(QU)TQ≈ (J ′′)−1 (6.3)

Let us denote the eigenpairs of (QU)(QU)T by {ρi, vi}. Then we may write (6.3) as

I−
L∑

i=1

ρi(Q
Tvi)(Q

Tvi)
T ≈ (J ′′)−1 (6.4)
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The orthogonality of Q and the orthonormality of the eigenvectors vi, means that the vectors QTvi are
orthonormal. They are, in fact, the required vectors, wi of the preconditioner matrix.

Inverting (6.4) gives

I−
L∑

i=1

1

ρi
wiw

T
i ≈ J ′′ (6.5)

Defining µi = 1− 1/ρi gives the required approximation to the Hessian matrix.

The preconditioner vectors are sorted in decreasing order of µi, and all vectors for which µi < 1 are rejected.
These vectors cannot be good approximations to eigenvectors of the Hessian matrix, since the eigenvalues of
the Hessian matrix are all greater than or equal to one. A final refinement to the calculation is to reduce large
values of µi to a maximum of R MAX CNUM PC (typically 10). This was found to be necessary in practice
to avoid ill-conditioning the minimization.

The numbers µi are stored in RCGLPC. The vectors, wi are stored in YVCGLPC, and the total number of
preconditioner vectors is stored in NVCGLPC.

Application of the preconditioner is straightforward, and is performed by subroutine PRECOND. This routine
can also apply the inverse, the symmetric square root, or the inverse of the symmetric square root of the
preconditioner matrix. Application of the latter matrices relies on the observation that if

M= I+

L∑

i=1

(µi − 1)wiw
T
i (6.6)

with orthonormal wi, then the expressions for M−1, M1/2 and M−1/2 result from replacing µi in (6.6) by
1/µi,

√
µi and 1/(

√
µi) respectively.

6.6 CALCULATION OF ANALYSIS-ERROR VARIANCES

The eigenvectors and eigenvalues of the Hessian matrix calculated by CONGRAD are passed to XFORMEV,
which uses them to estimate the analysis-error variances.

The first step is to undo any preconditioning. If preconditioning has been employed, then the eigenvectors
and eigenvalues produced by CONGRAD provide an approximation to the preconditioned Hessian,
M−1/2J ′′M−1/2, of the form

M−1/2J ′′M−1/2 ≈ I+

K∑

i=1

(λi − 1)viv
T
i (6.7)

Multiplying to the left and right by M1/2, gives

J ′′ ≈M+
K∑

i=1

(λi − 1)(M1/2vi)(M
1/2vi)

T (6.8)

Substituting for the preconditioner matrix from (6.6), gives the following

J ′′ ≈ I+

L+K∑

i=1

sis
T
i (6.9)

where

si =

{
(µi − 1)1/2wi for i= 1 . . . L

(λi−L − 1)1/2M1/2vi−L for i= L+ 1 . . . L+K
(6.10)

Note that the resulting approximation to the Hessian is not expressed in terms of eigenvalues and eigenvectors.
Consequently, inversion of the approximation must be performed using the Shermann–Morrison–Woodbury
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formula. Let S be the matrix whose columns are the vectors si. Then, according to the Shermann–Morrison–
Woodbury formula, the inverse of the approximate Hessian matrix is

(J ′′)−1 ≈ I− S(I+ STS)−1ST (6.11)

The matrix (I+ STS) has dimension (L+K)× (L +K). This matrix is constructed, and its Cholesky
decomposition is calculated using the LAPACK routine SPOTRF. This gives a lower triangular matrix C
such that

(J ′′)−1 ≈ I− (SC−1)(SC−1)T (6.12)

The matrix (SC−1) is calculated by back-substitution.

The final stage in the calculation of the analysis errors is to transform the columns of the matrix (SC−1) to
the space of model variables by applying the inverse change of variable, CHAVARIN. This gives the required
approximation to the analysis error covariance matrix

Pa ≈B−VVT (6.13)

where V = L−1SC−1, and where L−1 represents the inverse of the change of variable. The columns of V
may be written out (e.g. for diagnostic purposes, or to form the preconditioner for a subsequent minimization)
by setting LWRIEVEC. The columns of V are then transformed to gridpoint space, and their sums of squares
(i.e. the diagonal elements of VVT in gridpoint space) are subtracted from the variances of background error
which were stored in ANEBUF before the minimization by BGVECS.

The analysis errors are calculated as the difference between the background errors and a correction derived
from the eigenvectors of the Hessian. If the background errors are underestimated, there is a danger that the
correction will be larger than the background error, giving negative variances of analysis error. This is unlikely
to happen if the background errors are estimated using randomization, or for variables whose background
errors are explicitly specified in the background cost function, but is possible for variables such as temperature
whose background errors are not explicitly specified. To guard against this eventuality, if NBGVECS is zero,
then the variances of analysis error for variables whose background errors are not explicit are estimated by
applying a scaling to the explicit variables by a call to ESTSIGA from CVA1. The variances are then converted
to standard deviations and written out by a call to WRITESD.

6.7 CALCULATION OF FORECAST-ERROR VARIANCES

The analysis errors are inflated according to the error growth model of Savijärvi (1995) to provide estimates
of short-term forecast error. This is done by a call to ESTSIG.

The error growth model is
dσ

dt
= (a+ bσ)

(
1− σ

σ∞

)
(6.14)

Here, a represents growth due to model errors, b represents the exponential growth rate of small errors, and
σ∞ represents the standard deviation of saturated forecast errors. The growth due to model error is set to 0.1
times the global mean background error per day. The exponential growth rate, b, is set to 0.4 per day.

The saturation standard deviations are calculated as
√
2 times the standard deviation of each field. The

standard deviations have been calculated for each month from the re-analysis dataset. ESTSIG reads these
climatological error fields from file ‘stdev of climate’ by calling READGRIB, and interpolates them in the
horizontal and vertical using SUHIFCE and SUVIFCE. The climatological errors may also be artificially increased
in the tropics under the control of LFACHRO. If climate standard deviations are not available for any field,
they are estimated as 10 times the global mean background error for the field.

The error growth model is integrated for a period of NFGFCLEN hours. The integration is done analytically
using the expression given by Savijärvi (1995). Two precautions are taken in integrating the error growth
model. First, negative analysis-error variances are set to zero. Second, the growth rate due to model error is
limited to a sensible value with respect to the saturation errors. This was found to be necessary to prevent
numerical problems when calculating specific humidity errors for the upper levels of the model.
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ESTSIG overwrites the contents of ANEBUF with the estimated variances of forecast error. The variances are
converted to standard deviations and written out by WRITESD. Note that with the introduction of background
error estimates from the EDA (described in section 6.8) the calculation of forecast error estimates described
here is no longer performed in operations.

6.8 DIAGNOSIS OF BACKGROUND ERROR VARIANCES THROUGH
THE EDA

The EDA consists of an ensemble of 50 (as from CY46R1) independent lower-resolution 4DVar assimilations
(TCo639L137 with two inner loop minimizations both at TL191) that differ by the explicit perturbation of
the observations, the sea-surface temperature and the model physics, plus 1 control, unperturbed 4DVar. The
control member is run for diagnostic purposes. The approximate Hessian eigenvectors produced as a by-product
of the first minimisation of the control member are also used to accelerate convergence of the perturbed member
4DVars. This results in an approx. 20% reduction in the computational cost of the perturbed minimisations.
The reason for running an EDA is that it can be shown (Isaksen et al., 2010) that if the perturbations to the
observations, model evolution and boundary conditions are properly chosen, the EDA analysis and background
spread will provide realistic estimates of analysis and background errors standard deviations.

In the EDA, for each observation, perturbations are defined by randomly sampling a Gaussian distribution
with zero mean and standard deviation equal to the estimate of the observation error standard deviation. Sea
surface temperature fields are also perturbed, with correlated patterns derived from the HadISST2 dataset
(Kennedy et al., 2016) which has been developed for the ERA5 ECMWF reanalysis (Hirahara et al., 2016).
To simulate the impact of model uncertainty, the stochastically perturbed parametrization tendency (SPPT)
scheme is used; this perturbs the total parametrized tendency of physical processes (more details can be
found in part V of this document). From CY41R2 the EDA cycles its own background error and covariance
estimates. It can thus be seen as a variational implementation of a perturbed observation EnKF. This behaviour
is activated by setting both environment variables LEDA ERRORS IN and LEDA ERRORS OUT to true.

The EDA background mean and standard deviations are computed in the enda pp family which runs after
completion of the EDA background forecasts family. The first task of the enda pp family is ens stats members,
where the EDA background fields are retrieved from storage and necessary pre-processing operations are carried
out. These include the computation of fields which are not archived from the EDA run (Geopotential Height,
Relative Humidity, Radiances for a selection of sensors). The ens stats members task is split into a number
of sub-tasks (ens stats mem) equal to the size of the EDA in order to parallelize the computations on the
different EDA members.

Task ens stats gather computes the ensemble mean and standard deviations of the EDA background fields.
These fields are stored as grib files of type ’em’ and ’es’ of stream ’elda’, respectively. From IFS cycle 38r2,
standard deviations of the unbalanced components of the control vector (see Section 4.2) are also computed in
ens stats gather from EDA background perturbations. From IFS cycle 43r3 the EDA error estimates of relative
humidity are also used in the 4DVar minimisation. Thus, EDA online estimates for the error fields for the full
control vector are now used in 4DVar.

Task ens fetch fields gathers the operational analysis fields needed for the calibration step of the EDA standard
deviations. This is performed in task ens cal, where the calibration coefficients of the EDA background variances
are computed by Spread Skill Time Avg. Variance Calibration is computed against the ECMWF operational
analysis separately for each parameter, model level and geographical region (northern extra-tropics, tropics,
southern extra-tropics).

Variance calibration can be optionally done to ensure that EDA background variance matches the mean squared
difference of the EDA background mean and the corresponding operational analysis (as from Cy42R1 default
is to perform no calibration of EDA background variances). In order to have a large enough statistical sample
and to reduce time variability, the calibration is computed using the latest 10 sets of EDA backgrounds and
operational analysis verifying at the same time. Note that as of IFS cycle 41r2, the calibration is only computed
for diagnostic purposes but it is no longer applied to the EDA error estimates used in 4DVar.

The last job in the enda pp family is ens errors. If the logical switch LENS CAL is true the EDA background
variances computed in ens stats are calibrated by Ens Spread Cal using the coefficients computed in ens cal.
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The calibrated variances are then transformed to a wavelet representation and filtered in order to reduce
sampling noise. The filtering procedure is based on Bonavita et al. (2012). Finally the filtered variances are
converted to standard deviations and stored as grib files of type ’ses’ of stream ’elda’.

Similar calculations are performed to estimate situation-dependent background errors in radiance space for
selected instruments, as described in Bormann and M.Bonavita (2013). This is also performed under the
enda pp family, and it involves four steps:

(i) Radiance fields are calculated in grid-point space for each ensemble member (using the program
calc radiance fields from the satrad project in the ens stats mem tasks), and ensemble spread and mean
are calculated in the ens stats gather task, analogous to the spread and mean calculations for model
fields.

(ii) Coefficients for the radiance spread calibration are calculated in task ens cal rad (using program
eda rad coefs from the satrad project). In contrast to the calibration of model fields, this calibration
is based on observations, and uses past statistics on First Guess departure information and ensemble
spread as described in Bormann and M.Bonavita (2013).

(iii) The calibration is applied to the ensemble spread fields in task ens errors rad using program eda rad scale
from the satrad project.

(iv) To reduce sampling noise resulting from the use of a small number of ensemble members, the SES fields
are also spatially filtered in task ens errors rad, using the Spectral Filter program as for the model fields.

The result of the above process are GRIB files of type ’ses’ of stream ’elda’, providing situation-dependent
estimates of background errors in radiance space. These fields are used only in the background quality control
during the screening step in the IFS.

6.9 DIAGNOSIS OF ONLINE BACKGROUND-ERROR COVARIANCES

Starting with cycle 40R1 the use of the EDA has been extended to allow the online computation of the
background-error covariances used in 4DVar in a wavelet representation. A new set of wavelet B matrices
(see section 4.2) is computed at each assimilation cycle to represent flow-dependent error correlations. In the
current implementation (as from cycle 41R2) hybrid wavelet B matrices are updated by a linear combination of
a pre-existing climatological B and a flow-dependent B computed from the latest available EDA background
forecasts Bonavita et al. (2016). This capability is activated by setting the NAMWAVELETJB namelist
variable LHYBRID JB to true. The relative weight given to the online estimate of B s specified by the
NAMWAVELETJB namelist variable ALPHA HYBRID JB. The default value for the current 25 member EDA
is 0.3.

The procedure described above introduces a degree of flow-dependency in the horizontal structure functions
and in the vertical correlations. In combination with the use of EDA background errors, the use of online
background error covariances allows the analysis algorithm to automatically and optimally adapt to changes
in the configuration of the global observing system (McNally et al., 2014).

The computation the ”wavelet”B matrices is organised in two phases. In the first phase (fetch jb fields family),
EDA forecast perturbations are retrieved from storage and interpolated as required. The second phase (jb calc
family) performs the actual computation of the ”wavelet” B. Since error covariances are needed at all the
spectral resolutions used in 4DVar outer loops, the jb calc family is organised into separate ifsmin tasks which
compute the required B matrices in parallel. The computation then proceeds as described in Subsection 4.3.2.
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Chapter 7

Gravity-wave control

Table of contents
7.1 Introduction

7.2 Normal-mode initialization

7.3 Computation of normal modes

7.3.1 Vertical modes

7.3.2 Horizontal modes and help arrays

7.4 Implementation of NMI

7.5 Computation of Jc based on NMI

7.6 Digital filter initialization

7.7 Implementation of DFI as a weak constraint in 4D-Var

7.1 INTRODUCTION

In 3D-Var, gravity-wave control is achieved via a penalty term Jc based on the techniques of normal-mode
initialization (NMI), in 4D-Var a weak constraint digital filter is used.

Section 7.2 provides a brief overview of NMI techniques, together with references to scientific papers in which
further details can be found. Section 7.3 describes the computation of normal modes and related arrays.
Section 7.4 documents the implementation of nonlinear NMI in 3D- and 4D-Var, while Section 7.5 describes
the computation of Jc based on NMI. Section 7.6 gives an overview of digital filter initialization techniques
while Section 7.7 describes its implementation as it is used in the 4D-Var assimilation system.

7.2 NORMAL-MODE INITIALIZATION

If the model equations are linearized about a state of rest, the solutions can (with a certain amount of
arbitrariness) be classified into ‘slow’ (Rossby) and ‘fast’ (gravity) modes. This classification defines two
mutually orthogonal subspaces of the finite-dimensional vector space containing the model state x. Thus, the
model state can be written as

x= xR + xG (7.1)

where xR is the ‘slow’ component and xG the ‘fast’ component. Linear NMI consists of removing the fast
component altogether (xG = 0). Since the model is nonlinear, a much better balance is obtained by setting
the tendency of the fast component to zero (ẋG = 0); it is this balance condition which nonlinear NMI seeks
to impose.

Nonlinear NMI was first demonstrated by Machenhauer (1977), in the context of a spectral shallow-water
model. For a multi-level model, the first stage in the modal decomposition is a vertical transform; each
vertical mode then has its own set of horizontal slow and fast modes (for the shallower vertical modes, all
the corresponding horizontal modes can be considered as ‘slow’). In the case of a multi-level spectral model
using the ECMWF hybrid vertical coordinate the details may be found in the report by Wergen (1987), which
also describes techniques for taking into account forcing by physical (non-adiabatic) processes and the diurnal
and semi-diurnal tidal signals. Although these options are still coded in the IFS, they are no longer used
operationally at ECMWF and will not be described in this documentation.

Implicit normal mode initialization (Temperton, 1988) is based on the observation that, except at the largest
horizontal scales, the results of NMI can be reproduced almost exactly without computing the horizontal
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normal modes at all. The calculation reduces to solving sets of elliptic equations. In the case of a spectral
model (Temperton, 1989), these sets of equations are tridiagonal in spectral space. The IFS code includes the
option of ‘partially implicit NMI’, in which the initialization increments are computed using the full ‘explicit’
NMI procedure for large horizontal scales while the remaining increments at smaller horizontal scales are
computed using the simpler implicit procedure.

7.3 COMPUTATION OF NORMAL MODES

7.3.1 Vertical modes

The vertical normal modes depend on the number of levels in the model and on their vertical distribution. They
also depend on the choice of reference temperature SITR (assumed isothermal) and reference surface pressure
(SIPR). The vertical modes used by the initialization routines are also used in the semi-implicit scheme for
the forward integration of the model. The computation of Jb and Jc also uses the vertical normal modes, but
for these purposes different values of SITR and SIPR may be selected. Thus the vertical modes are computed
both in SUDYN and SUSINMI, the latter being used especially in 4D-Var where it is necessary to alternate
between applications using different choices of SITR and SIPR. The vertical modes are computed by first calling
SUBMAT to set up a vertical structure matrix and then calling an eigenvalue/eigenvector routine EIGSOL
(at the end of SUDYN, it calls routine RG in the auxiliary library). After reordering and normalization, the
eigenvectors (vertical modes) are stored in the matrix SIMO, while the corresponding eigenvalues (equivalent
depths) are stored in the array SIVP. The inverse of SIMO is computed and stored in SIMI.

7.3.2 Horizontal modes and help arrays

The horizontal normal modes depend on the equivalent depths (see above) and the chosen spectral truncation
NXMAX. For ‘explicit’ NMI, NXMAX is equal to the model’s spectral truncation NSMAX. Normally, ‘partially
implicit NMI’ is chosen by setting the switch LRPIMP to .TRUE. In this case the explicit NMI increments
are used only up to spectral truncation NLEX (21 by default) but in order to blend the explicit and
implicit increments smoothly, explicit increments are computed up to a slightly higher resolution. By default,
NXMAX =NLEX+ 5.

For most applications of the NMI procedure in the operational suite, it is considered that the larger horizontal
scales are best left uninitialized (they include, for example, atmospheric tidal signals and large-scale tropical
circulations driven by diabatic processes). To cater for this option there is another logical switch, LASSI
(‘adiabatic small-scale initialization’), which sets to zero all the initialization increments for total wavenumbers
up to NFILTM (= 19 by default). Since only the small-scale increments are used, the NMI can be completely
implicit: NLEX is set to 0 and there is no need to calculate the ‘explicit’ horizontal normal modes.

All the horizontal-normal-mode computations are carried out only for the first NVMOD vertical modes. By
default, NVMOD= 5.

The horizontal modes are computed by calling SUMODE3. In turn, SUMODE3E computes the explicit modes
and their frequencies while SUMODE3I computes the ‘help’ arrays required to invert the tridiagonal systems
encountered in implicit NMI.

7.4 IMPLEMENTATION OF NMI

Nonlinear NMI can be invoked by calling NNMI3. This is no longer applied by default in IFS, now all gravity-
wave control during the assimilation process is done through the penalty term or digital filter. But signicant
parts of the NMI code is still used for this, as described in Section 7.5. Model tendencies are computed by
calling STEPO to perform one (forward) timestep. The tendencies are then supplied to MO3DPRJ which
computes the required increments, using the ‘explicit’ (Machenhauer) or the ‘implicit’ scheme (or both, after
which the results are merged). The increments are added to the original spectral fields and the process is
iterated NITNMI (by default 2) times.
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7.5 COMPUTATION OF Jc BASED ON NMI

In the notation of (7.1), the penalty term Jc is defined by

Jc = ε‖(ẋ− ẋb)G‖2 (7.2)

where ε is an empirically chosen weighting factor, x is the current state of the control variable and xb is
the background. The norm ‖ ‖2 is based on a weighted sum of squares of spectral coefficients. Only the first
NVMOD vertical modes are included in the evaluation of (7.2).

Jc is computed by calling the routine COSJC. Control passes through JCCOMP to NMIJCTL, where Jc is
evaluated by calling STEPO twice, then projecting the differences in the tendencies on to the gravity modes
via MO3DPRJ, and finally computing Jc in NMICOST.

7.6 DIGITAL FILTER INITIALIZATION

Digital filter initialization consists in removing high frequency oscillations from the temporal signal represented
by the meteorological fields. A general description of digital filter initialization can be found in Lynch (1993).
It can be implemented as a strong constraint by filtering the model fields at the beginning of each forecast or
as a weak constraint as described in Gustafsson (1992) and Gauthier and Thépaut (2001).

Time oscillations exceeding a cut-off frequency ωc = (2π)/Tc can be filtered by applying a digital filter to a
time series fk = f(tk) for fk = k∆t, ∆t being the timestep. This proceeds by doing a convolution of f(t) with
a step function h(t) so that

f • h(tN) =
∞∑

k=−∞
hkfN−k

The step function hk is found to be

hk =
sin(ωck∆t)

kπ

In practice, the convolution is restricted to a finite time interval of time span Ts. We can write Ts = 2M∆t
and

f • h(t0) =
M∑

k=−M
αkfk

with αk =−h−k. This truncation introduces Gibbs oscillations which can be attenuated by introducing a
Lanczos window which implies that the weights αk are defined as αk =−h−kWk with

Wk =
sin((kπ)/(M + 1))

(kπ)/(M + 1)

An alternative which is used at ECMWF has been proposed by Lynch (1997) to use a Dolph–Chebyshev
window in which case

Wk =
1

2M + 1

[
1 + 2r

M∑

m=0

T2M (x0 cos θm/2) cosmθk

]
(7.3)

where 1/x0 = cos(π∆t)/τs, 1/r = cosh(2Macosh x0), θk = (k2π)/M and T2M is the Chebyshev polynomial
of degree 2M . The time span of the window is chosen so that τs =M∆t.

7.7 IMPLEMENTATION OF DFI AS A WEAK CONSTRAINT IN
4D-VAR

In the context of 4D-Var data assimilation, the digital filter is used as a weak constraint. A penalty term
is added to the cost function and replaces the NMI based penalty term. The implementation is based
on Gauthier and Thépaut (2001). The filtered increments are calculated as

δX̄(tN/2) =

N∑

k=0

αkδX(tk)
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where N is the number of time steps in the minimisation and delta represents increments.

During each integration of the tangent linear model in the inner loop of the 4D-Var, the digital filter is applied
to the increments and the partial sum accumulated by EDIGFIL. This gives a filtered increment valid at the
mid-point of the assimilation window (arrays RACCSPA2 and RACCSPA3). The value of the non-filtered
increment valid at the same time is also stored by ECOPSP in arrays RSTOSPA2 and RSTOSPA3. These
routines are called in CNT4TL each time-step.

The adjoint model integration calculates the gradient in EDIGFILAD. The gradient is obtained by a single
backward integration of the adjoint model. The adjoint calculations associated with the digital filter is a
virtually cost free addition to the adjoint observation cost function calculations.

The filtering weights used by the digital filter are calculated during the setup phase by SUEFW. The default
is to use a Dolph–Chebyshev non-recursive filter (NTPDFI = 4, see equation (7.3))

The weak constraint term which is added to the cost function is the moist energy norm of the departure
between those two states times a weight factor. All these computations are conducted in spectral space and
applied to the spectral fields. The default mode at ECMWF is to redefine the norm so the digital filter is only
applied to divergence (LDIVONLY = .TRUE.). A larger weight factor (ALPHAG= 100.) is in that case used
in the weak constraint term.

The norm of the departure is computed in two steps. In EVJCDFI, the difference between RACCSPA2/
RACCSPA3 and RSTOSPA2/RSTOSPA3 is computed and multiplied with ALPHAG for the subset of wave
numbers and vertical levels associated with each processor. The cost contribution is calculated for each
wavenumber and vertical level using the specified norm. The contributions for all wavenumbers, levels and
variables are gathered on each processor by GATHERCOST2 and the total cost contribution is summed in
array RSUMJCDFI for each variable and level. Finally, in EVCOST, the contributions from each variable and
level are added to obtain the value of the penalty term.
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Chapter 8

Diagnostics

Table of contents
8.1 Introduction

8.1.1 Influence matrix diagnostic in 4D-Var

8.1.2 How to compute the observation influence (OI)

8.2 Observational influence for a DA scheme

8.2.1 Linear statistical estimation in numerical weather prediction

8.2.2 Approximate calculation of self-sensitivity in a large variational analysis system

8.3 Gradient test

8.4 The 24-hour forecast error contribution to observations (FEC)

8.1 INTRODUCTION

8.1.1 Influence matrix diagnostic in 4D-Var

The influence matrix is used in ordinary least-squares applications for monitoring statistical multiple-regression
analyses. Concepts related to the influence matrix provide diagnostics on the influence of individual data
on the analysis, the analysis change that would occur by leaving one observation out, and the effective
information content (degrees of freedom for signal) in any sub-set of the analysed data. The corresponding
concepts have been derived in the context of linear statistical data assimilation in numerical weather prediction.
An approximate method to compute the diagonal elements of the influence matrix (the self-sensitivities or
observation influence) has been developed for a large-dimension variational data assimilation system (the
4D-Var system of ECMWF).

8.1.2 How to compute the observation influence (OI)

In prepIFS, experiment type ‘an’ task ‘forecast error handling’, the logical switch LANOBS=on will allow the
OI computation for all observation assimilated. OI is saved in ODB in an sens obs.

A Fortran program is available to compute the DFS (Degree of Freedom for Signal) and OI. The program
output is a Table that can be imported in XL for graphical display. Geographical maps and time series for all
the assimilated observations are produced by OBSTAT.

8.2 OBSERVATIONAL INFLUENCE FOR A DA SCHEME

8.2.1 Linear statistical estimation in numerical weather prediction

Data assimilation systems for NWP provide estimates of the atmospheric state x by combining meteorological
observations y with prior (or background) information xb. A simple Bayesian Normal model provides the
solution as the posterior expectation for x, given y and xb. The same solution can be achieved from a
classical frequentist approach, based on a statistical linear analysis scheme providing the best linear unbiased
estimate (Talagrand, 1997) of x, given y and xb. The optimal GLS solution to the analysis problem (see Lorenc,
1986) can be written

xa =Ky + (In −KH)xb (8.1)

The vector xa is the ‘analysis’. The gain matrix K(n× p) takes into account the respective accuracies of the
background vector xb and the observation vector y as defined by the n× n covariance matrix B and the
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p× p covariance matrix R, with

K= (R−1 +HTR−1H)−1HTR−1 (8.2)

Here, H is a p× n matrix interpolating the background fields to the observation locations, and transforming
the model variables to observed quantities (e.g. radiative transfer calculations transforming the models
temperature, humidity and ozone into brightness temperatures as observed by several satellite instruments). In
the 4D-Var context introduced below, H is defined to include also the propagation in time of the atmospheric
state vector to the observation times using a forecast model.

Substituting (8.2) into (8.1) and projecting the analysis estimate onto the observation space, the estimate
becomes

ŷ =Hxa =HKy + (Ip −HK)Hxb (8.3)

It can be seen that the analysis state in observation space (Hxa) is defined as a sum of the background (in
observation space, Hxb) and the observations y, weighted by the p× p square matrices I−HK and HK,
respectively.

In this case, for each unknown component of Hx, there are two data values: a real and a ‘pseudo’ observation.
The additional term in (8.3) includes these pseudo-observations, representing prior knowledge provided by the
observation-space background Hxb. From (8.3), the analysis sensitivity with respect to the observations is
obtained

S=
∂ŷ

∂y
=KTHT (8.4)

Similarly, the analysis sensitivity with respect to the background (in observation space) is given by

∂ŷ

∂(Hxb)
= I−KTHT = Ip − S (8.5)

We focus here on the expressions (8.4) and (8.5). The influence matrix for the weighted regression DA
scheme is actually more complex, but it obscures the dichotomy of the sensitivities between data and model
in observation space.

The (projected) background influence is complementary to the observation influence. For example, if the self-
sensitivity with respect to the ith observation is Sii , the sensitivity with respect the background projected
at the same variable, location and time will be simply 1− Sii . It also follows that the complementary trace,
tr(I− S) = p− tr(S), is not the df for noise but for background, instead. That is the weight given to prior
information, to be compared to the observational weight tr(S). These are the main differences with respect
to standard LS regression. Note that the different observations can have different units, so that the units
of the cross-sensitivities are the corresponding unit ratios. Self-sensitivities, however, are pure numbers (no
units) as in standard regression. Finally, as long as R is diagonal, 0≤ Sii ≤ 1 is assured, but for more general
non-diagonal R-matrices it is easy to find counter-examples to that property.

Inserting (8.1) into (8.4), we obtain

S=R−1H(B−1 +HTR−1H)−1HT (8.6)

As (B−1 +HTR−1H) is equal to the analysis error covariance matrix A, we can also write S=R−1HAHT.

8.2.2 Approximate calculation of self-sensitivity in a large variational analysis system

In a optimal variational analysis scheme, the analysis error covariance matrix A is approximately the inverse
of the matrix of second derivatives (the Hessian) of the cost function J , i.e. A= (J)−1 (Rabier and Courtier,
1992). Given the large dimension of the matrices involved, J and its inverse cannot be computed explicitly.
Following Fisher and Courtier (1995) we use an approximate representation of the Hessian based on a truncated
eigen-vector expansion with vectors obtained through the Lanczos algorithm. The calculations are performed in
terms of a transformed variable P,P= L−1(x− xb), with L chosen such thatB−1 = LTL. The transformation
L thus reduces the covariance of the prior to the identity matrix. In variational assimilation L is referred to as
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the change-of-variable operator (Courtier et al., 1998).

J′′−1 ≃B−
M∑

i=1

1− λi
λi

(Lvi)(Lvi)
T (8.7)

The summation in (8.7) approximates the variance reductionB-A due to the use of observations in the analysis.
(λi, vi) are the eigen-pairs of A. In ECMWF’s operational data assimilation system, the variances of analysis
error are computed according to this method. The variances are inflated to provide estimates of short-term
forecast (background) error variances to be used as background errors in the next analysis cycle (Fisher, 1996).
The Hessian eigen-vectors are also used to precondition the minimization (Fisher and Andersson, 2001). The
computed eigen-values are not used to minimize the cost function but only to estimate the analysis covariance
matrix. It is well known, otherwise, that the minimization algorithm is analogous to the conjugate-gradient
algorithm. Because the minimum is found within an iterative method, the operational number of iterations is
sufficient to find the solution (with required accuracy) but does not provide a sufficient number of eigen-pairs
to estimate the analysis-error variances.

The diagonal of the background error covariance matrix B in (8.7) is also computed approximately, using the
randomisation method proposed by Fisher and Courtier (1995). From a sample of N random vectors ui (in the
space of the control-vector), drawn from a population with zero mean and unit Gaussian variance, a low-rank
representation of B (in terms of the atmospheric state variables x) is obtained by

B=
1

N

N∑

i=1

(Lui)(Lui)
T (8.8)

This approximate representation of B has previously been used by Andersson et al. (2000) to diagnose
background errors in terms of observable quantities, i.e. HBHT.

Inserting (8.7) and (8.8) into (8.6) we arrive at an approximate method for calculating S, that is practical for
a large dimension variational assimilation (both 3D and 4D-Var). This is given by

S=R−1H

[
1

N

N∑

i=1

(Lui)(Lui)
T +

M∑

i=1

1− λi
λi

(Lvi)(Lvi)
T

]
HT (8.9)

Only the diagonal elements of S are computed and stored in ODB – that is, the analysis sensitivities with respect
to the observations, or self-sensitivities Sii . The cross-sensitivity Sij for i 6= j, that represents the influence of
the jth observation to the analysis at the ith location, is not computed. Note that the approximation of the first
term is unbiased, whereas the second term is truncated such that variances are underestimated. For small M
the approximate Sii will tend to be over-estimates. For the extreme case M = 0, (8.9) gives S=R−1HBHT

which in particular can have diagonal elements larger than one if elements of HBHT are larger than the
corresponding elements of R. The number of Hessian vectors operationally computed is M = 40 and the
number of random B vectors is N = 50.

In general, in the operational system, 15% of the global influence is due to the assimilated observations in
any one analysis, and the complementary 85% is the influence of the prior (background) information, a short-
range forecast containing information from earlier assimilated observations. About 25% of the observational
information is currently provided by surface-based observing systems, and 75% by satellite systems.

Low-influence data points usually occur in data-rich areas, while high-influence data points are in data-
sparse areas or in dynamically active regions. Background error correlations also play an important role: High
correlation diminishes the observation influence and amplifies the importance of the surrounding real and pseudo
observations (prior information in observation space). Incorrect specifications of background and observation
error covariance matrices can be identified, interpreted and better understood by the use of influence matrix
diagnostics for the variety of observation types and observed variables used in the data assimilation system.

Self-sensitivities cannot be larger than one (they are bounded in the interval zero to one) but, because of
the small number of eigenpair we can compute, Sii can be greater than one. Approximations in both of the
two terms of (8.9) contribute to the problem. In the second term the number of Hessian eigen-vectors is
truncated to M. The term is therefore underestimated, and Sii will tend to be over-estimated. The degree of
over-estimation depends on the structure of the covariance reduction matrix B-A.
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For an analysis in which observations lead to strongly localised covariance reduction (such as the humidity
analysis with its short co-variance length scales∼180 km, and large observational impacts) a largeM is required
to approximate B-A accurately. The approximate computation is mostly affecting the self-sensitivities close
to the upper bound leaving the self-sensitivities <0.7 almost unaffected.

To conclude, the self-sensitivity provides a quantitative measure of the observation influence in the analysis.
In robust regression, it is expected that the data have similar self-sensitivity (sometimes called leverage) –
that is, they exert similar influence in estimating the regression line. Disproportionate data influence on the
regression estimate can have different reasons: First, there is the inevitable occurrence of incorrect data.
Second, influential data points may be legitimately occurring extreme observations. However, even if such
data often contain valuable information, it is constructive to determine to which extent the estimate depends
on these data. Moreover, diagnostics may reveal other patterns e.g. that the estimates are based primarily
on a specific sub-set of the data rather than on the majority of the data. In the context of 4D-Var there are
many components that together determine the influence given to any one particular observation. First there is
the specified observation error covariance R, which is usually well known and obtained simply from tabulated
values. Second, there is the background error covariance B, which is specified in terms of transformed variables
that are most suitable to describe a large proportion of the actual background error covariance. The implied
covariance in terms of the observable quantities is not immediately available for inspection, but it determines
the analysis weight given to the data. Third, the dynamics and the physics of the forecast model propagate
the covariance in time, and modify it according to local error growth in the prediction. The influence is further
modulated by data density. Low influence data points occur in data-rich areas while high influence data points
are in data-sparse regions or in dynamically active areas. Background error correlations also play an important
role. In fact, very high correlations drastically lessen the observation influence in favour of background influence
and amplify the influence of the surrounding observations.

With the approximate method used here, out-of-bound self-sensitivities occur if the Hessian representation
based on an eigen-vector expansion is truncated, especially when few eigen-vectors are used. However, this
problem affects only a small percentage of the self-sensitivities computed in this study, and in particular those
that are closer to one. Remaining values greater than one can be due to large background to observation error
ratio, which is one factor that is known to contribute towards ill-conditioning and poor convergence of the
4D-Var algorithm.

8.3 GRADIENT TEST

If LTEST = .TRUE. a gradient test will be performed both before and after minimization. This is done by
the routine GRTEST. In the gradient test a test value t1 is computed as the ratio between a perturbation of
the co-t-function and its first-order Taylor expansion using

t1 = lim
δχ→0

J(χ+ δχ)− J(χ)

〈∇J, δχ〉 (8.10)

with δχ=−α∇J . Repeatedly increasing α by one order of magnitude, printing t1 at each step should show
t1 approaching one, by one order of magnitude at a time, provided J(χ) is approximately quadratic over the
interval [χ, χ+ δχ]. The near linear increase in the number of 9’s in the print of t1 over a wide range of α
(initially as well as after minimization) proves that the coded adjoint is the proper adjoint for the linearization
around the given state χ.

The behaviour of the cost function in the vicinity of χ in the direction of the gradient ∇J is also diagnosed
by several additional quantities for each α. The results are printed out on lines in the log-file starting with the
string ‘GRTEST:’. To test the continuity of J , for example, a test value t0 is computed with

t0 =
J(χ+ δχ)

J(χ)
− 1 (8.11)

and printed. For explanation of other printed quantities see the routine GRTEST itself. A range of additional
test was introduced in Cy28r2.
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8.4 THE 24-HOUR FORECAST ERROR CONTRIBUTION TO
OBSERVATIONS (FEC)

The Forecast Sensitivity to Observations Impact (FSOI) is an adjoint-based tool to estimate the reduction of
the forecast error due to the assimilation of the observations and is routinely used to monitor the observation
performance on short-range forecasts (Baker and Daley, 2000; Cardinali, 2009).

To compute the FSOI for all observation types, ECMWF run an fsobs suite. This is a configuration of the IFS
(NCONF=801) controlled by CFCSENS2OBS (called from the top-level routine CVA1) and by the namelist
NAMVRTL.

The computation of the FSOI involves a scalar cost function, taken here to be the difference between a global
dry energy measure of the 24-h and 36-h forecast errors using trajectories starting from an analysis at 00 UTC
and from the corresponding background state at 12 UTC. The cost function and its gradient are calculated
in COSTRA called from CNT3AD, when L801TL is switched on. After the sensitivity gradients are provided
valid at the beginning of the assimilation window and after they are transformed to control variable space by
applying CHAVARINAD, the linear system (eq. 2.10 from Cardinali (2009)) is solved using the CONGRAD
algorithm. The forecast sensitivity to observations is then obtained after interpolating in the observation space
and after normalizing with respect to the observation error covariance matrix. Finally, the contribution of each
observation towards reducing the 24-hour forecast error is estimated using the innovation and the forecast
sensitivity to observations vectors.

FSOI is saved in ODB in the fc sens obs@body column. A positive fc sens obs@body value is associated with
forecast error increase and a negative fc sens obs@body contribution with forecast error decrease.

FSOI statistics are displayed on the web, as part of the monitoring of the observing system information:

http://www.ecmwf.int/en/forecasts/charts/obstat.
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Chapter 9

Land-surface analysis
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9.5 1D OI soil and snow temperature analysis

9.1 INTRODUCTION

The land-surface analysis includes the screen-level parameters analysis, the snow depth analysis, the soil
moisture analysis, the soil temperature and snow temperature analysis. The screen level parameters analysis
and the snow analysis rely on a two-dimensional Optimal Interpolation (2D OI). The soil moisture analysis
uses an EDA-based simplified Extended Kalman Filter (EKF). The soil and snow temperature analysis uses a
one-dimensional OI (1D OI).

The surface-analysis module includes also the sea-surface temperature, sea-ice fraction and screen-level
temperature analysis described separately in Chapter 10.

Snow water equivalent, soil temperature, snow temperature and soil water content are prognostic variables
of the forecasting system and, as a consequence, they need to be initialised at each analysis cycle. The
ECMWF soil moisture, soil temperature and snow temperature analyses rely on SYNOP relative humidity
and temperature at screen-level (2 metres) available on the GTS (around 10,000 reports over the globe are
assimilated every 6 hours). For the soil moisture analysis, the analysed relative humidity and temperatures
fields are assimilated as pseudo-observations. The MetOp-A and MetOp-B Advanced Scatterometer (ASCAT)
soil moisture products are also assimilated along with the Soil Moisture and Ocean Salinity (SMOS) neural
network soil moisture data. The snow analysis relies on SYNOP and national ground observations of snow depth
available on the GTS, as well as on the NOAA/NESDIS (National Oceanic and Atmospheric Administration
- National Environmental Satellite, Data, and Information Service) Interactive Multi-sensor Snow and Ice
Mapping System (IMS) snow cover information.

The structure of the land surface analysis components and their dependencies are shown in Fig. 9.1. Firstly,
a screen-level analysis is performed for temperature and humidity. Secondly, the snow analysis and the soil
moisture analysis are conducted. Then the soil temperature and snow temperature analysis is performed.
Analysed screen-level temperature and relative humidity are used as input of the simplified EKF soil moisture
analysis. while screen-level analysis temperature increments are used as inputs of the 1D OI soil and snow
temperature analysis.
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Figure 9.1 Land surface analysis components and tasks organisation, for an example of a 12-hour (21:00
UTC to 09:00 UTC) data assimilation window.

Land analysis is run separately from the upper-air analysis. It feedbacks to the upper-air analysis of the next
cycle through its influence on the short forecast that propagates information from one cycle to the next.
Reciprocally, the 4D-Var influences through the short forecasts the land surface analysis from one cycle to the
next. The OI analyses of screen level parameters, snow depth, snow and soil temperature are performed at
fixed times at 0000, 0600, 1200, and 1800 UTC. The simplified EKF analysis runs at the same time as the
4D-Var windows for both the delayed cut-off and the early delivery analyses.

9.2 2D OPTIMAL INTERPOLATION SCREEN-LEVEL ANALYSIS

9.2.1 Methodology

Two independent analyses are performed for 2-metre temperature and 2-metre relative humidity. The method
used is a two-dimensional univariate Optimal Interpolation (2D OI). In a first step, the background field (6-
hour or 12-hour forecast) is interpolated horizontally to the observation locations using a bilinear interpolation
scheme and background increments ∆Xi are estimated at each observation location i.

The analysis increments ∆Xa
p at each model grid-point p are then expressed as a linear combination of the

first-guess increments (up to N values) given by

∆Xa
p =

N∑

i=1

Wi ×∆Xi (9.1)

where Wi are optimum weights given (in matrix form) by

(B+O)W = b (9.2)

The column vector b (dimension N) represents the background error covariance between the observation i and
the model grid-point p. The (N ×N) matrix B describes the error covariances of background fields between
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pairs of observations. The correlation coefficients (structure functions) of b and B are assumed to have the
form:

µij = αslv(rij)β(∆zij) (9.3)

where rij and zij are the horizontal and the vertical separation between points i and j, respectively. αslv(rij)
and β(∆zij) are the horizontal and vertical structure functions respectively:

αslv(rij) = exp

(
−1

2

[
rij
d

]2)
(9.4)

β(∆zij) = exp

(
−
[
∆zij
h

]2)
(9.5)

d is the horizontal length parameter set to 300 km, corresponding to the e-folding distance taken of 420 km.
h is the vertical length scale taken to 800 m.

The correlation matrix B is expressed as:

B(i , j ) = σ2
b × µ(i, j) (9.6)

with σb the standard deviation of background errors.

The covariance matrix of observation errors O is set to σ2
o × I where σo is the standard deviation of observation

errors and I the identity matrix.

The standard deviations of background and observation errors are set respectively to 1.5 K and 2 K for
temperature and 5% and 10% for relative humidity. The number of observations closest to a given grid point
that are considered for solving (9.1) is N = 50 (scanned within a radius of 1000 km). The analysis is performed
over land and ocean but only land (ocean) observations are used for model land (ocean) grid points.

9.2.2 Quality controls

Gross quality checks are first applied to the observations such as RH ∈ [2, 100] and T > T d where T d is
the dew point temperature. Redundant observations are also removed by keeping only the closest (and more
recent) to the analysis time.

Observation points that differ by more than 300 m from the model orography are rejected.

For each datum a check is applied based on statistical interpolation methodology. An observation is rejected
if it satisfies

|∆Xi|> γ
√
σ2
o + σ2

b (9.7)

where γ has been set to 3, both for temperature and humidity analyses.

The number of used observations every 6 hours varies between 4,000 and 6,000 corresponding to around 40%
of the available observations.

The final relative humidity analysis is bounded between 2% and 100%. The final MARS archived product is
dew-point temperature that uses, following Buck (1981), the 2-metre temperature analysis Ta to perform the
conversion so that

T d =
17.502× 273.16− 32.19×Ψ

17.502−Ψ
(9.8)

with

Ψ= log(RH a) + 17.502× Ta − 273.16

Ta − 32.19
(9.9)

9.2.3 Technical aspects

The screen-level analysis software is implemented as a branch of the more comprehensive surface and screen-
level analysis (SSA) package. The other branches currently include snow analysis and sea surface temperature
and sea-ice fraction analyses. The program organisation when performing screen-level parameters analysis is
roughly as shown in Fig. 9.2.
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• SSA
• INIT2M / INISNW

• COORDINATES
• GETFIELDS
• FIELD2ARRAY
• SCAN CMA ODB

• INIT SURFBODY FEEDBACK
• GET DB
• FETCH VARIABLE
• FILL RAWTABLE
• LAND OBS
• INITIAL REJECTION

• T2M ANALYSIS / SNOW ANALYSIS
• FG2OBS
• REDUNDANT OBS
• OIUPD

• CALC DISTANCE
• OISET
• OIINC

• EQUSOLVE
• DOT PRODUCT

• FDB OUTPUT
• PRINT SUMMARY
• FEEDBACK ODB

Figure 9.2 Program organisation when performing the 2D OI screen-level parameters and snow depth
analyses. Red colour highlights differences between the screen-level and snow analyses.

.

The main program is SSA. It starts with the setup and namelist handling. The routine INIT2M performs
initialisation of the analysis of the actual screen-level parameters by generating latitudinal coordinates that
stem from the model resolution and zeros of the Bessel function. It also reads input fields into memory
in GETFIELDS and FIELD2ARRAY. Input fields consist of the 2-metre temperature, 2-metre dew point
temperature, 2-metre relative humidity from the first-guess (6-hour or 12-hour forecasts), land/sea mask and
the orography in a form of the geopotential. Then SCAN CMA ODB is called to read observations into memory
and a quick validity check of the non-applicable observations for this analysis is performed.

Additional screening is done in INITIAL REJECTION and later on in REDUNDANT OBS. The first of these
sets up an internal table where all the observations which survived from the quick screening are placed with a
minimum amount of context information. This routine rejects some of the observations entered into the table
due to inconsistencies.

The actual 2-metre temperature and 2-metre relative humidity analyses are performed under T2M ANALYSIS.
First the background field is interpolated to the observation location and the background increment is computed
at each observation location in FG2OBS. In this routine, the first guess departure check are applied and the
blacklist is read.
Then the routine REDUNDANT OBS removes time duplicates and retains the observations of the considered
station with the closest (and the most recent) to the analysis time. Slowly moving platform handling is present
in the REDUNDANT OBS for the 2-metre temperature and 2-metre relative humidity analyses.
The analysis increments are computed in the subroutine OIUPD. Subroutines CALC DISTANCE and OISET
select and sort the N closest observations from a given grid-point. Subroutine OIINC provides the analysis
increments from (9.1) and (9.2), by first computing q= (B+O)−1∆X (in subroutine EQUSOLVE – inversion
of a linear system), which does not depend upon the position of the analysis grid point, and then estimating
bTq (in subroutine DOT PRODUCT).

Most of the control parameters of the screen-level analysis are defined in the namelist NAMSSA.
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(i) C SSA TYPE: ‘t2m’ for temperature analysis and ‘rh2m’ for relative humidity analysis.
(ii) L OI : .TRUE. for statistical interpolation and .FALSE. for Cressman interpolation.
(iii) N OISET: number of observations (parameter N).
(iv) SIGMAB: standard deviation of background error (parameter σb).
(v) SIGMAO: standard deviation of observation error (parameter σo).
(vi) TOL RH: Tolerance criteria for RH observations (parameter γ in (9.7)).
(vii) TOL T: Tolerance criteria for T observations (parameter γ in (9.7)).
(viii) SCAN RAD 2M(1): Scanning radius for available observations (set to 1000 km).

9.3 2D OPTIMUM INTERPOLATION SNOW ANALYSIS

9.3.1 Background and observations

The snow analysis is a two-dimensional Optimal Interpolation performed every 6 hours, at 00 UTC, 06 UTC,
12 UTC and 18 UTC. The snow-depth background Sb (units: m) is estimated from the short-range forecast
of snow water equivalent SWEb

s (units: m of water equivalent) and snow density ρbs (units: kg m−3). It is
given by

Sb =
1000× SWEb

s

ρbs
(9.10)

The snow analysis is performed using snow-depth observations, the snow-depth background field, and the high
resolution (4km) NOAA/NESDIS snow extent. Snow depth observations include conventional snow depth
reports from SYNOP stations as well as additional national snow depth observations reported by several
member states and available on the GTS (de Rosnay et al., 2011b, 2014, 2015). If snow-depth observations
are not available, the snow accumulation/melting is simulated from the model 6-hour forecast.

In the current default configuration, the satellite derived snow extent is used once per day, for the 00 UTC
analysis. Snow extent is a binary information that indicates snow free or snow covered conditions of each pixel.
It is converted in the Observation Data Base into a quantitative snow depth information. To this end the
model relation between snow extent and snow depth is used as observation operator, with 5 cm of snow depth
where binary snow cover is one and 0 cm snow depth where binary snow cover is zero. The latter observations
enter the analysis whatever the first guess conditions are. In contrast the 5 cm snow depth derived from the
snow cover observations enter the analysis only where the model first guess indicates snow free conditions. As
an alternative, snow climate can be used to ensure the stability of the scheme and to give a seasonal snow
trend in areas without any observations.

9.3.2 Methodology

The OI snow analysis is performed based on N observations from ground stations reports and satellite
observations, which enter the analysis with a snow depth of 0 cm (snow free) or 5 cm (snow covered, used only
if the model first guess is snow free). Following the same 2D OI method than for the screen level parameters
analysis, the snow depth analysis increment is computed at each model grid point p:

∆Sa
p =

N∑

i=1

Wi ×∆Si (9.11)

where ∆Si is the background increment at each observation i location, Wi are optimum weights given (in
matrix form) by:

(B+O)W = b (9.12)

The column vector b (dimension N) represents the background error covariance between the observation i and
the model grid-point p. The (N ×N) matrix B describes the error covariances of background fields between
pairs of observations (i, j).

For the snow analysis the correlation coefficients (structure functions) of b and B follow the formulation
proposed by Brasnett (1999):

µij = αsno(rij)β(∆zij) (9.13)
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Figure 9.3 Horizontal structure functions used in the Optimal Interpolation scheme for the screen level
parameters and snow depth analyses.

where rij and zij are the horizontal and the vertical separation between points i and j, respectively. αsno(rij)
and β(∆zij) are the horizontal and vertical structure functions:

αsno(rij) = (1 +
rij
L

) exp(−rij
L

) (9.14)

β(∆zij) is the same vertical structure function than that used for the screen level analysis (Equation 9.5). L
is the horizontal length parameter taken to 55000m, corresponding to an e-folding distance taken to 120 km.

The structure function parameters L (d for the screen level analysis) and h are controlled in the namelist
NAMSSA and in the current version their value is defined in the script SSAANA. The horizontal structure
functions used in the snow analysis and in the screen level parameters analysis are represented in Fig. 9.3.

The correlation matrix B is expressed as:

B(i , j ) = σ2
b × µ(i, j) (9.15)

with σb the standard deviation of background errors.

The covariance matrix of observation errors O is set to σ2
o × I where σo is the standard deviation of observation

errors and I the identity matrix.

The standard deviations of background, in situ observation and snow extent observation errors are set to 3 cm,
4 cm and 8 cm, respectively. The number of observations closest to a given grid point that are considered is
N = 50 (scanned within a radius of 250 km).

The final snow water equivalent product SWEa
s is then calculated using the analysed snow depth Sa:

SWEa
s =

ρbs × Sa

1000
(9.16)

The snow density is updated to ensure the consistency between the analysis and the physical parameterisation:

• In the case of positive analysis increments on snow free areas in the first guess, the snow density of
fresh snow is applied. It accounts for compaction effects of fresh snow due to meteorological conditions,
following a function of near surface air temperature and wind speed as described in the IFS documentation
Part IV: Physical processes Chapter 8.4.2.

• In the other cases, the snow density remains unchanged.
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Areas with permanent snow and ice (defined using the Global Land Cover Characterisation product) are set
to an arbitrary high value at each analysis cycle (SWEa

s = 10 m).

The snow temperature analysis is performed within the soil and snow temperature analysis as described in
Section 9.5.

9.3.3 Quality controls

For each datum a check is applied based on statistical interpolation methodology. An observation is rejected
if it satisfies

|∆Si|> γ
√
σ2
o + σ2

b (9.17)

where γ is the tolerance, controlled in the namelist NAMSSA and set to 5 for the snow analysis in the SSAANA
script.

Use of satellite data snow extent in mountainous area is switched off in the subroutine CALC DISTANCE,
based on an altitude threshold of 1500 m. This prevents from using relatively large scale information (4 km
resolution of the NOAA/NESDIS product), for grid points where local conditions apply.

In addition to the preliminary quality control, the following checks are applied for each grid point when using
SYNOP snow depth report.

(i) If T b
2m < 8◦C only snow-depth observations below 140 cm are accepted.

(ii) This limit is reduced to 70 cm if T b
2m > 8◦C.

(v) Snow-depth analysis is limited to 140 cm.
(vi) Snow-depth increments are set to zero when larger than (160− 16T b

2m) mm (where T b
2m is expressed in

Celsius).

Satellite-derived snow extent is used in the analysis to replace the role of snow depth climatology in correcting
for the model bias. However, there is the option to weight the analysis of snow depth with the climatological
value Sclim so that the final analysis is provided by

Sa = (1 − α)Sa + αSclim (9.18)

The relaxation coefficient α can be changed through the namelist. Its default value is set to 0.02, which
corresponds to a time scale of 12.5 days at six-hourly cycling.

9.3.4 Technical aspects

The technical aspects are very similar to those of the screen-level parameters analysis (see Section 9.2.3). So,
the program organisation when performing snow analysis is as shown in Fig. 9.2.

The routine INISNW performs initialisation of the actual snow analysis (instead of INIT2M for the screen-
level parameters analysis). Input fields read into memory in GETFIELDS and FIELD2ARRAY consist of the
snow water equivalent and snow density from the first-guess (6-hour forecast), 2-metre temperature first
guess, snow-depth climate (varies monthly with a linear temporal interpolation), land/sea mask and finally the
orography in a form of the geopotential. The actual snow analysis is performed under SNOW ANALYSIS.

The analysis increments are computed in the subroutine OIUPD. Subroutines CALC DISTANCE and OISET
select and sort the N closest observations from a given grid-point. Subroutine OIINC provides the analysis
increments computed from equations (9.11) and (9.12). Increments are finally added to the snow-depth fields
at grid points producing the final snow-depth output field, which is output in routine FDB OUTPUT. Statistics
are summarised in PRINT SUMMARY.

The main logicals of the namelist NAMSSA are as follows.

(i) L SNOW ANALYSIS: When set to .TRUE., the snow analysis is performed.
(ii) L SNOW DEPTH ANA: When set to .TRUE., the snow analysis is performed in snow depth (in

opposition to snow water equivalent assuming a constant value of 250 kg m−2 for observed snow
density).
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(iii) L USE SNOW CLIMATE: When set to .TRUE., a relaxation of the snow analysis towards a monthly
climatology is performed with a time scale of 12.5 days (the relaxation coefficient is passed through
NAMSSA).

(iv) L USE FG FIELD: When set to .TRUE. the snow analysis is set to the first-guess value (no use of
observations) and there is no relaxation to climatology.

(v) L USE SCOVER NESDIS: When set to .TRUE., the NOAA/NESDIS satellite product is used.

Most of the control parameters of the screen-level analysis are defined in the namelist NAMSSA. In addition
to those defined in Section 9.2.3

(vi) TOL SN: Tolerance criteria for snow depth observations (parameter γ in 9.17).
(viii) RSCALE X: horizontal distance L used in the horizontal structure function in (9.14), set to 55000 m.
(ix) RSCALE Z: vertical distance h used in the vertical structure function in (9.5), set to 800 m.

9.4 SIMPLIFIED EXTENDED KALMAN FILTER SOIL MOISTURE
ANALYSIS

9.4.1 Methodology

The simplified EKF soil moisture analysis used at ECMWF is a point wise data assimilation scheme. As
described in Drusch et al. (2009); de Rosnay et al. (2011c, 2013), the analysed soil moisture state vector xa

a is computed for each grid point as:

xa = xb +K
[
yo −H(xb)

]
(9.19)

with superscripts a, b, o standing for background, analysis and observations, respectively, x the model state
vector, y the observation vector and H the non-linear observation operator. The Kalman gain matrix K is
expressed as:

K=
[
P−1 +HTR−1H

]−1
HTR−1 (9.20)

where H is the linearised observation operator, P is the error covariance matrix associated with x and R is
the observation errors covariance matrix.

The background error covariance matrix P and the observation error matrix R are diagonal with terms
composed of error variances. These terms are based on static background errors, with soil moisture standard
deviation σb = 0.01m3m−3, and screen levels parameters standard deviations of σT = 1K for the 2-metre
temperature and σRH = 4% for the relative humidity. The ASCAT soil moisture data observation error is also
static and it is set to σascat = 0.05m3 ·m−3. For SMOS soil moisture, the product observation uncertainty
ǫsmos is accounted for in the SMOS observation error which is expressed as σsmos = 0.02 + 3 · ǫsmosm3 ·m−3.

In contrast to Drusch et al. (2009); de Rosnay et al. (2011c, 2013), in which the linearised observation operator
was computed in finite differences using trajectories with model state vector perturbations, the current SEKF
uses the EDA spread to compute the Jacobians. On each grid point, the EDA covariances between soil moisture
in each analysed layer and model predicted values of 2-metre temperature relative humidity and surface soil
moisture are computed and divided by the corresponding layer soil moisture variances. Using i to represent the
ith element of the observations vector and j for the model state vector, corresponding to the soil layer index,
the Jacobian elements Hij of the observation operator are:

Hij =
cov(Hi(x

eda), xeda
j )

var(xeda
j )

· cj (9.21)

with the superscript eda indicating that EDA fields are used, and with cj = 1/(1 + (j − 1) · αsekf ) and
αsekf = 0.6 a tapering coefficient that reduces the Jacobians at depth.

The Jacobians elements are computed at the observation time. The analysis increments are applied at the
analysis time t. The model state vector evolution from time t to time t+∆t is then controlled by the equation:

xb(t+∆t) =Mt [x
a(t)] (9.22)
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with M the non-linear state forecast model.

In the current implementation, the state vector is soil moisture. It has dimension jmax = 3 since the first
three layers of the HTESSEL LSM are analysed. The observations vector y includes 2-metre temperature and
relative humidity analyses as well as ASCAT-A and ASCAT-B rescaled soil moisture de Rosnay et al. (2011a),
and SMOS neural network soil moisture. For each grid point, a maximum of two ASCAT and two SMOS soil
moisture observations are used. When 12-hour assimilation windows are used, y has dimension imax = 8 since
2-meter temperature and relative humidity analyses are available twice per assimilation window, at synoptic
times.

9.4.2 Quality controls

To avoid spurious corrections, observations are rejected if the Jacobians become larger than 50K/m3m−3 for
T2m, 5/m

3m−3 for RH2m, or 2m3m−3/m3m−3 for ASCAT and SMOS soil moisture. In addition, the analysis
is locally switched off if the soil moisture increment for any layer is larger than 0.1m3m−3.

9.4.3 Technical aspects

The simplified EKF soil moisture analysis is a configuration of the IFS (NCONF=302). It is controlled by the
namelist NAMSEKF. In the current IFS cycle, a number of control parameters of this namelist are defined in
the SEKF SM script:

• Number of control variables, N SEKF CV=3, (i.e. number of analysed soil layers)
• EDAH TAPER=0.6, for αsekf = 0.6
• Background soil moisture error, BACK ERR=0.0001 m6m−6, corresponds to σb = 0.01m3m−3

• Screen level analysis errors, T2M ERR=1, RH2M ERR=16, correspond to σT = 1K and σRH = 4%
• ASCAT soil moisture errors, ASCAT ERR=0.0025, corresponds to σASCAT = 0.05m3m−3.
• For the SMOS soil moisture error, SMOS SM COEF ERR=3 and SMOS SM MIN VOL ERR=0.02 for

σsmos = 0.02 + 3 · ǫsmosm3 ·m−3.
• A switch is present to activate the use of the ASCAT (Advanced SCATterometer) soil moisture data

(LUSE ASCAT). From IFS cycle 40r3 is set to true by default.
• A switch is present from IFS cycle 46r1 to activate the use of the SMOS soil moisture data

(LUSE SMOS SM). It is set to true by default.

Fig. 9.4 shows the main steps of the simplified EKF soil moisture analysis. CNT0, SEKF1 and SEKF2 are the
control programs. From CSEKF2, SUSEKF does the setup of the EKF analysis. CNT3 is used to run a single
model trajectory by calling CNT4 which stores the model soil moisture that will enter equation 9.19.

OBSGEN and SEKF PREP ASCAT are the routine that prepare the observations to be used in the simplified
EKF analysis. OBSGEN reads the gridded observations (screen level observations and SMOS neural network soil
moisture) and SEKF PREP ASCAT reads the ASCAT ODB. Then CNT4 calls the simplified EKF programme
SM EKF MAIN which runs the EKF on each grid point of the model. Here the simplified EKF vectors and
matrices defined in Equations 9.19 to 9.21 are filled with model and observation values stored in the previous
routines. SEKF MAGN RH computes the relative humidity from the dew point and air temperatures following
the formulation of Buck (1981). SEKF GAIN computes the Kalman Gain.

9.5 1D OI SOIL AND SNOW TEMPERATURE ANALYSIS

The temperature of the first layer of soil (0-7cm) and the snow layer are analysed using a “local” one-
dimensional Optimal Interpolation (1D OI) technique as described in Mahfouf (1991) and Douville et al.
(2001). The analysis increments from the screen-level temperature analysis are used to produce increments for
the first layer soil temperature and snow temperature:

∆T = c× (Ta − Tb) (9.23)

with Ta and Tb the analysed and model first-guess temperatures, respectively. The coefficient c providing the
analysis increments is:

c= (1− F1)F3 (9.24)
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• CNT0
• SEKF1

• SEKF2
• SUSEKF
• CNT3

• CNT4
• OBSGEN
• SEKF PREP ASCAT
• SEKF GETEDA JACOBIANS
• SM EKF MAIN

• SEKF MAGN RH
• SEKF GAIN
• SEKF COSTF

• SM WRITE

Figure 9.4 Program organisation for the simplified EKF soil moisture analysis (NCONF=302).
.

F1 and F3 are empirical functions. F1 is function of the cosine of the mean solar zenith angle µM, averaged
over the 6-hours before the analysis time given by:

F1 =
1

2
{1 + tanh[λ(µM − 0.5)]} λ= 7 (9.25)

The empirical function F3 reduces increments over mountainous areas so that

F3 =






0 Z > Zmax(
Z − Zmax

Zmin − Zmax

)2
Zmin < Z < Zmax

1 Z < Zmin

(9.26)

where Z is the model orography, Zmin = 500 m and Zmax = 3000 m.

The coefficient c is such that soil and snow temperatures are more effective during night and in winter, when
the temperature errors are less likely to be related to soil moisture. In the 12-hour 4D-Var configuration, the
snow and soil temperature analysis is performed twice during the assimilation window and the sum of the
increments is added to the background values at analysis time.
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Chapter 10

Analysis of sea-ice concentration and
sea-surface temperature

10.1 INTRODUCTION

The analyses of sea-ice concentration (CI) and sea-surface temperature (SST) are a combination of the
OCEAN5 analysis of SST and CI, and interpolations to the model grid of daily global datasets provided by
the UK Met Office. The OSTIA product is described by Donlon et al. (2012) and is available in the ECMWF
archives form 20071020 onwards. Its sea ice component is taken from the Satellite Application Facility on Ocean
and Sea Ice (OSI-SAF) product. The lake information in the OSTIA product is produced using a lake surface
water temperature (LSWT) analysis described by Fiedler et al. (2014) Lake ice is added to the OSTIA ice field
using a combination of NCEP (National Centers for Environmental Prediction) SSM/I ice concentration and
a temperature threshold based on the LSWT analysis itself. The OCEAN5 analysis is described by Zuo et al.
(2018).

10.2 ECMWF RE-SAMPLING OF OSTIA TO MODEL GRID

The OSTIA product comes oversampled (i. e. at higher resolution than there is real information) at 0.05 degree
resolution, which is then area averaged over the boxes of the models reduced Gaussian grid. Product checks
are made so that the values lie within realistic values. The minimum ice concentration that is accepted by
the analysis is 20%. The SST in a grid box containing ice is now dependent on the ice concentration rather
than just being set to the freezing temperature of salt water (Tfzsw=271.46K) The default option (T0220) is
a smooth transition set by a weighting function W rather than threshold step change when ice was present,
which is what was used before. The sea-surface temperature is adjusted at grid points containing sea ice
weighted by the sea ice concentration such that

SST =W ∗ Tfzsw + (1−W ) ∗max(OSTIA SST, Tfzsw) (10.1)

where
W = 0.5(tanh((sea ice conc−A)B) + 1) (10.2)

with the parameters A= 0.2 and B = 20.

Other W options coded are T0310 where W is the same as 10.2 but A= 0.3 and B = 10. The other options
are that the SST weighting is linear for concentration up to 0.2 (L20) and 0.5(L50) or the SST is just changed
to the freezing temperature of salt water whenever sea ice is present (orig).

10.3 INTERPOLATION OF OCEAN5 FIELDS TO ATMOSPHERIC
GRID

The OCEAN5 fields are on a tri-polar grid, with a nominal 0.25◦ resolution, referred to as the ORCA 025
grid. A weight based interpolation scheme is used such that the field f at an atmospheric grid point x can be
written as

f(x) =
∑

i∈loc

wif(xi), (10.3)

where loc refers to some local neighbourhood of the atmospheric grid point x that contains the ocean grid
points xi a distance di from x. For a given length-scale ℓ the wi are weights given by the formula

wi =
e−

d2i
2ℓ

∑
i∈loc

e−
d2i
2ℓ

. (10.4)
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10.4 COMBINING OCEAN5 WITH PROCESSED OSTIA DATA

Let A denote either the SST or CI field as a result of the processing listed in Section 10.2. Let I denote either
the SST of CI field as a result of the interpolation of OCEAN5 fields as detailed in 10.3.

OCEAN5 data is only available within the ORCA 025 domain that does not include most lakes. The OCEAN5
data is combined with the field coming from the atmospheric analysis such that

O =A(land,lakes) + I(ocean,seas).

Then a mask is applied to choose which of the atmospheric or ocean fields to use in the final analysis, i.e.
apply mask m so that final field F satisfies

F =mA+ (1 −m)O.

For sea ice the mask m is used to take OSTIA sea ice south of the extent of the ORCA 025 grid. Hence

m=






0 lat>−75.5

1− 2(lat+ 76) −76≤ lat≤−75.5

1 lat<−76

. (10.5)

For SST the mask m is used to take OSTIA in the extra tropics and OCEAN5 in the tropics:

m=





0 |lat|< 20
1
5 (|lat| − 20) 20≤ |lat| ≤ 25

1 |lat|> 25

. (10.6)
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Chapter 11

Data flow
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11.13.3 Input observation data

11.13.4 Output GRIB fields on model grid

11.14 Soil moisture analysis

11.14.1 Input GRIB fields on model grid

11.14.2 Output GRIB fields on model grid

11.14.3 Invariant climatological fields

11.1 NOTATION

The following environment variables, which are used in the same way in the data assimilation scripts, are
referred to in this chapter.

Table 11.1 Definition of environment variables.

Variable Meaning Default value

${DATA} Data directory for invariant files
${GTYPE} Gaussian grid type l 2 (ie linear reduced Gaussian grid)
${IFS CYCLE} IFS cycle name CY36R1
${LEVELS} Number of vertical model levels 91
${MM} Month
${RESOL} Spectral truncation 1279
${starttime} Start of 4D-Var window as yyyymmddhh
${WDIR} Work directory (1 for each cycle)

In this chapter, the notation illustrated in Fig. 11.1 is used in diagrams to distinguish between computation
steps and data sets.

Computation steps

Data sets

Figure 11.1 Notation.

11.2 DATA ASSIMILATION CYCLING

Fig. 11.2 gives an overview of the data flow through the data assimilation system with the operational early-
delivery configuration. The 12-hour 4D-Var analyses are run with a delayed cut-off time, in order to use
the maximum possible number of observations. The 0000 UTC analysis uses observations from the time
window 2101–0900 UTC, while the 1200 UTC analysis uses observations in the window 0901–2100 UTC. The
extraction tasks for observations in the periods 2101–0300 UTC and 0301–0900 UTC are run at 1345 and
1400 UTC respectively, while the extraction tasks for the observations in the periods 0901–1500 UTC and
1501–2100 UTC are run at 0145 and 0200 UTC. The 0000 UTC 12-hour 4D-Var analysis generates two sets
of analysed fields, at 0000 and 0600 UTC. A separate surface analysis is run every 6 hours. The final analysis
is a combination of the fields from 4D-Var and from the surface analysis. The first guess for the 0000 UTC
12-hour 4D-Var analysis is the three-hour forecast from the previous day’s 1800 UTC delayed cut-off analysis.
The first guess for the 1200 UTC 12-hour 4D-Var delayed cut-off analysis is the three-hour forecast from the
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Figure 11.2 Data assimilation cycling with the Early Delivery configuration.

0600 UTC analysis. It is these 12-hour 4D-Var delayed cut-off analyses that propagate information forwards
from day to day.

The early-delivery analyses do not propagate information from cycle to cycle. Each analysis is reinitialized with
the best available model fields from the delayed cut-off assimilation. The 0000 UTC early-delivery analysis
is a 6-hour 4D-Var analysis that uses observations in the time window 2101–0300 UTC. The cut-off time
is 0400 UTC, and any observations which arrive after this time are not used by the early-delivery analysis.
However, if they arrive by 1400 UTC, they can still be used by the delayed cut-off 12-hour 4D-Var 0000 UTC
analysis. The first guess for the 0000 UTC early-delivery analysis is the three-hour forecast from the previous
day’s 1800 UTC delayed cut-off analysis.

The early-delivery 1200 UTC analysis is a 6-hour 4D-Var analysis that uses observations in the time window
0901–1500 UTC, with a cut-off time of 1600 UTC. Its first guess is the three-hour forecast from the 0600 UTC
delayed cut-off analysis.

11.3 OVERVIEW OF 4D-VAR DATA FLOW

Fig. 11.3 gives an overview of the data input to and output from 4D-Var. There are three types of input data.

(i) GRIB fields from the Fields Data Base (FDB). GRIB is a World Meteorological Organisation (WMO)
standard format for the representation of General Regularly-distributed Information in Binary. The GRIB
code is described at http://www.ecmwf.int/products/data/software/grib.html. The background fields,
forecast errors and model errors are read from the Fields Data Base.
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Figure 11.3 4D-Var data flow.

(ii) Observations from the Observation Data Base (ODB).
(iii) Cycling variational bias correction and emissivity files, plus other data files.

Output data from 4D-Var is in three forms.

(i) GRIB fields in the Fields Data Base, eg analysis fields, error fields.
(ii) updates to the ODB, including departures of observations from the background and the analysis and

quality control information.
(iii) updated variational bias correction and emissivity files.

11.4 INPUT GRIB FIELDS

The following files in the work directory, $WDIR, contain GRIB format fields which have been extracted from
the Fields Data Base. Fields of type ‘fc’ are taken from the forecast from the previous cycle’s analysis, and are
valid at the start of the 4D-Var window. Fields of type ‘an’ are taken from the previous analysis. The spectral
orography is taken from the climatology file of the appropriate resolution, to ensure that the orography is not
changed by encoding into and decoding from GRIB. Fields of type ‘ef’, forecast error in radiance space, and
‘me’, model error, were output from the previous cycle’s 4D-Var analysis. Fields of type ‘ses’, ensmeble based
filtered uppera air forecast errors, are output from the attached ensemble data assimilation run.

Files which are needed as input to the coupled wave model also have the stream defined. If stream= DA, then
the fields were output from the atmospheric model, and the GRIB codes are defined in (ECMWF local table 2,
Version 128). If stream=WAVE, then the fields were output from the wave model and the GRIB codes are
defined in (ECMWF local table 2, Version 140).
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11.4.1 reftrajshml

Table 11.2 Background, spherical harmonics, model levels.

Code Name Description Units Levels Type

129 Z Orography (geopotential) m2 s−2 1 climate
130 T Temperature K 1-$LEVELS fc
138 VO Vorticity s−1 1-$LEVELS fc
152 LNSP Logarithm of surface pressure 1 fc
155 D Divergence s−1 1-$LEVELS fc

11.4.2 reftrajggml

Table 11.3 Background, Gaussian grid, model levels.

Code Name Description Units Levels Type

133 Q Specific humidity kg kg−1 1-$LEVELS fc

203 O3 Ozone mass mixing ratio kg kg−1 1-$LEVELS fc

75 CRWC Cloud rain water content kg kg−1 1-$LEVELS fc

76 CSWC Cloud snow water content kg kg−1 1-$LEVELS fc

246 CLWC Cloud liquid water content kg kg−1 1-$LEVELS fc

247 CIWC Cloud ice water content kg kg−1 1-$LEVELS fc
248 CC Cloud cover (0-1) 1-$LEVELS fc
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11.4.3 reftrajggsfc

Table 11.4 Surface fields, Gaussian grid, background (variable fields) and analysis (invariant fields).

Code Name Description Units Type

031 CI Sea-ice cover (0-1) fc
032 ASN Snow albedo (0-1) fc

033 RSN Snow density kg m−3 fc
034 SST Sea surface temperature K fc
035 ISTL1 Ice surface temperature, layer 1 K fc
036 ISTL2 Ice surface temperature, layer 2 K fc
037 ISTL3 Ice surface temperature, layer 3 K fc
038 ISTL4 Ice surface temperature, layer 4 K fc
039 SWVL1 Volumetric soil water, layer 1 m3 m−3 fc
040 SWVL2 Volumetric soil water, layer 2 m3 m−3 fc
041 SWVL3 Volumetric soil water, layer 3 m3 m−3 fc
042 SWVL4 Volumetric soil water, layer 4 m3 m−3 fc
139 STL1 Soil temperature level 1 K fc
141 SD Snow depth m of water equivalent fc
148 CHNK Charnock parameter fc
170 STL2 Soil temperature level 2 K fc
183 STL3 Soil temperature level 3 K fc
198 SRC Skin reservoir content m of water fc
235 SKT Skin temperature K fc
236 STL4 Soil temperature level 4 K fc
238 TSN Temperature of snow layer K fc

228131 U10N Neutral wind u component at 10m m s−1 fc
228132 V10N Neutral wind v component at 10m m s−1 fc
244 FSR Surface roughness m fc
245 FLSR Logarithm of surface roughness m fc
015 ALUVP UV visible albedo for direct radiation (0-1) an
016 ALUVD UV visible albedo for diffuse radiation (0-1) an
017 ALNIP Near IR albedo for direct radiation (0-1) an
018 ALNIP Near IR albedo for diffuse radiation (0-1) an
027 CVL Low vegetation cover (0-1) an
028 CVH High vegetation cover (0-1) an
029 TVL Type of low vegetation Table index an
030 TVH Type of high vegetation Table index an
043 SLT Soil type an
066 LAI LV Leaf area index, low vegetation m2 m−2 an
067 LAI HV Leaf area index, high vegetation m2 m−2 an
074 SDFOR Standard deviation of filtered sub-gridscale orography an
160 SDOR Standard deviation of orography an
161 ISOR Anisotrophy of sub-gridscale orography an
162 ANOR Angle of sub-gridscale orography rad an
163 SLOR Slope of sub-gridscale orography an
172 LSM Land-sea mask (0, 1) an
173 SR Surface roughness m an
174 ALB Albedo (0-1) an
234 LSRH Logarithm of surface roughness an
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11.4.4 errgrib

Table 11.5 Background errors, model levels, Gaussian grid.

Code Name Description Units Levels Type

130 T Temperature K 1-$LEVELS ses
131 U u velocity m s−1 1-$LEVELS ses
132 V v velocity m s−1 1-$LEVELS ses

133 Q Specific humidity kg kg−1 1-$LEVELS ses
138 VO Vorticity s−1 1-$LEVELS ses
152 LNSP Logarithm of surface pressure 1 ses
156 GH Geopotential height m 1-$LEVELS ses
157 R Relative humidity % 1-$LEVELS ses
194 BTMP Brightness temperature K channels 1-54 ef

203 O3 Ozone mass mixing ratio kg kg−1 1-$LEVELS ses

11.4.5 spmoderr bg 01

Table 11.6 Model error, spherical harmonics, model levels.

Code Name Description Units Levels Type

130 T Temperature K 1-$LEVELS me
138 VO Vorticity s−1 1-$LEVELS me
152 LNSP Logarithm of surface pressure 1 me
155 D Divergence s−1 1-$LEVELS me

11.4.6 wam specwavein

Table 11.7 Background, surface, regular latitude/longitude grid, input for wave model.

Code Name Description Units Type Stream

251 2DFD 2D wave spectra m2 s radian−1 fc WAVE

11.4.7 wam cdwavein

Table 11.8 Background, surface, regular latitude/longitude grid, input for wave model.

Code Name Description Units Type Stream

233 CDWW Coefficient of drag with waves fc WAVE

11.4.8 wam uwavein

Table 11.9 Background, surface, regular latitude/longitude grid, input for wave model.

Code Name Description Units Type Stream

245 WIND 10 metre wind speed m s−1 fc WAVE
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11.4.9 wam sfcwindin

Table 11.10 Background, surface, Gaussian grid, input for wave model.

Code Name Description Units Type Stream

031 CI Sea-ice cover (0-1) fc DA
165 10U 10 metre U wind component m s−1 fc DA
166 10V 10 metre U wind component m s−1 fc DA

11.5 INPUT OBSERVATION DATA

Observations are read into 4D-Var from the Observation Data Base (ODB). The observation processing is
described in more detail in the ODB documentation (file:///home/rd/mps/public/ugodb.pdf).

11.6 INPUT DATA FILES

Input data files can be split into two categories, invariant and date-dependent. For the invariant files, a single
copy is used for the lifetime of the experiment or the operational suite. The file is copied or linked into the
experiment’s ${DATA} directory at start-up time in task datalinks.

Some files, such as blacklists and bias files, are date-dependent. In the operational suite, the blacklist can be
changed at short notice if, for example, a satellite channel fails or a new data source arrives which has to be
passively monitored to assess its quality before it can be used actively. Date-dependent files are copied to the
${WDIR} directory in task vardata at the beginning of each data assimilation cycle.

11.6.1 Invariant data files

• ${DATA}/an/cmod.table.ieee – scatterometer coefficients
• ${DATA}/an/external bl mon monit.b – external blacklist file
• ${DATA}/an/moderr.cov – model error covariances for weak-constraint 4D-Var
• ${DATA}/an/neuroflux l${LEVELS} – extended linearized longwave radiation
• ${DATA}/an/radjacobian l${LEVELS} – extended linearized longwave radiation
• ${DATA}/an/rs bias T table1 – radiosonde temperature bias correction coefficients
• ${DATA}/an/rs bias T table2 – radiosonde temperature bias correction coefficients
• ${DATA}/an/rs bias T table3 – radiosonde temperature bias correction coefficients
• ${DATA}/an/rszcoef fmt – radiosonde height observation error correlation coefficients
• ${DATA}/an/ship anemometer heights – ship anemometer heights
• ${DATA}/an/stabal96.bal – background error balance parameters
• ${DATA}/an/stabal96.cv – background error correlations
• ${DATA}/an/stdev of climate/m${MM} – climatological standard deviations for use in error growth

model
• ${DATA}/an/wavelet T${RESOLINC n} L${LEVELS}.cv – wavelet Jb background

error covariances
• ${DATA}/climate/${RESOL}${GTYPE}/O3CHEM${MM} – monthly ozone chemistry climate files
• ${DATA}/ifs/namelist ${IFS CYCLE} – an empty copy of all the IFS namelists
• ${DATA}/ifs/rtable${GTYPE}${RESOL} – namelist NAMRGRI, defining the number of points on each

row of the Gaussian grid
• ${DATA}/ifs/vtable L${LEVELS} – namelist NAMVV1, defining the hybrid vertical coordinate level

coefficients
• ${DATA}/sat/mwave error ${platform} ${instrument}.dat – microwave error files
• ${DATA}/sat/AIRS CLDDET.NL – list of channels to be used for AIRS with cloud detection
• ${DATA}/sat/amv bias info – atmospheric motion vector information
• ${DATA}/sat/bcor reo3 – ozone bias correction file
• ${DATA}/sat/chanspec noaa – noaa channel specification file
• ${DATA}/sat/cstlim noaa – noaa cost limit file
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• ${DATA}/sat/filbiaso [ssmi|tmi] – SSMI/TMI 1D-Var bias file
• ${DATA}/sat/filcmix [ssmi|tmi] – SSMI/TMI 1D-Var coefficient file
• ${DATA}/sat/filcovb – SSMI 1D-Var coefficient file
• ${DATA}/sat/filcovo [ssmi|tmi] – SSMI/TMI 1D-Var coefficient file
• ${DATA}/sat/filcwat [ssmi|tmi] – SSMI/TMI 1D-Var coefficient file
• ${DATA}/sat/iasichannels – list of channels to be used for IASI
• ${DATA}/sat/IASI CLDDET.NL – list of channels to be used for IASI with cloud detection
• ${DATA}/sat/mask asc – radiosonde mask
• ${DATA}/sat/mietable dmsp ssmi – optical properties of hydrometeors used in the scattering

calculations for 1D-Var rain
• ${DATA}/sat/rmtberr [noaa|airs|iasi] – measurement error files
• ${DATA}/sat/rttov/rtcoef ${platform} ${instrument}.dat – RTTOV radiative transfer coefficient files,

for all current and historic satellite platforms and instruments
• ${DATA}/sat/scanbias.ssmi – SSMI scan bias coefficients
• ${DATA}/sat/[sigmab|correl] – background error files
• ${DATA}/sat/ssmi tovs1c buf – ATOVS BUFR template for conversion of SSMI data to 1c-radiances
• ${DATA}/sat/thin reo3 – ozone thinning file
• ${DATA}/scat/mle norm.dat – QuikSCAT look-up tables
• ${DATA}/scat/nscat2.noise – QuikSCAT noise look-up tables
• ${DATA}/scat/nscat2.table – QuikSCAT GMF look-up tables
• ${DATA}/scat/qscat1.table – QuikSCAT GMF look-up tables

11.6.2 Date-dependent data files

• ${WDIR}/bl data sel – data selection blacklist
• ${WDIR}/monthly bl mon monit.b – monthly monitoring blacklist
• ${WDIR}/VARBC.cycle.prev – variational bias correction file from previous cycle
• ${WDIR}/emiskf.cycle.prev.tar – emissivity file from previous cycle
• ${WDIR}/vardir/erss0 – ERS1 scatterometer sigma0 bias correction
• ${WDIR}/vardir/erssp – ERS1 scatterometer speed bias correction
• ${WDIR}/vardir/ascats0 – ASCAT scatterometer sigma0 bias correction
• ${WDIR}/vardir/ascatsp – ASCAT scatterometer speed bias correction

11.7 OUTPUT GRIB FIELDS

Fields of type ‘4v’ (4D-Var analysis), ‘an’ (analysis), ‘ea’ (analysis errors), ‘ef’ (forecast errors) and ’me’ (model
error) are written in GRIB code to the Fields Data Base from 4D-Var. Fig. 11.4 illustrates the difference between
type ‘4v’ and type ‘an’ analysis fields. For type ‘4v’ fields, the analysis increment from the final minimization
is interpolated back to high resolution and added to the penultimate high resolution trajectory at its starting
point. Analysis fields output from the final high resolution non-linear trajectory are of type ‘4v’, with a base
time at the start of the trajectory and a step corresponding to the number of hours into the trajectory. So, for
example, for the 1200 UTC 12-hour 4D-Var for date yyyymmdd, with an observation window from 0300 to
1500 UTC, the 4D-Var analysis at 1200 UTC is stored in the Fields Data Base and MARS with parameters:

date= yyyymmdd, hour= 03, step= 9, type= 4v

For type ‘an’ fields, the increment from the final minimization is added to the penultimate high resolution
trajectory at the actual analysis time. Fields from the surface analysis are combined with fields from 4D-Var
to give the full analysis. For the 1200 UTC 12-hour 4D-Var for date yyyymmdd, with an observation window
from 0300 to 1500 UTC, the type ‘an’ analysis at 1200 UTC is stored in the Fields Data Base and MARS
with parameters:

date= yyyymmdd, hour= 12, step= 0, type= an

Output analysis fields, of type ‘4v’ and ‘an’, can be generated on model levels, pressure levels and isentropic
surfaces. Namelist NAMFPC controls the content of the post-processing, and there is a wide selection of
fields that can be produced. The IFS determines internally whether fields should be generated in spectral or
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Figure 11.4 Type ‘an’ and type ‘4v’ fields written from 4D-Var to the Fields Data Base.

grid-point form. Described below is only the list of fields that are needed as input for the next forecast in
order to cycle the data assimilation forward in time. The forecast starts from fields of type ‘an’. Some of the
surface fields are generated by the surface analysis jobs, which run at the same time as 4D-Var. It is important
that these fields are excluded from the type ‘an’ post-processing of 4D-Var, so that they cannot overwrite the
surface analysis fields.

11.7.1 Output type ‘an’ model level spectral fields

Table 11.11 Output type ‘an’ model level spectral fields.

Code Name Description Units Levels

130 T Temperature K 1-$LEVELS
135 W Vertical velocity m s−1 1-$LEVELS
138 VO Vorticity s−1 1-$LEVELS
152 LNSP Logarithm of surface pressure 1
155 D Divergence s−1 1-$LEVELS
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11.7.2 Output type ‘an’ model level Gaussian grid-point fields

Table 11.12 Output type ‘an’ model level Gaussian grid-point fields.

Code Name Description Units Levels

75 CRWC Cloud rain water content kg kg−1 1-$LEVELS

76 CSWC Cloud snow water content kg kg−1 1-$LEVELS

133 Q Specific humidity kg kg−1 1-$LEVELS

203 O3 Ozone mass mixing ratio kg kg−1 1-$LEVELS

246 CLWC Cloud liquid water content kg kg−1 1-$LEVELS

247 CIWC Cloud ice water content kg kg−1 1-$LEVELS
248 CC Cloud cover (0-1) 1-$LEVELS
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11.7.3 Output type ‘an’ surface Gaussian grid-point fields

Table 11.13 Output type ‘an’ surface Gaussian grid-point fields.

Code Name Description Units

015 ALUVP UV visible albedo for direct radiation (0-1)
016 ALUVD UV visible albedo for diffuse radiation (0-1)
017 ALNIP Near IR albedo for direct radiation (0-1)
018 ALNIP Near IR albedo for diffuse radiation (0-1)
027 CVL Low vegetation cover (0-1)
028 CVH High vegetation cover (0-1)
029 TVL Type of low vegetation Table index
030 TVH Type of high vegetation Table index
032 ASN Snow albedo (0-1)
035 ISTL1 Ice surface temperature, layer 1 K
036 ISTL2 Ice surface temperature, layer 2 K
037 ISTL3 Ice surface temperature, layer 3 K
038 ISTL4 Ice surface temperature, layer 4 K
042 SWVL4 Volumetric soil water, layer 4 m3 m−3

043 SLT Soil type
066 LAI-LV Leaf area index, low vegetation m2 m−2

067 LAI-HV Leaf area index, high vegetation m2 m−2

074 SDFOR Standard deviation of filtered subgrid orography
128 BV Budget values -
129 Z Orography (geopotential) m2 s−2

134 SP Surface pressure Pa

136 TCW Total column water kg m−2

137 TCWV Total column water vapor kg m−2

148 CHNK Charnock parameter
151 MSL Mean sea level pressure Pa
160 SDOR Standard deviation of orography
161 ISOR Anisotrophy of sub-gridscale orography
162 ANOR Angle of sub-gridscale orography rad
163 SLOR Slope of sub-gridscale orography
164 TCC Total cloud cover (0-1)
165 10U 10 metre U wind component m s−1

166 10V 10 metre V wind component m s−1

172 LSM Land-sea mask (0,1)
173 SR Surface roughness m
174 ALB Albedo (0-1)
186 LCC Low cloud cover (0-1)
187 MCC Medium cloud cover (0-1)
188 HCC High cloud cover (0-1)
198 SRC Skin reservoir content m of water

206 TCO3 Total column ozone content kg m−2

234 LSRH Logarithm of surface roughness
235 SKT Skin temperature K
236 STL4 Soil temperature level 4 K

228021 FDIR Total-sky direct solar radiation at surface J m−2

228022 CDIR Clear-sky direct solar radiation at surface J m−2

228246 100U Wind u component at 100 m m s−1

228247 100V Wind v component at 100 m m s−1
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11.7.4 Output type ‘an’ wave model fields

The output wave model fields are on a regular latitude/longitude grid. They are identified by stream ‘WAVE’
and are encoded with GRIB codes defined in ECMWF local table 2, Version 140.

Table 11.14 Output type ‘an’ wave model fields.

Code Name Description Units

251 2DFD 2D wave spectra m2 s radian−1

233 CDWW Coefficient of drag with waves
245 WIND 10 metre wind speed m s−1

11.7.5 Output error fields

The forecast errors output from one cycle are used as the background errors input to the next cycle, and their
content is described in Section 11.4.4 above. The analysis errors contain similar fields, but are of type ‘ea’.
The analysis errors are used to calculate the perturbations for the Ensemble Prediction System.

11.7.6 Output model error fields

The model error fields which are output from the analysis are input to the next forecast. Their content is
described in Section 11.4.5 above.

11.8 OUTPUT OBSERVATION DATA

Departures of observations from the background and the analysis, and quality information are written to the
Observation Data Base (ODB). The observation processing is described in more detail in Part I.

11.9 OUTPUT DATA FILES

• ${WDIR}/VARBC.cycle – updated variational bias correction file
• ${WDIR}/emiskf.cycle.tar – updated emissivity file

11.10 SEA SURFACE TEMPERATURE ANALYSIS

The sea surface temperature analysis is done every 6 hours.

11.10.1 Input GRIB fields on model grid

These are extracted from the Fields Data Base. The background fields, of type ‘fc’, are taken from the forecast
from the previous 4D-Var analysis time. The persistence analysis, of type ‘an’, is taken from the previous sea
surface temperature analysis time, 6 hours earlier (which is not necessarily a 4D-Var analysis time). In the
table below, ‘T’ is used to denote the analysis time, and ‘T-6’ is used to denote the persistence analysis time.

Table 11.15 Input GRIB fields on model grid.

Code Name Description Units Type Time

031 CI Sea-ice cover (0-1) fc T
034 SST Sea surface temperature K fc T
034 SST Sea surface temperature K an T-6
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11.10.2 Input OSTIA field

• $WDIR/surf anal/ostia – OSTIA sea surface temperature and sea ice concentration fields, encoded as
BUFR data

11.10.3 Input data files

• $DATA/sst/sst clim – surface air temperature monthly climatology, reduced to mean-sea level (0.5× 0.5
degree regular latitude/longitude grid, 720× 361 points)

• $DATA/sst/ice clim – ice monthly climatology
• ${DATA}/climate/${RESOL}${GTYPE}/lsmoro – land/sea mask and orography on model Gaussian

grid
• ${DATA}/climate/${RESOL}${GTYPE}/clake – lake mask

11.10.4 Output GRIB fields on model grid

The following fields are written to the Fields Data Base:

Table 11.16 Output GRIB fields on model grid.

Code Name Description Units Type

031 CI Sea-ice cover (0-1) an
034 SST Sea surface temperature K an

11.11 2 METRE TEMPERATURE ANALYSIS

The 2 metre temperature analysis is done every 6 hours.

11.11.1 Input GRIB fields on model grid

These are extracted from the Fields Data Base. The background fields, of type ‘fc’, are taken from the forecast
from the previous 4D-Var analysis time. The invariant fields, of type ‘an’, are taken from the previous 4D-Var
analysis.

Table 11.17 Input GRIB fields on model grid.

Code Name Description Units Type

129 Z Orography m2 s−2 an
172 LSM Land/sea mask (0-1) an
139 STL1 Soil temperature level 1 K fc
167 2T 2 metre temperature K fc
168 2D 2 metre dewpoint temperature K fc

11.11.2 Input observation data

Observations are read from the Observation Data Base.

11.11.3 Output GRIB field on model grid

The analysed 2 metre temperature field is written to the Fields Data Base.
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Table 11.18 Output GRIB field on model grid.

Code Name Description Units Type

167 2T 2 metre temperature K an

11.12 2 METRE RELATIVE HUMIDITY ANALYSIS

The 2 metre relative humidity analysis is done every 6 hours. Although the analysed field is 2 metre relative
humidity, the final output product is 2 metre dewpoint temperature. The 2 metre relative humidity analysis
cannot start until the 2 metre temperature analysis has completed, since the output from the 2 metre
temperature analysis is needed in the computation of the 2 metre dewpoint temperature.

11.12.1 Input GRIB fields on model grid

These are extracted from the Fields Data Base. The background fields, of type ‘fc’, are taken from the forecast
from the previous 4D-Var analysis time. The invariant fields, of type ‘an’, are taken from the previous 4D-Var
analysis.

Table 11.19 Input GRIB fields on model grid.

Code Name Description Units Type

129 Z Orography m2 s−2 an
172 LSM Land/sea mask (0-1) an
139 STL1 Soil temperature level 1 K fc
167 2T 2 metre temperature K fc
168 2D 2 metre dewpoint temperature K fc

11.12.2 Input observation data

Observations are read from the Observation Data Base.

11.12.3 Output GRIB field on model grid

The derived 2 metre dewpoint temperature field is written to the Fields Data Base.

Table 11.20 Output GRIB field on model grid.

Code Name Description Units Type

168 2D 2 metre dewpoint temperature K an

11.13 SNOW ANALYSIS

The snow analysis is done every 6 hours. It cannot start until the 2 metre temperature analysis has completed,
since the 2 metre temperature analysis field is one of the inputs to the snow analysis.

11.13.1 Input GRIB fields on model grid

These are extracted from the Fields Data Base. The background fields, of type ‘fc’, are taken from the forecast
from the previous 4D-Var analysis time. The invariant fields of type ‘an’, orography and land/sea mask, are
taken from the previous 4D-Var analysis. This is denoted T4V in the table below. The persistence snow depth
analysis, of type ‘an’, is taken from the previous snow analysis time, 6 hours earlier (which is not necessarily a
4D-Var analysis time). In the table below, ‘T’ is used to denote the snow analysis time, and ‘T-6’ is used to
denote the persistence snow analysis time.
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Table 11.21 Input GRIB fields on model grid.

Code Name Description Units Type Time

129 Z Orography m2 s−2 an T4V
172 LSM Land/sea mask (0-1) an T4V

033 RSN Snow density kg m−3 fc T
141 SD Snow depth m of water equivalent fc T
141 SD Snow depth m of water equivalent an T-6
167 2T 2 metre temperature K an T

11.13.2 Input data files

• ${DATA}/climate/${RESOL}${GTYPE}/snow – snow depth climatology (m of water equivalent) on
model Gaussian grid

• ${DATA}/climate/${RESOL}${GTYPE}/cicecap – on model Gaussian grid
• $WDIR/imssnow – NESDIS snow cover field (0,1) on polar stereographic grid of approximately 25 km

resolution. The data is in BUFR format, with triplets of latitude/longitude/snow cover. The NESDIS
snow cover field is only used once per day, for the 06Z snow analysis.

11.13.3 Input observation data

Observations are read from the Observation Data Base.

11.13.4 Output GRIB fields on model grid

The following fields are written to the Fields Data Base:

Table 11.22 Output GRIB fields on model grid.

Code Name Description Units Type

033 RSN Snow density kg m−3 an
141 SD Snow depth m of water equivalent an

11.14 SOIL MOISTURE ANALYSIS

The soil moisture analysis is done every 6 hours. It cannot start until the sea surface temperature analysis and
the snow analysis have completed.

11.14.1 Input GRIB fields on model grid

These are extracted from the Fields Data Base. The background fields, of type ‘fc’, are taken from the forecast
from the previous 4D-Var analysis time. The analysed fields, of type ‘an’, are output from the current 4D-Var
analysis, the sea surface temperature analysis, the 2 metre temperature analysis, the 2 metre relative humidity
analysis or the snow analysis.

96 IFS Documentation – Cy47r3



Part II: Data Assimilation

Table 11.23 Input GRIB fields on model grid.

Code Name Description Units Type Origin

039 SWVL1 Volumetric soil water, layer 1 m3 m−3 fc Forecast
040 SWVL2 Volumetric soil water, layer 2 m3 m−3 fc Forecast
041 SWVL3 Volumetric soil water, layer 3 m3 m−3 fc Forecast

133 Q Specific humidity on kg kg−1 fc Forecast
lowest model level

139 STL1 Soil temperature, level 1 K fc Forecast
142 LSP Large scale precipitation m fc Forecast
143 CP Convective precipitation m fc Forecast
167 2T 2 metre temperature K fc Forecast
168 2D 2 metre dewpoint temperature K fc Forecast
170 STL2 Soil temperature, level 2 K fc Forecast
176 SSR Surface solar radiation W m−2 s fc Forecast
183 STL3 Soil temperature level 3 K fc Forecast
238 TSN Temperature of snow layer K fc Forecast
027 CVL Low vegetation cover (0-1) an 4D-Var
028 CVH High vegetation cover (0-1) an 4D-Var
029 TVL Type of low vegetation Table index an 4D-Var
030 TVH Type of high vegetation Table index an 4D-Var
129 Z Orography m2 s−2 an 4D-Var

133 Q Specific humidity on kg kg−1 an 4D-Var
lowest model level

141 SD Snow depth m of water equivalent an Snow analysis
165 10U 10 metre U wind component m s−1 an 4D-Var
166 10V 10 metre V wind component m s−1 an 4D-Var
167 2T 2 metre temperature K an 2 metre temp. anal.
168 2D 2 metre dewpoint temperature K an 2 metre rel. hum. anal.
172 LSM Land-sea mask (0, 1) an 4D-Var
174 AL Albedo (0-1) an 4D-Var

11.14.2 Output GRIB fields on model grid

The following fields are output from the soil moisture analysis and written to the Fields Data Base. Before
being written, the STL1 (soil temperature level 1) field is manipulated as follows:

(i) land values are unchanged
(ii) over sea,

STL1 = SST × (1− CI ) + ISTL1 × CI

where

SST = analysed sea surface temperature

CI = analysed sea ice field, which varies between 0 (open water) and 1 (full ice cover)

ISTL1 = background soil temperature level 1
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Table 11.24 Output GRIB fields on model grid.

Code Name Description Units

039 SWVL1 Volumetric soil water, layer 1 m3 m−3

040 SWVL2 Volumetric soil water, layer 2 m3 m−3

041 SWVL3 Volumetric soil water, layer 3 m3 m−3

042 SWVL4 Volumetric soil water, layer 4 m3 m−3

139 STL1 Soil temperature, level 1 K
170 STL2 Soil temperature, level 2 K
183 STL3 Soil temperature, level 3 K
238 TSN Temperature of snow layer K

11.14.3 Invariant climatological fields

The final step of the soil moisture analysis task is to copy the invariant fields from the climatology files to the
analysis, after first manipulating the GRIB headers to give values appropriate for the current data assimilation
cycle. In this way, it is ensured that invariant fields remain unchanged, without any loss of precision due to
repeatedly encoding and decoding GRIB fields.

Table 11.25 Invariant climatological fields.

Code Name Description Units

015 ALUVP UV visible albedo for direct radiation (0-1)
016 ALUVD UV visible albedo for diffuse radiation (0-1)
017 ALNIP Near IR albedo for direct radiation (0-1)
018 ALNIP Near IR albedo for diffuse radiation (0-1)
027 CVL Low vegetation cover (0-1)
028 CVH High vegetation cover (0-1)
029 TVL Type of low vegetation Table index
030 TVH Type of high vegetation Table index
043 SLT Soil type
129 Z Orography m2 s−2

160 SDOR Standard deviation of orography
161 ISOR Anisotrophy of sub-gridscale orography
162 ANOR Angle of sub-gridscale orography rad
163 SLOR Slope of sub-gridscale orography
172 LSM Land-sea mask (0,1)
173 SR Surface roughness m
174 ALB Albedo (0-1)
234 LSRH Logarithm of surface roughness
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Andersson, E., Hólm, E. and Thépaut, J. N. (2004). Impact studies of main types of conventional and satellite
humidity data. In Proc. 3rd WMO Workshop on The Impact of Various Observing Systems on NWP, Alpbach,
Austria, 9–12 March 2004.

Andersson, E. and Järvinen, H. (1999). Variational quality control. Q. J. R. Meteorol. Soc., 125, 697–722.

Andersson, E., Pailleux, J., Thépaut, J.-N., Eyre, J. R., McNally, A. P., Kelly, G. A. and Courtier, P. (1994).
Use of cloud-cleared radiances in three/four-dimensional variational data assimilation. Q. J. R. Meteorol.
Soc., 120, 627–653.

Baker, N. L. and Daley, R. (2000). Observation and background adjoint sensitivity in the adaptive observation-
targeting problem. Q. J. R. Meteorol. Soc., 126, 1431–1454.

Bechtold, P., Semane, N., Lopez, P., Chaboureau, J.-P., Beljaars, A. and Bormann, N. (2014). Representing
equilibrium and non-equilibrium convection in large-scale models. J. Atmos. Sci., 71, doi 10.1175/JAS–D–
13–0163.1.

Benedetti, A. and Fisher, M. (2006). Background error statistics for aerosols. ECMWF Tech. Memo. No. 489.

Betts, A. (1997). The parametrization of deep convection: A review. In Proc. ECMWF Workshop on New
Insights and Approaches to Convective Parametrization, pp. 166–188, Reading, 4–7 November 1996.

Blackadar, A. K. (1962). The vertical distribution of wind and turbulent exchange in a neutral atmosphere.
J. Geophys. Res., 67, 3095–3102.

Bonavita, M., Holm, E., Isaksen, L. and Fisher, M. (2016). The evolution of the ECMWF hybrid data
assimilation system. Q. J. R. Meteorol. Soc., 142, 287–303.

IFS Documentation – Cy47r3 99



References

Bonavita, M., Isaksen, L. and Holm, E. (2012). On the use of eda background error variances in the ecmwf
4d-var. Q. J. R. Meteorol. Soc., 138, 1540–1559.

Bonnel, B., Fouquart, Y., Vanhoutte, J.-C., Fravalo, C. and Rosset, R. (1983). Radiative properties of some
african and mid-latitude statocumulus. Beitr. Phys. Atmos, 56, 409–428.

Bormann, N. and M.Bonavita (2013). Spread of the ensemble of data assimilations in radiance space. ECMWF
Tech. Memo. No. 708.

Bouttier, F. (2001a). The development of 12-hourly 4D-Var. ECMWF Tech. Memo. No. 348.

Bouttier, F. (2001b). The use of profiler data at ECMWF. Meteorologische Zeitschrift, 10, 497–510.

Bouttier, F., Derber, J. and Fisher, M. (1997). The 1997 revision of the Jb term in 3D/4D-Var. ECMWF
Tech. Memo. No. 238.

Brasnett, B. (1999). A global analysis of snow depth for numerical weather prediction. J. Appl. Meteorol.,
38, 726–740.

Buck, A. L. (1981). New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol.,
20, 1527–1532.

Cardinali, C. (2009). Monitoring the observation impact on the short-range forecast. Q. J. R. Meteorol. Soc.,
135, 239–250.

Cardinali, C., Isaksen, L. and Andersson, E. (2003). Use and impact of automated aircraft data in a global
4D-Var data assimilation system. Mon. Wea. Rev., 131, 1865–1877.

Courtier, P., Andersson, E., Heckley, W., Pailleux, J., Vasiljevic, D., Hamrud, M., Hollingsworth, A., Rabier, F.
and Fisher, M. (1998). The ECMWF implementation of three dimensional variational assimilation (3D-Var).
I: Formulation. Q. J. R. Meteorol. Soc., 124, 1783–1807.

Courtier, P., Thépaut, J.-N. and Hollingsworth, A. (1994). A strategy for operational implementation of
4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc., 120, 1367–1388.

de Rosnay, P., Balsamo, G., Albergel, C., noz Sabater, J. M. and Isaksen, L. (2014). Initialisation of land
surface variables for numerical weather prediction. Surveys in Geophysics, 35(3), doi: 10.1007/s10712–012–
9207–x.

de Rosnay, P., Chiara, G. D. and Mallas, I. (2011a). Use of ascat soil moisture: revised bias correction and
test of improved ascat product in ifs cycle 37r2. ECMWF reasearch Memorandum R43.8/PdR/11100, August
2011.

de Rosnay, P., Dragosavac, M., Isaksen, L., Andersson, E. and Haseler, J. (2011b). Use of new snow data
from sweden in ifs cycle 36r4. ECMWF Res. Dept. Memo. No. 1139.

de Rosnay, P., Drusch, M., Balsamo, G., Albergel, C. and Isaksen, L. (2011c). Extended kalman filter soil-
moisture analysis in the ifs. ECMWF No. 127, pp. 12–16.

de Rosnay, P., drusch, M., Vasiljevic, D., Balsamo, G., Albergel, C. and Isaksen, L. (2013). A simplified
extended kalman filter for the global operational soil moisture analysis at ecmwf. Q. J. R. Meteorol. Soc.,
doi: 10.1002/qj.2023, 139(674), pp. 1199–1213.

de Rosnay, P., Isaksen, L. and M., D. (2015). Snow data assimilation at ecmwf. ECMWF Newsletter article,
143, 26–31.

Dee, D. (2004). Variational bias correction of radiance data in the ECMWF system. In Proc. of the ECMWF
Workshop on Assimilation of High Spectral Resolution Sounders in NWP, pp. 97–112, Reading, 28 June–1
July, 2004.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P. et al. (2011). The ERA-Interim reanalysis:
configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553–597.

100 IFS Documentation – Cy47r3



Part II: Data Assimilation

Dent, D., Hoffmann, G.-R., Janssen, P. A. E. M. and Simmons, A. J. (1997). Use of the Fujitsu VPP700 for
weather forecasting at ECMWF. ECMWF Tech. Memo. No. 235.

Derber, J. C. and Bouttier, F. (1999). A reformulation of the background error covariance in the ECMWF
global data assimilation system. Tellus, 51A, 195–221.

Dethof, A. and Holm, E. (2004). Ozone assimilation in the ERA-40 reanalysis project. Q. J. R. Meteorol.
Soc., 130, 2851–2872.

Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E. and Wimmer, W. (2012). The operational
sea surface temperature and sea ice analysis (ostia) system. Remote Sensing of Environment, 116, 140–158.

Douville, H., Viterbo, P., Mahfouf, J.-F. and Beljaars, A. C. M. (2001). Evaluation of the optimum
interpolation and nudging techniques for soil moisture analysis using FIFE data. Mon. Wea. Rev., 128,
1733–1756.

Drusch, M., Scipal, K., de Rosnay, P., Balsamo, G., Andersson, E., Bougeault, P. and Viterbo, P. (2009).
Towards a Kalman Filter based soil moisture analysis system for the operational ECMWF Integrated Forecast
System. G. Res. Lett., 36, L10401, doi:10.1029/2009GL037716.

Dubuisson, P. J., Buriez, J. and Fouquart, Y. (1996). High spectral solar radiative transfer in absorbing and
scattering media: Application to the satellite simulation. J. Quant. Spectrosc. Radiat. Transfer, 55, 103–126.

Dyer, A. J. (1974). A review of flux-profile relationships. Boundary-Layer Meteorol., 7, 363–372.

Ebert, E. E. and Curry, J. A. (1992). A parametrization of ice optical properties for climate models. J. Geophys.
Res., 97D, 3831–3836.

Fiedler, E., Martin, M. and Roberts-Jones, J. (2014). An operational analysis of lake surface water
temperature. Tellus A, 66(0).

Fisher, M. (1996). The specification of background error variances in the ECMWF variational analysis
system. In Proc. ECMWF Workshop on Non-linear Aspects of Data Assimilation, pp. 645–652, Reading,
9–11 September 1996.

Fisher, M. (1998). Minimization algorithms for variational data assimilation. In Proc. ECMWF Seminar
on Recent Developments in Numerical Methods for Atmospheric Modelling, pp. 364–385, Reading, 7–11
September 1998.

Fisher, M. (2003). Background error covariance modelling. In Proc. ECMWF Seminar on Recent
Developments in Data Assimilation for Atmosphere and Ocean, pp. 45–64, Reading, 8–12 Sept 2003.

Fisher, M. (2004). Generalized frames on the sphere, with application to the background error covariance
modelling. In Proc. ECMWF Seminar on Recent Developments in Numerical Methods for Atmosphereic and
Ocean Modelling, pp. 87–102, Reading, 6–10 September 2004.

Fisher, M. (2006). Wavelet jb - a new way to model the statistics of background errors. ECMWF Newsletter
No. 106, pp. 23–28.

Fisher, M. and Andersson, E. (2001). Developments in 4D-Var and Kalman Filtering. ECMWF Tech. Memo.
No. 347.

Fisher, M. and Courtier, P. (1995). Estimating the covariance matrices of analysis and forecast error in
variational data assimilation. ECMWF Tech. Memo. No. 220.

Fisher, M., Tremolet, Y., Auvinen, H., Tan, D. and Poli, P. (2011). Weak-Constraint and Long-Window
4D-Var. ECMWF Tech. Memo. No. 655.

Fouquart, Y. (1987). Radiative transfer in climate models. In M. E. Schlesinger (Ed.), Physically Based
Modelling and Simulation of Climate and Climate Changes, pp. 223–284, Kluwer Acad. Publ.

Fouquart, Y. and Bonnel, B. (1980). Computations of solar heating of the earth’s atmosphere: A new
parametrization. Beitr. Phys. Atmos., 53, 35–62.

IFS Documentation – Cy47r3 101



References

Fritts, D. C. and Nastrom, D. D. (1993). Spectral estimates of gravity wave energy and momentum fluxes.
Part I: Energy dissipation, acceleration, and constraints. J. Atmos. Sci., 50, 3685–3694.

Gauthier, P. and Thépaut, J.-N. (2001). Impact of the digital filter as a weak constraint in the preoperational
4DVAR assimilation system of Meteo-France. Mon. Wea. Rev., 129, 2089–2102.

Geleyn, J.-F. and Hollingsworth, A. (1997). An economical and analytical method for the interactions between
scattering and line absorption of radiation. Contrib. to Atmos. Phys., 52, 1–16.

Gustafsson, N. (1992). Use of a digital filter as a weak constraint in variational data assimilation. In Proc.
ECMWF Workshop on Variational Data Assimilation with Special Emphasis on 3-dimensional Aspects, pp.
327–338, Reading, 9–12 November, 1992.

Haseler, J. (2004). Early-delivery suite. ECMWF Tech. Memo. No. 454.

Hirahara, S., , Balmaseda, M., de Boisseson, E. and Hersbach, H. (2016). Sea surface temperature and sea
ice concentration for era5. ERA Report Series No. 26.

Hogström, U. (1988). Non-dimensional wind and temperature profiles in the atmospheric surface layer: A
re-evaluation. Boundary-Layer Meteorol., 42, 55–78.
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