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Executive summary 
During the last decade, artificial intelligence (AI), machine learning, and data volume have developed 
at an unprecedented pace, and it is now evident that many scientific disciplines will need to revise their 
work modes to become more data centric in order to make the most out of these developments. AI and 
machine learning offer great opportunities throughout the workflow of numerical weather prediction 
(NWP) and climate services, and the science community is currently exploring how the new capabilities 
of AI and machine learning will change the future of Earth system science. First results show great 
potential.  

However, the scope and speed of developments also generate challenges for weather and climate 
modelling centres such as ECMWF, in particular regarding the necessary know-how that needs to be 
established, the software and hardware infrastructure that needs to be developed, and the integration of 
machine learning and conventional tools within the prediction workflow. These challenges need to be 
addressed within a comparably short period of time to keep up with changing needs of the weather and 
climate modelling community and ECMWF’s Member and Co-operating States. This document 
therefore sets out a roadmap for the next ten years that identifies the challenges, provides potential 
solutions, and defines steps to channel the many distributed science and technology projects that study 
machine learning for weather and climate predictions into a coordinated effort. While the roadmap does 
not provide a scientific workplan for machine learning activities, due to the number and diversity of the 
application areas, it outlines the path towards more coordinated solutions for the challenges ahead, and 
to generate synergies between the different machine learning efforts. 
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What, why and how 

What are AI and machine learning?  
AI is intelligence demonstrated by machines, unlike the natural intelligence displayed by humans. 
Machine learning is the study of computer algorithms that improve automatically through learning from 
data without being explicitly programmed. Machine learning represents the most relevant subset of AI 
for Earth system science. The range of methods that can be counted as machine learning is wide, but 
machine learning can mainly be classified into two groups:  

1) Supervised methods learn to represent a certain task based on labelled data. This task can, for 
example, perform classification (there is a tropical cyclone visible in this pressure field) or 
regression (the expected daily precipitation for London tomorrow is 2.3 mm).  

2) Unsupervised methods learn to distinguish data samples based on unlabelled data, for 
example via clustering and dimensionality reduction tasks. Most machine learning methods 
that are currently being investigated for Earth system science are supervised as they are easier 
to configure and interpret. However, unsupervised methods are receiving a growing amount 
of attention. 

Why now?  
AI and machine learning became increasingly popular and have achieved human-level performance in 
many challenging application areas such as image and speech recognition, gaming, finance and many 
more. This development has been fuelled by:  

1) An unprecedented increase in data volume which makes it more-and-more challenging for 
scientists to extract all relevant information using conventional methods. The business-as-
usual regarding data handling and information will not allow scientists to cope with the 
hundreds of terabytes of data that will likely be produced within a single day by operational 
weather predictions in the near future.  

2) An increase of knowledge behind AI and machine learning, with more than 100 papers 
published every day, that allows the development of machine learning applications that are 
customised towards the needs of specific applications.  

3) Developments in computing hardware to allow for the training of machine learning tools with 
billions of trainable parameters from many terabytes of data. 

4) Freely available, open-source software frameworks that are easy to use (e.g. TensorFlow and 
PyTorch) and allow the development of complex machine learning applications based on a 
couple of hundred lines of Python code.  

The use of some machine learning algorithms and statistical models is well established in the NWP 
community, for example via the use of principle component analysis or the use of data assimilation 
techniques that can also be interpreted as machine learning (Bocquet et al., 2020; Geer, 2021). However, 
regarding the use of complex machine learning techniques such as deep neural networks, Earth system 
science is still lagging behind other research disciplines.  
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How will AI and machine learning change NWP and climate services?  
As the Earth system is complex with non-linear behaviour and as there are hundreds of petabytes of data about 
the Earth system available, including both observations and model output, machine learning provides a very 
powerful toolbox to improve weather and climate predictions. Machine learning can be used to improve the 
computational efficiency of weather and climate models, to extract information from data, or to post-process 
model output, in particular if data-driven machine learning methods can be combined with conventional tools. 
For machine learning, a wide range of potential application areas show great potential throughout the workflow 
of NWP and climate services and throughout ECMWF (see Figure 1). Regarding post-processing, ECMWF will 
focus on supporting the Member and Co-operating States to develop machine learning tools and the use of 
machine learning for diagnostic purposes, for example to understand the dynamics and weaknesses of predictions. 

The number of successful use cases for sophisticated machine learning techniques at ECMWF is growing quickly 
– such as deep neural networks and decision trees. Early success stories across ECMWF’s workflow include the 
use of neural networks for SMOS soil moisture data assimilation for the land surface (Rodríguez-Fernández et 
al., 2019) and the use of neural networks within the weak-constraint 4D-Var framework (Bonavita and Laloyaux, 
2020). Deep learning has been used successfully for the emulation of the gravity wave drag parametrization 
schemes (Chantry et al., 2021) and the deep learning emulators could be used to generate tangent linear and adjoint 
model code for 4D-Var data assimilation (Hatfield et al., 2021). Furthermore, decision trees have been used for 
the post-processing of ensemble predictions for precipitation (Hewson and Pillosu, 2020), and a study on the use 
of machine learning for anomaly detections has been performed for the logs of ECMWF’s data servers to detect 
and predict system failures via a project of the ECMWF Summer of Weather Code 20201. 

 

Figure 1: Machine learning applications at ECMWF that are already being explored or planned.  
The colour-coding of the boxes corresponds to the respective component of the workflow for NWP 

                                                        
1	https://esowc.ecmwf.int/	
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Challenges for the adoption and effective use of AI and machine learning at 
ECMWF and how they will be addressed 
This section discusses challenges and the approaches ECMWF will take to address them. 

Machine learning scientists and Earth Science domain scientists often follow a different 
philosophy. The former tend to solve data science problems that optimise for specific goal functions 
(e.g. the reduction of root mean square error of precipitation at 48-hour lead time), while the latter aim 
to improve and validate models with physical understanding and checks for physical consistency (e.g. 
conservation laws or process feedbacks). Domain scientists are sometimes defensive regarding the 
establishment of machine learning as they consider the new capabilities as a threat rather than as an 
extension of their toolbox. This makes communication and collaboration difficult, but it also represents 
a barrier for the uptake of machine learning solutions by domain scientists who do not trust black box 
approaches that do not offer physical understanding. This is in particular the case as many of the 
machine learning architectures that are currently applied have been developed for other domains such 
as image recognition and do not allow for the introduction of domain knowledge into solution design. 
There is a risk that solutions for specific applications will be developed in parallel with no synergies 
between domain scientists on the one side and machine learning scientists on the other. 

Approach: Overcoming this barrier requires close collaborations between machine learning 
scientists and domain scientists to develop physically consistent machine learning solutions for 
operational use that exploit the full potential of the new toolbox of advanced machine learning and 
complement existing physically based solutions. Explainable AI and physics-informed machine 
learning, which try to blend machine learning with physical knowledge to achieve solutions that are 
physically more consistent, will be explored further (McGovern et al., 2019; Reichstein et al., 2019). 
Furthermore, trustworthy AI will be explored to improve our understanding of how machine learning 
methods are working and to shed some light into the black box. 

While some of the applications from machine learning in Earth system sciences are conceptually close 
to the use of machine learning methods in other domains (such as the detection of tropical cyclones in 
model output which can be formulated as an image recognition task), many will require customised 
machine learning solutions. Physical fields, for example, are often stored on unstructured grids on the 
sphere which do not allow for a simple application of convolutions in space or time which are a core 
element of many machine learning approaches. While the vertical dimension of atmosphere models is 
structured, the physical fields still show very different dynamics close to the surface and at the model 
top, which will, again, make it difficult to apply standard convolution approaches. Furthermore, 
physical fields need to follow physical constraints such as conservation laws or a limit to positive values 
(e.g. for precipitation). 

Approach: Customised machine learning solutions for domain-specific problems (such as the 
capability to perform convolution operations in neural networks on unstructured grids on the sphere) 
will need to be developed. The customised solutions can then be applied to many different machine 
learning applications within the domain and serve as benchmark solutions. The quickest path to 
customised solutions is the development of benchmark datasets and problems – including datasets, 
cost functions, and example solutions – that allow machine learning scientists from different groups 
and institutions to make quantitative comparisons of machine learning solutions (e.g. WeatherBench 
in Rasp et al., 2020).  
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Machine learning tools should not be used only to emulate or accelerate model components but also to 
improve the models. This will most often require training machine learning tools from Earth system 
observations and, therefore, comparing model trajectories to observations that represent the same 
physical situation in space and time. However, it is difficult to learn from Earth system observations 
as they are sparse, irregular, and uncertain, and extracted from heterogeneous instrumentation 
(including satellite radiances) which typically cannot be compared to model fields directly.  

Approach: The best way to relate model simulations to observations of the Earth system is data 
assimilation. Machine learning approaches and data assimilation have much in common and machine 
learning for Earth system science should therefore adapt to the data assimilation workflow in many 
instances (Geer, 2021). Examples include the use of observation errors to represent varying levels of 
uncertainty, observation operators to map from regular model grids to irregular, sparse observations, 
and the use of physical model components or layers to impose physical constraints on otherwise 
machine-learned networks. On the other hand, as visible in Figure 1, there are already many 
interesting applications for machine learning to work with structured datasets to improve the 
processing of observations (for example with observation operators) and data assimilation (for 
example via the learning of model or observation bias).  

Current efforts to improve the mapping from satellite measurements to surface maps (often also based 
on machine learning) need to be followed closely as they offer new opportunities to improve land 
surface parametrizations and can serve as a reference truth for atmospheric dynamics close to the 
surface. Furthermore, machine learning will very likely be essential to extract relevant information 
from Internet of Things (IoT) data and other data sources such as traffic counts, energy production 
and transport analytics to supplement current Earth observations. IoT data is typically noisy but 
available in very large amounts, and therefore difficult to handle using conventional methods. 

The training of machine learning tools requires data. As the complexity of machine learning tools can 
be increased arbitrarily, the only limits for the accuracy of machine learning methods are the amount of 
data that is available for training and the limits of the computational and data handling infrastructure. 
More data allow more sophisticated machine learning solutions to be designed. Machine learning users 
will therefore show a different and more greedy data access pattern when compared to conventional 
users, towards larger and more selective data access (e.g. retrieving a single field over a specific area 
of the globe for a long period of time). This generates a significant challenge for data centres such as 
ECMWF as data production and use is already growing fast for the conventional workflow.  

Approach: The computing infrastructure at ECMWF needs to be prepared for High Performance 
Data Analytics (HPDA) and research which is increasingly data driven. This requires a serious effort 
to explore the capabilities of heterogeneous hardware that will be available for future high-
performance computing (HPC) to reduce the I/O bottleneck when handling large amounts of data. To 
buffer the increase in data requirements due to machine learning, the data workflow will need to be 
organised in a way that allows easy access to the most prominent fields and data products and that 
takes the heterogeneity of hardware options for data storage and access into account (e.g. tapes vs. 
discs). Data access patterns will need to be anticipated, and therefore this will require the 
involvement of the machine learning community. The generation of benchmark datasets which can 
cover a large fraction of user requests as well as the communication of existing datasets that have 
already been assembled should further reduce the need for individual scientists to assemble large 
data on their own.  
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When compared to conventional methods in NWP and climate services, machine learning requires a 
different set of tools regarding both software and hardware. Most Earth system models are still 
based on Fortran code and are typically run on CPU-based supercomputing hardware. On the other 
hand, machine learning tools are typically based on Python code and Python libraries as well as Jupyter 
notebooks and are trained and used most efficiently on GPU hardware. Most of the computational cost 
for supervised learning is generated by the training of the machine learning tool, while the application 
of the tool (the “inference”) is typically very cost efficient. As part of the code refactorization to improve 
portability, models are now being rewritten into domain-specific languages and in some cases also 
Python or Julia code (Bauer et al., 2020), including the Finite Volume version of the ECMWF Integrated 
Forecasting System (IFS-FVM). However, it will still take a couple of years until these developments 
reach a large fraction of domain scientists.  

Approach: Training is required to support domain scientists at ECMWF to start working with 
machine learning tools and facilitate a smooth start in new software environments. Domain scientists 
need to be supported with efficient tools and customised solutions to make the first steps in the new 
environment easier (e.g. to read GRIB or netCDF data into Python). Trends in the fast-moving area 
of machine learning software need to be monitored and solutions need to be adapted. 

To allow the efficient training and application of machine learning, hardware that is suitable for 
machine learning must also be available instead of standard CPU-based hardware optimised for 
conventional applications. It will also require relevant machine learning software to be installed on 
all computer hardware, from desktops to supercomputers. 

As software and hardware requirements are different, solutions are also required to integrate machine 
learning tools into the conventional NWP and climate services workflow. It is, for example, difficult 
to introduce machine learning tools written in Python into the Fortran code of the Integrated Forecasting 
System (IFS), and there is still no experience of how to update machine learning tools that need 
adjustments when preparing new model cycles for operational use.   

Approach: To reduce the overall workload, centralised software solutions are needed to integrate 
machine learning and conventional tools within ECMWF’s workflow. Domain scientists need to be 
supported when applying the centralised solutions, and the solutions need to be aligned with the 
efforts of the ECMWF Scalability Project, regarding model portability.   

Machine learning is a new skill that needs to be developed and established at institutions such as 
ECMWF. While machine learning experience is still limited, it is also spread across the entire workflow 
of ECMWF, which makes it challenging to generate synergies and knowledge exchange between the 
pioneering scientists involved when applying new methods (such as complex decision trees) in a 
different context (such as wildfires or parametrization scheme emulation). Furthermore, machine 
learning solutions are still fragile as they depend on the expertise of individual scientists or external 
collaborators who have developed the solutions. This makes it difficult to guarantee the level of 
reproducibility required for operational weather predictions and climate services. 
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Approach: To allow for synergies between different machine learning efforts and to guarantee the 
reproducibility of solutions, a team of experts is needed to guide and support individual scientists 
pursuing their machine learning approaches, and to organise centralised software solutions. The 
team needs to make an effort to identify needs, and to communicate ongoing efforts to address those 
needs. It needs to show high availability to individuals, flexibility to address individual challenges but 
respect for the existing organisational structure.  

First steps done 

ECMWF has engaged in a number of collaborations with external partners – and in particular machine 
learning specialists – to explore the potential of machine learning for applications throughout the NWP 
workflow (see table in the appendix). ECMWF scientists have given invited talks at a number of 
international AI conferences, and a number of machine learning publications are in the pipeline for 
publication or have already been published. ECMWF has established the role of an AI and machine 
learning coordinator to orchestrate the pan-institutional efforts and has also started to acquire significant 
GPU hardware that is suitable for machine learning projects for both the new HPC and the European 
Weather Cloud2 which is being developed in collaboration with EUMETSAT. As many of the 
interactive developments of machine learning tools are performed on cloud hardware that allows 
interactive developments with Python, Jupyter notebooks or Julia and the use of high-end hardware in 
a scalable way, the European Weather Cloud will be an important resource for machine learning training 
and applications in the future. The first scientists are already using it for machine learning on large 
datasets. 

The first benchmark dataset for machine learning applications in weather and climate modelling has 
been published with contributions from ECMWF (Weatherbench; Rasp et al., 2020). Further efforts 
with ECMWF contributions are in the making (including a project at the World Meteorological 
Organization (WMO) on subseasonal-to-seasonal (S2S) predictions, a post-processing initiative 
coordinated by EUMETNET, and land-surface modelling within the GEWEX framework).   

Next to existing activities for the use of Python at ECMWF (for example via training and data APIs), 
an initiative called the CliMetLab3 has been launched that is specifically targeted to support machine 
learning applications to simplify access to climate and meteorological datasets. CliMetLab is including 
data import from the ECMWF Meteorological Archival and Retrieval System (MARS) and the 
Copernicus Climate Change Service Climate Data Store (CDS) into Python environments and allows 
users to focus on science instead of technical issues such as data access and data formats. 

To foster collaborations and to share experience between domain scientists and Member and Co-
operating States, ECMWF has organised two conferences on machine learning – namely the 1st 
Artificial Intelligence for Copernicus Workshop4 and the ECMWF-ESA Workshop on Machine 
Learning for Earth System Observation and Prediction5. Furthermore, a machine learning seminar series 
took place in 2020 for which talks were live-streamed and recorded6. One advanced and four 
introductory training courses for ECMWF staff were organised in 2020 to establish know-how on 
machine learning within the institute. 

                                                        
2	https://www.europeanweather.cloud/	
3	http://climetlab.readthedocs.io/	
4	https://atmosphere.copernicus.eu/1st-artificial-intelligence-copernicus-workshop	
5	https://events.ecmwf.int/event/172/	
6	https://www.ecmwf.int/en/learning/workshops/machine-learning-seminar-series	
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The move to an open data policy for historical information in ECMWF’s data repository7 will open 
further possibilities for collaborations with external machine learning experts in the future. The new 
Center of Excellence in Weather & Climate Modelling between ATOS and ECMWF8 – with support 
from AMD, Mellanox, Nvidia and DDN – also includes a project that is dedicated to developments in 
machine learning. The project will develop customised machine learning solutions that are optimised 
for use in the vertical direction and on the unstructured horizontal grid of the IFS. Furthermore, the 
project will support the efficient integration of the machine learning solutions into the conventional 
HPC workflow of weather predictions and climate services at ECMWF on the supercomputer. 

ECMWF has also been successfully contributing to externally funded projects. This includes the 
MAELSTROM project that is coordinated by ECMWF and that has been funded under EuroHPC-JU. 
MAELSTROM will perform a co-design cycle to develop benchmark datasets, vanilla machine learning 
solutions, software frameworks, and hardware system designs that are customised for machine learning 
applications in Earth system science. The know-how and infrastructure that will be developed in 
MAELSTROM will be available for adaptation at ECMWF. ECMWF is also contributing to the 
AI4Copernicus project that has been funded under H2020-ICT to develop a software infrastructure for 
machine learning applications on the Copernicus Data and Information Access Services (DIAS). 
Furthermore, ECMWF is a partner in the CLINT H2020-LC project and will investigate the use of 
machine learning to identify key aspects of the three-dimensional atmospheric	structure preceding the 
genesis of tropical cyclones, such as tropical waves in the atmosphere and ocean heat structure.  

How to progress – the big picture 
ECMWF aims to enable the ECMWF Member and Co-operating States and the weather and climate 
modelling community in Europe to make the most of machine learning in the years to come, and to 
show how machine learning fits into, benefits or replaces existing core developments to improve NWP 
and climate services. To fulfil this aim, ECMWF will continue to address five main objectives: 

 

However, ECMWF will also identify limits of state-of-the-art machine learning for Earth system 
modelling, for example regarding the representation of non-linear systems and physical consistency 
with black box approaches and application areas for which machine learning approaches will not beat 
existing solutions (including some of the application areas named in Figure 1).  
  

                                                        
7	https://www.ecmwf.int/en/about/media-centre/news/2020/ecmwf-moves-towards-policy-open-data	
8	https://www.ecmwf.int/en/about/media-centre/news/2020/ecmwf-and-atos-launch-center-excellence-
weather-climate-modelling	
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As the exploration of sophisticated machine learning tools for weather and climate modelling is still at 
an early stage, ECMWF will foster scientific studies of machine learning methods in applications 
which are meaningful for Earth system science but, at the same time, small enough to allow detailed 
and quantitative comparisons between different machine learning solutions. Manageable problems in 
terms of data use and the complexity of machine learning tools will allow for fast progress when 
exploring physics-informed machine learning and trustworthy AI, and hybrid modelling approaches 
that combine conventional and machine learning tools. Small problems will also help when exploring 
uncertainty quantification and uncertainty representation, and for the development of customised 
machine learning solutions for domain-specific problems, for example the use of Graph Neural 
Networks to perform convolutions on unstructured model grids on the sphere. 

At the same time, large-scale machine learning solutions are being tested and developed with many 
millions of trainable parameters that are capable of taking the three-dimensional state of the global 
atmosphere as input, train from many terabytes of data, and require the use of supercomputers. This 
will be necessary to explore the limits and potential of the new tools within Earth system modelling 
and to be prepared for large-scale machine learning applications in the future, in particular as machine 
learning has a fundamental influence on future developments of HPC infrastructure.  

How to progress – specific milestones 

 

Figure 2: Timeline of machine learning developments at ECMWF with all milestones. 

For the next five years, we have defined milestones – defined at quarter (Q) or half (H) years – for the 
technical and organisational support of machine learning activities at ECMWF and within the Member 
and Co-operating States. We also provide a vision for the use of machine learning by 2031. Figure 2 
provides a timeline for the developments. 

The next 5 years  

Milestone 1, Q1, 2021: At least one conference that is focusing on machine learning is organised by 
ECMWF every year. 

Milestone 2, Q2, 2021: A network for collaborations between machine learning experts in the 
Member and Co-operating States and the national meteorological services has been established and 
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the machine learning roadmap and milestones have been refreshed based on Member and 
Co-operating State feedback.  

Milestone 3, Q3, 2021: A sufficient amount of hardware that allows the efficient training and 
inference of machine learning tools (such as GPUs) has been established. New	hardware	technologies	
for	machine	learning	will	be	explored. 

Milestone 4, Q4, 2021: A JupyterHub and machine learning libraries are accessible on key computing 
hardware at ECMWF.  

Milestone 5, Q4, 2021: A team for machine learning has been established which is distributed across 
the organisation and covers key elements of the machine learning value chain.   

Milestone 6, Q1, 2022: A machine learning training course for Member and Co-operating State users 
is established. 

Milestone 7, Q2, 2022: At least four machine learning benchmark datasets are published. 

Milestone 8, Q3, 2022: Machine learning tools are used for quality control and to design observation 
operators for IoT data to supplement current Earth observations within the NWP and climate service 
workflow. 

Milestone 9, Q4, 2022: ITTs of the next phase of the Copernicus programme involve machine learning. 

Milestone 10, H1, 2023: An efficient and well-documented centralised machine learning workflow is 
established at ECMWF that covers data retrieval, data pre-processing, machine learning training, 
solution evaluation and inference within the IFS. 

Milestone 11, H2, 2023: At least five machine learning applications are integrated into the 
operational workflow.  

Milestone 12, 2024: Machine learning applications are considered as benchmarks in the HPC 
procurement. 

Milestone 13, 2025: At least two use cases for machine learning accelerators to improve 
computational efficiency of conventional model components are realised within operational 
predictions.  

Scientific milestones are not included in the list above as it would not be credible to quantify 
breakthroughs as machine learning solutions will be integrated with conventional tools, and as a 
discussion of individual applications would be beyond the scope of this short roadmap document due 
to the large number of application areas within ECMWF. However, a list of the ongoing scientific 
projects and an outline of future steps is provided in the appendix (see also Figure 1). The machine 
learning areas that appear most promising for implementation in the operational workflow within the 
next three years (see Milestone 11) are the processing of observations (see SMOS project) and 
observation operators (aim 2022), bias correction in data assimilation (Bonavita and Laloyaux, 2020, 
aim 2022), the emulation of physical parametrization schemes with ongoing efforts regarding the 
gravity wave drag and radiation that include the generation of tangent linear and adjoint model code 
(aim 2023), post-processing of ensemble predictions (Baran et al., 2020; Hewson and Pillosu, 2020; 
Groenquist et al., 2020, already used), or the scheduling of jobs or detection of anomalies on the HPC 
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system. These machine learning areas will be tested and pushed to operational use if results are 
convincing. If not, other applications will be considered. 

Additionally, we expect that an efficient solution to couple Fortran code and machine learning libraries 
within the IFS will be made available towards the end of 2021. We also expect that generic solutions for 
machine learning applications in the vertical direction of IFS and for three-dimensional applications on 
the unstructured cubic octahedral reduced Gaussian grids (as used within IFS) will be available by 2023. 

The long-term vision for 2031 

We anticipate that it will be increasingly difficult to distinguish between scientists working on machine 
learning and domain scientists in the future and that it will no longer be possible to identify the tools 
that were originally targeted for machine learning applications in ten years from now. Our vision is that 
by 2031, machine learning is fully integrated into NWP and climate services and has improved 
predictions and the use of predictions in many areas of the workflow. Special requirements for data 
retrievals for machine learning applications are well understood and the data handling has been adjusted 
to fit those needs and to provide all users in a user group with the required data with only limited 
duplication of data requests. Customised machine learning solutions have been developed for a number 
of application areas in weather and climate modelling that serve as blueprints for new machine learning 
applications in the domain. Furthermore, diagnostic tools that are based on trustworthy AI have been 
developed for Earth system scientists to explore and understand the functionality of sophisticated 
machine learning solutions. It is understood how to incorporate physical constraints, such as 
conservation laws, into neural network design and training. Eventually, the use of sophisticated machine 
learning tools is as easy and normal for relevant domain scientists as the re-gridding of data to grids 
with different resolutions. Not only supervised learning, but also unsupervised learning and causal 
discovery methods are used on a regular basis. Finally, machine learning solutions from end-users can 
be integrated into the NWP and climate services workflow at ECMWF to avoid heavy data processing 
and to allow for interactive use. 

Closing remarks 
Following the steps outlined in this roadmap will enable ECMWF to prepare for evolving needs of 
scientists and analysts towards a more data-driven workflow and to support the Member and Co-
operating States to make the most of new capabilities of machine learning as soon as possible. 

The scope of the roadmap will be adjusted depending on future developments of the EU’s Destination 
Earth initiative that has AI and machine learning as one of the main building blocks to develop Digital 
Twins of the Earth system. The Digital Twin on Weather-induced and Geophysical Extremes shows a 
particular need for machine learning applications to help improve model efficiency (in particular via 
the use of machine learning preconditioners for linear solvers or the emulation of model components 
with neural networks), enhance the quality of local predictions (for example via local down-scaling, 
bias-correction and uncertainty quantification), and introduce customised, interactive applications from 
end-users into the prediction workflow (for example via the automatic detection of features during 
simulations). For the Digital Twin on Climate Change Adaptation, machine learning will enable a more 
efficient extraction of information from large datasets or an understanding of causality and physical 
connectivity via unsupervised learning.  
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Machine learning efforts at ECMWF will also be aligned with current efforts from ESA to use Earth 
observations to improve global maps that can be used for modelling and, potentially, augment 
ECMWF’s data assimilation efforts. These maps will facilitate the development of better land surface 
parametrizations and the evaluation of the required complexity of these parametrizations, for example 
for the development of an urban tile in global simulations. 
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Appendix 
The table below provides a list of scientific projects based on machine learning that are currently 
being investigated at ECMWF. 

Project Status Next steps 

Anomaly detection in system logs 
of data servers 

First successful tests performed as 
an ECMWF Summer of Weather 
Code challenge 

Uptake of software solutions and 
more detailed testing at ECMWF 

Benchmarking of ensemble post-
processing methods (EUMETNET 
project) 

Review paper published in BAMS 
(Vannitsem et al. 2020) 

Development phase on the 
European Weather Cloud 

Bias correction learned from data 
assimilation using deep learning 

First paper published (Bonavita 
and Laloyaux 2020) and first tests 
with bias correction implemented 
in the forecast model performed 

Move to learning from three-
dimensional inputs on 
unstructured grids and continue 
evaluation of bias correction 

Data-driven transport module for 
atmospheric tracers 

Research proposal submitted Gather training dataset and start 
the work 

Data monitoring via machine 
learning to increase the robustness 
of anomaly detection for 
observations and to highlight 
model/DA weakness with a 
consistent signature on model-
observation departures 

A prototype of the alarm system 
based on random forest classifiers 
has been tested 

Work will continue throughout 
2021 

Emulation of the gravity wave 
drag parametrization schemes 
using neural networks 

Paper in preparation in 
collaboration with the University 
of Oxford 

Extend to other parametrization 
schemes 

Emulation of the radiation scheme 
using neural networks 

First stable results with neural 
network emulator performed in 
the IFS in a collaboration with 
NVIDIA. However, results are not 
neutral yet 

Continue training of emulators 
from new dataset as part of the 
MAELSTROM project 

Emulation of 3D cloud effects 
from the SPARTACUS radiation 
scheme using neural networks 

First offline tests in a 
collaboration with Reading 
University are successful 

Perform tests of the impact of the 
correction within IFS simulations 
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Learning earth system models 
from observations: machine 
learning or data assimilation? 

Paper describing similarities 
between machine learning and DA 
in a Bayesian framework, 
suggesting ways to combine the 
two (Geer, 2020). Similarities also 
emphasised in Boukabara et al. 
(2020). 

Practically demonstrate ways that 
data assimilation ideas (e.g. 
observation errors, observation 
operators, physical constraint 
layers) can help improve typical 
machine learning applications. In 
parallel, continue working on 
parameter estimation for cloud 
and precipitation physical 
assumptions 

Improving flood forecast skill 
using post-processing along river 
network under ungauged reaches 

Prototype code under way. Start of 
evaluation skill improvement of 
operational EFAS method (only 
valid for gauged catchments) 

Implement new method and 
benchmark results against EFAS 
operational 

Investigate the potential of causal 
inference/discovery methods for 
predictability research and model 
evaluation 

Considering extending the 
TIGRAMITE software to work 
seamlessly with initialised 
ensemble forecasts 

Test TIGRAMITE with sub-
seasonal and seasonal case studies 

Machine learning for satellite bias 
correction 

Needs to be finalised Consider using the newly 
developed SSMIS bias correction 
in the operational system 

ML interpretability techniques to 
better understand (conditional) 
forecast errors and how to correct 
for them 

Work only just started with a 
literature review 

Application to various datasets 
(e.g. observation supersite) 

Machine learning technique to 
identify irrigated areas 

Work only just started with a 
literature review 

Define Earth observation data 
attributes and explore different 
methods using SMOS soil 
moisture 

Post-processing of precipitation 
from ensemble simulations 

Paper published (Hewson and 
Pillosu, 2020) and operational 
implementation in place 

Further tests with deep learning 
and other mapping procedures 
refining calibration software; 
extending post-processing to 2m 
temperature; applying to ERA5 
and extended-range forecasts 

Post-processing of ensemble 
predictions for T850 and Z500 
with deep learning 

Paper published in a collaboration 
with ETH Zurich (Groenquist et 
al., 2020) 

Further tests with more complex 
input states, more ensemble 
members and unstructured grids 
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Sea ice emissivity and fraction Project starting to implement a 
sea-ice emissivity and fraction 
analysis in 4D-Var based on 
microwave satellite radiances, 
using an augmented control vector 
and an empirical model 

Evaluate whether machine 
learning methods can do better 
than traditional empirical 
approaches in building an 
empirical model of sea ice 
emissivity from satellite data and 
model fields 

Tropical cyclone feature detection 
in forecasts 

One project from the ESOWC 
2020 and one project in 
collaboration with NOAA. An 
initial validation of the NOAA 
model on ERA5 data from CDS 
has started (30-year dataset, model 
trained across 14 GPU's) 

Benchmarking the software of 
ESOWC 2020, and design and 
development of a pre-operational 
machine learning based cyclone 
detection service from the project 
with NOAA 

Use of machine learning to predict 
fire ignition occurrences from 
lightning forecasts 

Paper in press in MetApp 
(Coughlan et al., 2020) 

Use of machine learning to derive 
fuel availability from vegetation 
indices 

Use neural networks to retrieve 
soil moisture from SMOS and 
ASCAT observations 

Two operational products 
produced in NRT for SMOS. One 
is delivered to ESA and the other 
is assimilated into ECMWF land-
surface assimilation system via the 
SEKF. Initial research into similar 
approach for ASCAT (Aires et al., 
2020, in review). 

Re-training of SMOS neural 
networks and further validation of 
the ASCAT neural networks 
approach 

Use machine learning with SMOS 
soil moisture data to predict river 
discharge categories 

First exploration finished showing 
promising theoretical 
predictability when driven with 
observed weather input. 

New tests under way to 
benchmark results with the EFAS 
hydrological prediction 

Use of neural network emulators 
to generate tangent linear and 
adjoint model code for 4D-Var 

First successful analysis 
experiments have been performed 
for the gravity wave drag emulator 
in collaboration with University of 
Oxford 

Submit paper and perform further 
tests with other parametrization 
schemes 

Use of neural networks for 
preconditioning of linear solvers 
for atmosphere models 

First paper online (Ackmann et 
al., 2020) for study with shallow 
water model in collaboration with 
the University of Oxford and 
NCAR 

Write journal paper and increase 
complexity of the application 
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Use of neural networks for 
forecast simulations 

First paper (Dueben and Bauer, 
2018) and benchmark dataset 
published (Rasp et al., 2020) 

Explore use of unstructured grids 
in a collaboration with EPFL 

Weather normalisation of 
pollution changes in observations 
using gradient boosting 

Paper in review in ACP (Barre et 
al., 2020) showing the need for 
this normalisation during the 
COVID lockdowns over Europe to 
isolate the contribution of 
emission changes 

Use routinely and globally. 
Possible collaboration with IPSL 
to use machine learning to 
perform source inversion for air 
quality. 
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