
doi: 10.21957/4tba2hz3f7

www.ecmwf.int/en/about/media-centre/media-resources

Bonn to host
ECMWF new facility

from 2021

Reading
Headquarters

Bologna
Data centre

from Newsletter Number 166 – Winter 2020/21

ecFlow 5 brings benefits
to Member States

COMPUTING

http://www.ecmwf.int/en/about/media-centre/media-resources

Avi Bahra, Iain Russell, Sándor Kertész	 ecFlow	5	brings	benefits	to	Member	States

2 doi: 10.21957/4tba2hz3f7

This article appeared in the Computing section of ECMWF Newsletter No. 166 – Winter 2020/21, pp. 33–35.

ecFlow 5 brings benefits to Member States
Avi Bahra, Iain Russell, Sándor Kertész

Managing workflows for large-scale data-intensive computational processes is an ever-growing
challenge. These workflows must be repeatable, highly available, monitorable and accurate, while
still allowing the flexibility to support changes. At ECMWF this challenge has been met with ecFlow, a
workflow package developed in-house to meet the ever-changing requirements of the Centre and its
Member and Co-operating States.

ecFlow was designed for general use but has been sculpted by the operational and research needs of
weather and climate science. For example, at ECMWF it is used for many purposes including research
experiment runs, operational model runs, data post-processing and archiving, and software builds.

ecFlow enables users to run a large number of programs, with dependencies on each other and on time, in a
controlled environment. It provides good tolerance for hardware and software failures and allows for controlled
restarts. The server, client and graphical user interface (GUI) are highly scalable and can handle workflows with
hundreds of thousands of tasks. ecFlow is open source and is written in C++ for optimum performance. It runs
on UNIX platforms, with many years of experience on Linux and more recent usage on macOS.

Version 5 of ecFlow brings many modernisations and improvements in terms of features, performance,
security and maintainability.

ecFlow’s architecture
ecFlow has a client/server architecture (Figure 1). An ecFlow server is responsible for several suites, each
a hierarchical collection of tasks. Complex suites can be defined using a Python API that guarantees their
syntactic correctness (Figure 2). Simpler suites can be defined through plain text files. The server submits
tasks to the machines where they will run, receiving updates as they proceed. Tasks can be defined in
any scripting language, for example shell or Python. These scripts can be parametrized, meaning that the
same script can be used for many different tasks, with different settings. For example, a script variable
‘FORECAST_STEP’ could be set to 6 when run in one task and 12 in another. The scripts may also have
embedded ecFlow commands that communicate their status back to the server, e.g. to show progress
or to trigger another task to start. Sophisticated use of these embedded commands allows tasks to
dynamically modify the server’s suites, facilitating an adaptive workflow without requiring manual loading
of revised suites into the server. ecFlow is not tied to any particular queueing system that may sit in front
of the worker machines, but its tasks can be submitted to any such queueing system through the use of a
general submission script. ecFlow client applications include a graphical user interface, ecFlowUI, and a
command-line program, ecflow_client, both of which can be used to query and modify the server.

GUI

TCP/IP or SSL

ecFlow server

Queueing
system

Bash

Checkpoint
file Log file

Python
API

Job
(Bash/

Python)

Figure 1 Various clients (GUI, Bash, Python
API) can communicate bi-directionally with an
ecFlow server using standard Transmission
Control Protocols/Internet Protocol (TCP/
IP) or Secure Sockets Layer (SSL) protocols.
The server can run tasks directly or submit
them to a queueing system; either way, they
can still communicate back to the server.
The server keeps track of events in a log file,
providing the basis for statistical analyses of
past events, such as the average duration of
a given task. A checkpoint file is written to
disk at regular intervals, providing a backup
of the server’s internal state at that moment;
this mechanism can also be used to provide
continuity when upgrading a server to a newer
version of ecFlow.

Avi Bahra, Iain Russell, Sándor Kertész	 ecFlow	5	brings	benefits	to	Member	States

doi: 10.21957/4tba2hz3f7 3

import os
from ecflow import Defs,Suite,Family,Task,Edit,Trigger,Client

home = os.path.join(os.getenv("HOME"), "example")
defs = Defs(
 Suite("test",
 Edit(ECF_HOME=home),
 Family("f1",
 Edit(SLEEP=20),
 Task("t1"),
 Task("t2",Trigger("t1 == complete")))))

ci = Client()
ci.load(defs)

Graphical user interface
ecFlowUI is the graphical user interface to ecFlow (Figure 3). It is written with the C++ Qt library. ecFlowUI
supports real-time monitoring of the workflow, allowing jobs to be started, suspended and terminated.
Many aspects can be edited on the fly, including the job scripts themselves and their associated
variables. Live and historical job output can be viewed with an efficient built-in viewer that can handle
output files of arbitrary size. Dependencies between nodes can be visualised in graphical form, and a
built-in log analyser can aid in fine-tuning the workflow.

ecFlowUI can monitor several ecFlow servers at once, with facilities to display only those suites or tasks
of interest. It can also be used to move a set of tasks from one server to another.

Figure 2 A simple example of a Python script that creates a new suite consisting of a family of two tasks, the second of
which will be run as soon as the first has completed. The suite is then loaded onto a server using default settings.

Figure 3 ecFlowUI provides a rich environment for viewing and interacting with suites, including a new Trigger Graph
view showing dependencies between items in the suite.

Avi Bahra, Iain Russell, Sándor Kertész	 ecFlow	5	brings	benefits	to	Member	States

4 doi: 10.21957/4tba2hz3f7

ecFlow version 5
One limiting factor of ecFlow 4 was that its client/server communication was sensitive to changes in
the version of the boost library that it links with. This meant that a single client could not necessarily
communicate with all the running servers if they had been built with different versions of boost.
The technology also limited the ability to make even small changes in communication protocol, which
is sometimes necessary in order to allow new features. ecFlow 5 now uses the JSON format for
communication, and clients and servers are free to use different versions of boost. This change also
allows for new features to be added without breaking compatibility with older servers or clients. With
further improvements to the communication, ecFlowUI can now communicate with servers using fewer
network requests, meaning less network traffic. An internal improvement is that ecFlow 5 uses features
from the C++14 standard, simplifying some code and providing performance benefits.

ecFlow 5 has a number of additional new features requested both by ECMWF users and by Member and
Co-operating States. These include:

• Improved security features, such as integrated SSL and password-based access; ecFlowUI can now
view both SSL and non-SSL based servers in the same session.

• ecFlowUI now has an interactive trigger graph view to show the interdependency of nodes and
attributes.

• Servers now support auto-archive and auto-restore, allowing parts of a suite to be dynamically written
to disk when complete and restored later on. This aids the handling of extremely large suites.

• Improved features to help users diagnose problems, for example when a worker machine goes down
or a running job becomes detached from the server’s records.

• Additional controls to limit the number of submitted or active tasks.

• Various smaller features to help refine the suite definitions.

ecFlow’s stability has been validated by daily operational use at ECMWF. In addition, a slew of tests are
run every night to ensure that no regressions creep into its releases. With its maturity and proven fitness-
for-purpose, future work on ecFlow will emphasise the continuation of this maintenance and stability
rather than large new developments.

Migrating to ecFlow 5
Many operational servers at ECMWF have already been migrated to ecFlow version 5. Once ECMWF’s
computing centre has moved to Bologna, only version 5 will be available. Fortunately, migration from
ecFlow 4 to 5 is straightforward and mostly involves stopping the currently running server and then
starting it up again using ecFlow 5. The migration page provides more details (https://confluence.ecmwf.
int/display/ECFLOW/Migration+to+ecflow+5). It is important to note that only an ecFlowUI from version 5
can be used with a version 5 server due to the change in communication protocol. Also noteworthy is that
although current versions of ecFlow are built with Python 2 and 3 support, once operational in Bologna
only Python 3 will be supported. It is therefore advisable to ensure that any suites are migrated as soon as
possible in order to avoid any last-minute problems.

Availability
ecFlow is installed on all of ECMWF’s computing platforms, including the Member and Co-operating
State server ecgate. If you plan to run an operational ecFlow server at ECMWF, please contact User
Services, who will be glad to guide you on the best way to set it up. There are currently a default and a
new version of ecFlow 5. To use either one of these, use the commands:

module load ecflow/5

module load ecflow/5new

For use external to ECMWF’s computing platforms, ecFlow is also available as a binary installation on the
conda platform, available through the conda-forge channel with this command:

conda install ecflow -c conda-forge

The source is also available on github (https://github.com/ecmwf/ecflow) or as a tarball from the ecFlow
Confluence pages (https://confluence.ecmwf.int/display/ECFLOW/).

https://confluence.ecmwf.int/display/ECFLOW/Migration+to+ecflow+5
https://confluence.ecmwf.int/display/ECFLOW/Migration+to+ecflow+5
https://github.com/ecmwf/ecflow
https://confluence.ecmwf.int/display/ECFLOW/

Avi Bahra, Iain Russell, Sándor Kertész	 ecFlow	5	brings	benefits	to	Member	States

doi: 10.21957/4tba2hz3f7 5

© Copyright 2021

European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, England

The content of this Newsletter is available for use under a Creative Commons Attribution-Non-Commercial-
No-Derivatives-4.0-Unported Licence. See the terms at s://creativecommons.org/licenses/by-nc-nd/4.0/.

The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability
for error or omission or for loss or damage arising from its use.

