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Representativeness in ensemble verification

Abstract

Spatial variability of 2 m temperature, 10 m wind speed, and daily precipitation is analysed to char-
acterize to what extent measurements at a single location are representative of averages over a larger
area. Characterization of representativeness error is made in probabilistic terms using parametric ap-
proaches, namely by fitting a normal, a truncated normal, and a censored shifted gamma distribution
to observation measurements for the 3 weather variables of interest, respectively. Distribution param-
eters are estimated with the help of high-density network observational datasets. These results serve
as a basis for accounting for representativeness error in ensemble verification. Uncertainty associated
with the scale mismatch between forecast and observation is accounted for by applying a perturbed
ensemble approach before the computation of scores. For all 3 variables investigated, verification
results presented here quantify the large impact of representativeness error on forecast reliability and
skill estimates.

1 Introduction

The scale mismatch between in-situ observations and gridded numerical weather prediction (NWP) fore-
casts is called representativeness error and is a challenge to be addressed in a number of applications
(Göber et al., 2008; Janjić et al., 2018). For example, in forecast verification, skill estimates can differ
substantially when the forecast is compared against its own analysis field or against point-observations
(Pinson and Hagedorn, 2012; Feldmann et al., 2019). The presence of representativeness error in the
latter case contributes to skill estimate differences. More generally, observation errors in forecast veri-
fication have gathered more attention as the accuracy of the forecast in the short range approaches the
accuracy of observation measurements (Saetra et al., 2004; Candille and Talagrand, 2008; Pappenberger
et al., 2009; Santos and Ghelli, 2012; Röpnack et al., 2013; Massonnet et al., 2016; Jolliffe., 2017; Ferro,
2017; Duc and Saito, 2018).

It has been shown that accounting for observation errors can have a large impact in the context of ensem-
ble forecast verification, in particular when focusing on forecast reliability (Saetra et al., 2004; Candille
and Talagrand, 2008; Yamaguchi et al., 2016). Ensemble forecasts are a collection of forecasts valid for
the same lead time which aim to capture the forecast uncertainty (Leutbecher and Palmer, 2008), and re-
liability is a desirable property for an ensemble forecast. Broadly speaking, a reliable ensemble forecast
ensures statistical consistency between the dispersion of the ensemble (which represents the forecast un-
certainty) and the forecast error with respect to the observations. If observation errors are not accounted
for during the ensemble verification process, then the investigator may draw inappropriate conclusions
about the quality of the prediction system. For example, suppose a coarser-resolution global ensemble
appears (misleadingly) to be reliable with respect to point observations. With respect to verification
against coarser gridded analyses, it may actually be over-spread, indicating the potential for changes in
the ensemble prediction system to provide less spread and potentially greater forecast resolution. Ulti-
mately, dismissing observation errors in the verification process can have as an unfortunate consequence
the inappropriate ranking of competing forecasting systems (Ferro, 2017).

In order to account for observation uncertainty in the ensemble verification process, we have first to char-
acterize observation errors. Observation errors are the sum of measurement errors and representativeness
errors (RE). In the following, we focus on RE which is assumed to be the dominant contribution to ob-
servation errors associated with synoptic station (SYNOP) measurements in our applications. RE can be
described in probabilistic terms as the relationship between observations at two different spatial scales.
Statistical models can be used to describe the characteristics of representativeness for different weather
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variables. Such statistical methods have been developed in the context of ensemble post-processing to
account for model limitations in representing sub-grid variability and correct simultaneously for system-
atic forecast deficiencies such as biases (Wilks and Vannitsem, 2018). Here, the parametric models are
fitted exclusively with data from a high-density observation network. Thus, systematic model errors are
not accounted for and can still be diagnosed in the verification.

The estimated uncertainty associated with station measurements is then used in the process that com-
pares ensemble forecasts against SYNOP observations. We follow here the so-called perturbed ensem-
ble method which consists in adding observation uncertainty to the forecasts. Perturbations drawn from
appropriate parametric distributions are added to each ensemble member before computing probabilistic
scores and diagnostic measures. The impact of accounting for observation representativeness on en-
semble verification results is assessed and discussed for 2 m temperature, 10 m wind speed, and daily
precipitation.

The main aim of this manuscript is to provide the reader with a generalized uncertainty model for these
3 weather variables. We present a fully parametric description of representativeness as a function of the
aggregating scale (model grid resolution). Possible applications encompass not only ensemble forecast
verification but also ensemble forecast post-processing. The expected impact on probabilistic forecast
skill is documented in this Technical Memorandum. In Section 2, we introduce the data and the general
methodology applied for model fitting, model validation, and forecast verification. In Section 3, we
provide details about the models developed for each variable, the corresponding validation results, and
ensemble scores showing the impact of accounting for representativeness. Conclusions and a discussion
on future prospects can be found in Sections 4 and 5, respectively.

2 General methodology

2.1 Data

The analysis of RE for observation measurements relies on high-density observations (HDOBS). The
data consists of observations provided by ECMWF Member and Co-operating States in addition to ob-
servations from the SYNOP stations available through the Global Telecommunication System (Haiden
et al., 2018). The observation network covers Europe and the station density relative to SYNOP is typi-
cally enhanced by a factor of 2-10.

The spatial coverage differs for each variable and from one day to another. Figures 1 shows the distribu-
tion of 2 m temperature, 10 m wind speed, and daily precipitation observations on 1 January 2018. Note
that for precipitation, the focus is exclusively on an accumulation period of 24 h. The amount of RE will
depend on the precipitation accumulation period, with less RE expected for longer accumulation periods
than for shorter ones. Additionally, we can note that while wind speed is reported as an integer number
in SYNOP messages, this is not the case for measurements from the HDOBS network.

2.2 Parametric models

For each variable, we propose a parametric model that aims to capture the variability on unrepresented
scales. Inspired by existing ensemble post-processing methods, we consider the following probability
distributions:
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Figure 1: 2 m temperature (left), 10 m wind speed (middle), and 24 h precipitation (right) observation distribution
from the HDOBS network on the 01/01/2018.

• a normal distribution for 2 m temperature,

• a truncated normal distribution for 10 m wind speed,

• a censored shifted gamma distribution for daily precipitation.

Each parametric distribution is fitted in the form of a conditional distribution for an observed quantity at
one spatial scale, say B, given the same quantity aggregated over a larger scale, say A. More precisely,
we are interested in the conditional probability:

P(YB | YA),

which is the probability of the random variable YB, representing the observation at a smaller scale, given
the random variable YA, representing the observation at a larger scale (for example the grid scale of
an NWP model). The aim is to characterize the relationship between averaged values over an area A
and point measurements at B, where B is a point within the area A. This characterization will define
the RE associated with point observations (such as SYNOP measurements) and used later in forecast
verification.

2.3 Model fitting

Point measurements are compared with areal averages of observations. Neighbourhood areas A defined
as square areas with length ∆A and single observations (denoted yB) within the areas are collected. When
at least 5 observations are found within an area, the averaged quantity is computed and denoted yA.
Repeating this for all days of the data set, we obtain a sample of pairs (yA,yB). We note that there is an
uncertainty associated with this method, as we do not know the actual value of yA, just an estimate based
on a limited set of point observations∗.

Each parametric model is fitted with the pairs (yA,yB) in order to describe in probabilistic terms the
relationship between these two quantities. The parameters are estimated for a range of neighbourhood
sizes (∆A: 20, 30, ..., 140, 150 km). Eventually, the distribution parameters are described as a function
of the size of the averaging area ∆A using simple functions as described later.

The distribution parameters are estimated by minimizing the mean continuous ranked probability score
(CRPS) over a test sample. Following Gneiting and Raftery (2007), the CRPS is defined for a distribution
F(yA) and an observation yB as follows:

CRPS = EX | X− yB | −
1
2

EX ,X ′ | X−X ′ | (1)

∗The minimum number of observations per grid box required to compute averaged precipitation is here set to 5. Increasing
this number has little impact on the final results.
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where X and X ′ are independent random variables drawn from the corresponding parametrized distribu-
tion. CRPS can be expressed in a closed form for the type of distributions used in this study (Gneiting
et al., 2008; Thorarinsdottir and Gneiting, 2010; Scheuerer and Hamill, 2015).

The learning sample for model fitting corresponds to 4 non-consecutive months of data (January, April,
July, and October 2018). Model validation is performed on independent data-sets, namely samples cor-
responding to the months of February, May, August, and November 2018.

2.4 Model validation

The validity of the parametric models is checked by means of Probability Integral Transform (PIT,
Raftery et al., 2005) histograms. The following diagnostic procedure is applied: we consider percentiles
associated with the parametric distributions of the test sample. Percentiles are derived for equidistant
probability levels ranging from 5% to 95% with a 5% interval. The rank of the observations when
pooled with the distribution percentiles is aggregated and reported on a histogram. PIT histograms are
interpreted similarly as rank histograms (Hamill and Colucci, 1997), where a histogram close to a uni-
form distribution indicates reliability.

In addition, PIT histograms are generated separately for sub-samples of the validation data-sets. Strati-
fication is based on the value of the area averaged quantity yA. Stratified PIT histograms are produced
for equi-populated categories (using terciles) corresponding to cases with low, intermediate, and high yA
values. Stratified PIT histograms help diagnose potential limitations of the parametric models.

Finally, we perform a visual inspection of Quantile-Quantile (Q-Q) plots for random draws of the para-
metric distribution and a set of points observations. Q-Q plots help diagnosing whether the two sets
(model draw and point observation) are drawn from the same marginal distribution.

2.5 Perturbed ensemble approach

In order to account for RE in the verification process of ensemble forecasts, we apply the so-called
perturbed-ensemble approach which consists in convolving the forecast and observation error distribu-
tions (Anderson, 1996; Saetra et al., 2004; Candille and Talagrand, 2008). This approach leads to scoring
rules that favour forecasts of the truth, and it is therefore recommended as a generic method to be applied
in the presence of observation errors (Ferro, 2017).

Practically, random noise is added to the forecasts. Each ensemble member gets assigned a random
value drawn from the fitted parametric distribution whose scale and shape parameters are a function of
the original forecast value: the distribution is centred over the forecast value and its spread accounts for
representativeness uncertainty. This approach can also be seen as a forecast down-scaling that provides
a description of the sub-grid scale uncertainty which is not captured by the NWP model. The additional
uncertainty from the perturbed ensemble approach is merged with the original forecast uncertainty gen-
erated by the ensemble system, and together they represent the forecast uncertainty at the observation
scale.

2.6 Verification data-sets

The performance of forecasts from ECMWF’s medium-range ensemble forecasts (ENS) is assessed with
and without accounting for RE. In the ensemble verification process, only SYNOP measurements are
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used. They are compared to the corresponding nearest grid-point forecasts. The horizontal grid spacing
of ENS forecasts is about 18 km for the main verification period considered here (JJA 2018)†.

Results for JJA 2018 are based on forecasts initialised at 12 UTC with a verification domain correspond-
ing to the European continent (see Figure 1). In addition, the proposed models are tested over a winter
period (DJF 2019) but the corresponding results are partially shown in the Appendix and only discussed
in the text when appropriate.

Furthermore, analysis of long-term trends in forecast performance is carried out. For this, we use fore-
casts initialised at 12 UTC over the past 16 years (September 2004 to September 2019 ). Over that period,
the grid resolution of the ensemble forecasts has evolved as follows: 80 km until February 2006, 60 km
until January 2010, 35 km until March 2016, and 18 km since then. These changes in grid-resolution
have to be accounted for in order to adapt accordingly the parameters of the distributions used in the
perturbed ensemble approach.

2.7 Verification metrics

First, we compute a general measure of ensemble performance for continuous variables, namely the
CRPS (see Eq. 1). Second, the impact of accounting for RE in the verification process is assessed by
focusing on binary events. Summary performance measures for probability forecasts are computed: we
apply the Brier score (BS, Brier, 1950) and the diagonal elementary score (DES, Ben Bouallègue et al.,
2018) with the verification sample climatology used for the computation of the event base-rate. Block
boot-strapping with blocks of 3 days and 1000 iterations is used to estimate confidence intervals.

Additionally, two complementary verification tools are used: the reliability diagram, and the relative
operating characteristic (ROC) curve‡ (Wilks, 2006). The former focuses on forecast reliability, that
is the ability of the ensemble to capture the observation variability, while the second focuses on the
discrimination ability of the forecast, that is its ability to distinguish between event and non-event. In
this study, the sharpness diagram, which is usually included in reliability diagrams, is plotted separately.
Sharpness diagrams present the frequency of occurrence associated with each forecast probability level.
Sharpness is not a measure of forecast skill per se, but this forecast attribute helps diagnose the impact
of the perturbed ensemble approach on the probabilistic forecast.

Finally, we assess the impact of accounting for representativeness on long-term trends of ensemble
forecast performance focusing on extreme events. We follow the methodology recommended in Ben
Bouallègue et al. (2019). For each variable, DES in the form of a skill score is estimated for a threshold
defined as the 95% percentile of the climate distribution. Different climate distributions are considered
for the forecast and the observations, respectively. This type of threshold definition, referred to as the
eigenclimatology approach, allows to eliminate a potential mismatch between forecast and observation
marginal distributions at the station level.

†Note that the verification task is independent of the representativeness model fitting and model validation taks.
‡Numerically, ROC curves are generated using the 51 possible probability thresholds issued by the 50-member ensemble.
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Figure 2: Estimated parameters for the Normal model, β̂0 and β̂1, as a function of the averaging scale ∆A (in km)
with 5%-95% confidence intervals estimated with block-bootstrapping. In red, the generalized model uncertainty
model for 2 m temperature observations.

3 Results

3.1 Temperature at 2 m above ground

For 2 m temperature, RE is already (partially) accounted for routinely in forecast verification. A standard
procedure consists in a bias correction, with an adjustment linear with the height difference between
station and model grid:

t? = t +0.0065De with De = em− eo , (2)

with t? and t the adjusted and raw forecasts, respectively, and where eo and em denote the elevation of
the observation and the corresponding model elevation at the nearest model grid point, respectively.

Here, 2 m temperature representativeness uncertainty is described in probabilistic terms with the help of
a normal distribution N (µ,σ) with mean µ and standard deviation σ . After exploratory analysis of the
spatial variability of 2 m temperature observations, we propose the following model:

µ = t?, σ = β0 +β1
4
√
| De | . (3)

The standard adjustment procedure is followed regarding the mean of the distribution while the standard
deviation σ comprises a constant term and a second term linear with a power transformation of | De |.
This later aims to capture the increase of representativeness uncertainty with complex topography. The
use of a 1

4 power transformation is justified by the fact that it leads to better fit with point observations
than the simple use of the elevation absolute difference or its square root. The optimization process is
initialized with the following set of parameters: (β0 = 1,β1 = 0.1).

The model parameters of (3) are estimated for a range of aggregating scales as shown in Figure 2. β̂0
exhibits a linear growth with the aggregating scale ∆A before reaching a plateau and β̂1 decreases with
∆A before reaching a plateau. By fitting a linear functions to describe β̂0 and β̂1 as a function of ∆A up
to ∆A = 100km and considering constant parameters for higher values of ∆A, we eventually obtain the
generalized uncertainty model for 2 m temperature observations:

β0(∆A) =

{
0.02∆A if ∆A < 100km

2 if ∆A > 100km
β1(∆A) =

{
0.35−0.002∆A if ∆A < 100km

0.15 if ∆A > 100km
(4)

to be used in combination with (3).
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Figure 3: Model validation through PIT histograms (left), and Q-Q plot for the original sample yA displayed in
grey, and the fitted model ỹA displayed in black (right) expressed in K. Results for an averaging scale ∆A of 40 km,
August 2018.
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Figure 4: Model validation through stratified PIT histograms for the same data-set as in Figure 3. Results for
equi-populated categories corresponding to low, intermediate, and high averaged temperatures yA are shown form
left to right, respectively. The corresponding mean yA in K is indicated above each histogram.

From Figure 3, we see that this model seems overall appropriate. The PIT histogram on the left panel is
rather noisy but with no large departure from uniformity and the Q-Q plot on the right panel indicates that
the model captures well the empirical marginal distribution of the point observations (except for extreme
low temperature). The inspection of stratified PIT histograms in Figure 4 reveals an asymmetry in the
rank distribution between low and high temperature categories. The distribution of point observations
seems not perfectly captured with random draws from the model: point observations tend to be slightly
overestimated (underestimated) in case of low (high) area average temperatures. This underestimation
of the RE with respect to potential low and high temperature occurs in Spring and Summer, while in
Winter RE is overestimated in cold conditions (not shown). Whereas the model reliability is overall
reasonably good, RE modelling would certainly benefit from accounting for RE diversity as a function
of the weather situation.

Now the model presented in (4) is used to account for RE in the verification process of ENS 2 m tem-
perature forecasts. The averaging scale ∆A corresponds now to the horizontal grid spacing of ENS. The
set of β parameters for an averaging scale of 18 km is approx. (0.4,0.3). This set of parameters is used
in the perturbed ensemble approach and results are shown in Figures 5 to 7.

In Figure 5, we see on the right panel that accounting for RE leads to an improvement in terms of CRPSS
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of about 11% at day 1 (8% in Winter, Fig. 23 in the Appendix). The impact of the perturbed ensemble
approach is fading with the forecast horizon but is still non negligible at day 15. In Winter, the impact
drops below 1% for forecast lead times greater than 7 days. In absolute term, the CRPS plotted on the
left panel increases with lead time from day 1 when applying the perturbed ensemble approach. This is
not visible for the original results (grey line) but this feature is consistent with the expected error growth
of the forecast.

In Figure 6, the focus is on the ensemble performance at day 5. Brier skill score (BSS, Figure 6.a) and
diagonal elementary skill score (DESS, Figure 6.b) compare skill before and after applying the perturbed
ensemble approach. BSS and DESS are plotted here for a range of event-thresholds. The impact on
BS varies between 3 and 7% while the impact on DES can become large (over 30%) for low and high
temperature thresholds. Verification over the Winter indicates an improvement of around 1% in terms of
BS and 10 % in terms of DES for an event defined as 2 m temperature dropping below 0 ◦C (Fig. 24
in the Appendix). The difference between BS and DES results can be related to the impact of RE on
ensemble forecast attributes which is investigated in more detail now.

In Figure 7, the focus is on the ensemble forecast attributes for a threshold of 293 K at day 5: reliability
(left panel), sharpness (middle panel), and discrimination (right panel). An increase in reliability, a de-
crease in sharpness, and a slight improvement of the discrimination ability are visible when accounting
for RE§. The ensemble derived probabilities for this event appear close to reliability when accounting
for RE. This is not the case over the winter period where underdispersivness is still visible even after
applying the perturbed ensemble approach (Fig. 25 in the Appendix). The impact on the forecast relia-
bility predominantly explains the improvement seen in BS. It comes at the cost of a decrease in forecast
sharpness. In terms of discrimination, the impact appears small in Figure 7 but is larger for more rare
events (Fig. 26 in the Appendix). This is consistent with the impact seen in terms of DES. This increase
in discrimination ability for rare observed events is explained by the ability of the perturbed ensemble to
exceed these event-thresholds more often, and so to distinguish better between low probability forecasts.

Finally, Figure 8 compares long-term trends in forecast performance focusing on extreme events before
(left panel) and after (right panel) applying the perturbed ensemble approach. DESS for an event defined
as the 95% percentile of the eigenclimatology is used to measure the forecast performance. Qualitatively,
the trends are very similar for the 2 plots, but we see a clear differentiation between performance at
different lead times after applying the perturbed ensemble approach. Results for day 1 and day 2 are the
most impacted which is consistent with the large impact of representativeness on forecast performance
at short lead time seen in Figure 5. Quantitatively, forecast skill can appear smaller after accounting
for RE. This is the case for longer lead times and lower grid-resolution forecasts (i.e. before 2010). At
low-resolution, the perturbed ensemble approach adds a level of noise that could hinder to capture the
forecast signal at longer lead times when the signal-to-noise ratio in the forecast is small. Figure 8 also
shows a more monotonous increase in forecast skill over time when RE is accounted for, as well as a
more consistent dependence on lead time.

§Note that the same number of points (same probability levels) is used for all ROC curves.
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Figure 5: (a) CRPS (in K) estimated with (black) and without (grey) accounting for representativeness uncertainty
and (b) the corresponding CRPS relative difference (in %) as a function of the forecast lead time. Vertical bars
indicate 95% confidence intervals. Results valid for 2m temperature ensemble forecasts, Europe, Summer 2018.
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Figure 6: (a) Brier skill score (BSS), and (b) diagonal elementary skill score (DESS) as a function of the event-
threshold when verifying 2m temperature ensemble forecasts at day 5. Vertical bars indicate 5%-95% confidence
intervals. Results valid for Europe, Summer 2018.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Forecast Probability

O
b
s
e
rv

e
d
 R

e
la

ti
ve

 F
re

q
u
e
n
c
y (a)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

2
0
.0

5
0
.2

0
0
.5

0

Forecast Probability

F
re

q
u
e
n
c
y

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False Alarm Rate

H
it
 R

a
te

(c)

raw ensemble
perturbed ensemble
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Results with (black) and without (grey) accounting for representativeness uncertainty when verifying ensemble
forecasts at day 5. Vertical bars indicate 95% confidence intervals. Results valid for 2m temperature ensemble
forecast, Europe, Summer 2018.
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Figure 8: Long-term trends in 2m temperature ensemble forecast performance as measured by the diagonal ele-
mentary skill score (DESS) with (right) and without (left) accounting for representativeness uncertainty. 1-year
running mean over the period Sept. 2004 - Sept. 2019. The event under focus is defined as the 95% percentile of
the eigenclimatology.

3.2 Wind speed at 10 m above ground

Representativeness associated with 10 m wind speed observations is described with the help of a trun-
cated normal distribution with cut-off at zero N 0(µ,σ2) with location µ and shape σ parameters. The
probability distribution function (PDF) follows:

1
σ

φ((x−µ)/σ)

Φ(µ/σ)
, x≥ 0, and 0 otherwise, (5)

with φ and Φ the PDF and cumulative distribution function (CDF) of the standard normal distribution,
respectively. This type of distribution was successfully used for the post-processing of 10 m wind speed
ensemble forecasts (Thorarinsdottir and Gneiting, 2010).

Here, we propose a parametric model based on 3 parameters (α0,α1,β1) in order to describe the location
and shape of the distribution of point measurements as a function of the area averaged quantity yB:

µ(yB) = α0 +α1yB and σ(yB) = β1
√

yB + ε (6)

where ε is set to 0.01 in order to avoid a possible division by zero in (5). The distribution location µ is
adjusted by means of the intercept α0 and the multiplicative parameter α1. The shape of the distribution
is a function of the square root of the area averaged wind speed with multiplicative factor β1. The
optimization process is initialized with the following set of parameters: (α0 = 0,α1 = 1,β1 = 0.5).

The parameters of the model in (6) estimated for a range of averaging scales are shown in Figure 9. α̂0
appears linear with ∆A and tends to 0 when ∆A decreases. α̂1 also appears linear with ∆A but tends to
1 as ∆A decreases. β̂1 converges to 0 as the averaging scale decreases and has a parabolic shape when
plotted as a function of ∆A. Fitting the appropriate function for each parameter, we obtain the following
generalized uncertainty model for 10 m wind speed:

α0(∆A) =−0.02∆A, α1(∆A) = 1+0.002∆A, β1(∆A) =−0.04∆A +0.17∆
0.75
A . (7)

to be combined with the truncated normal distribution defined in (6).

Validation of the model in (7) is shown in Figure 10. A very good agreement is visible in terms of
Q-Q plot being close to the diagonal, but the PIT histogram indicates a slight overestimation of the
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Figure 9: Estimated parameters for the Truncated Normal model, α̂0, α̂1, and β̂1, as a function of the averag-
ing scale ∆A (in km) with 5%-95% confidence intervals estimated with block-bootstrapping. In red, the general
uncertainty model for 10 m wind speed.
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Figure 10: Model validation through PIT histograms (left), and Q-Q plot for the original sample yA displayed in
grey, and the fitted model ỹA displayed in black (right). Results for averaged observations with ∆A = 40km, August
2018.

uncertainty for this validation month (August). In Figure 11, stratified PIT histograms show that the RE
overestimation is more pronounced for high wind categories while the model is positively biased for low
and intermediate wind situations. The analysis of the rank histograms for the other validation months
reveals that 10 m wind representativeness uncertainty is underestimated by the model in Autumn and
Winter but is well captured in Spring (not shown). In particular, in Winter, the extreme right bin of the
stratified rank histograms is overpopulated for the high wind speed category. This feature reflects that
the parametric model underestimates the potential occurrence of very high wind speed at point location
based on the average wind speed in the corresponding area. With an underestimation of RE in Winter
and an overestimation in Summer, future work should focus on including seasonality in the RE model
for 10 m wind speed.

Based on the generalized model in (7), we apply the following set of parameters for the perturbation
of ENS 10 m wind speed forecasts over the Summer 2018: (α0 = −0.36,α1 = 1.036,β1 = 0.76). The
corresponding results are shown in Figures 12 to 14.

Figure 12 shows the impact of representativeness on verification scores as a function of the forecast lead
time. Both CRPS and CRPS relative differences are shown. Focusing on the latter one, we see a radical
change in the shape of the curve. In a standard framework (without accounting for RE), the ensemble
skill at day 1 is similar to the ensemble skill at day 15. When accounting for representativeness, CRPS
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Figure 11: Model validation through stratified PIT histograms for the same data-set as in Figure 10. Results for
equi-populated categories corresponding to low, intermediate, and high averaged wind speed yA are shown form
left to right, respectively. Mean yA in m/s for each category is indicated on the top of the histograms.

is increasing as a function of the forecast lead time up to around day 7 where the forecast skill reaches a
plateau. In relative terms, the impact of RE is large in particular at short lead time, about 15% at day 1,
and decays to a around 6% at day 7. Over the winter period, the corresponding results are 14% at day 1
and about 4% after day 10 (Fig. 27 in the Appendix).

Focusing on day 5, Figure 13 summarises the RE impact on the ensemble verification results in terms of
BSS and DESS plotted as a function of the event-threshold. On one side, in Figure 13.a, BSS reaches 2%
for a threshold of 5 m/s while significant improvements are not visible for larger thresholds. Because
the CRPS corresponds to the integral of the BS over all possible thresholds, the large impact in terms
of CRPS can be attributed mostly to skill differences for small threshold events. On the other side, in
Figure 13.b, DESS can exceed 10% for intermediate thresholds (10 or 15 m/s). Similar results are found
over the winter period, with DESS close to 10% not only for intermediate but also for larger thresholds.

Considering an event-threshold of 5 m/s, Figure 14 depicts the impact of representativeness on forecast
reliability, forecast probability distribution, and forecast discrimination. Results are valid for a forecast
lead time of 5 days. As expected, a large impact on forecast reliability and forecast sharpness is visible:
the reliability curve is closer to the diagonal indicating good reliability and, at the same time, low (high)
forecast probabilities are more (less) frequent which indicates less sharp forecasts. There is no visible
impact on forecast discrimination for this threshold. Considering higher thresholds, reliability curves
become noisier and difficult to interpret while ROC curves are superimposed but with extra points along
the virtual full ROC curve when accounting for representativeness (Fig. 28 in the Appendix).

Finally, Figure 15 focuses on long-term trends in performance. Considering extreme events defined
as the 95% of the eigenclimate distribution, annual running mean of DESS are compared before (left
panel) and after (right panel) applying the perturbed ensemble approach. Dissimilarities between the
two plots are more important for short lead times, performance trends at day 1 and day 2 in particular.
For both plots, the eigenclimatology approach corrects for potential differences between forecasts and
observations climate distributions. Additionally, the perturbed ensemble approach for 10m wind speed
(right panel) increases the spread as a function of the forecast wind speed intensity. This could explain
the large improvement in terms of DESS for short lead times (day 1 and 2) when accounting for RE. As
for 2m temperature, improvements over time due to improvements in the forecasting system are more
clearly visible when RE is taken into account.
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Figure 12: (a) CRPS (in m/s) computed with (black) and without (grey) accounting for representativeness uncer-
tainty and (b) the corresponding CRPS relative difference (in %) as a function of the forecast lead time. Vertical
bars indicate 95% confidence intervals. Results valid for 10 m wind speed ensemble forecasts, Europe, Summer
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Figure 13: (a) Brier skill score (BSS), (b) and diagonal elementary skill score (DESS, right) comparing forecast
performance before and after post-processing. Skill scores are shown as a function of the event-thresholds. Results
are valid for 10 m wind speed forecasts at day 5, Europe, Summer 2018. Vertical bars indicate 5%-95% confidence
intervals.
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Figure 15: Long-term trends in 10 m wind speed ensemble forecast performance as measured by the diagonal ele-
mentary score (DESS) with (right) and without (left) accounting for representativeness uncertainty. 1-year running
mean over the past 16 years. The event under focus is defined as the 95% percentile of the eigenclimatology.
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3.3 Daily precipitation

The parametric model for daily precipitation representativeness is based on a censored, shifted gamma
distribution (CSGD). This distribution has been successfully used in the post-processing of ensemble
precipitation forecasts (Scheuerer and Hamill, 2015). This model appears therefore well-suited to de-
scribe precipitation RE and its peculiar characteristics: a probability distribution with a long tail and an
uncertainty that grows with precipitation intensity.

The gamma distribution is a two-parameter distribution, with scale parameter k and shape parameter
θ . The shift of the gamma distribution associated with a left censoring to 0 allows to better represent
the probability of no precipitation. The skewness of the gamma distribution depends only on its shape
parameter θ . The two parameters k and θ are related to the mean µ and standard deviation σ of the
gamma distribution by:

k =
µ2

σ2 and θ =
σ2

µ
. (8)

The cumulative distribution function of the CSGD (with left-censoring at zero, denoted F̃k,θ ,δ ) takes the
form:

F̃k,θ ,δ (y) =

{
Fk

(
y+δ

θ

)
for y≥ 0

0 for y < 0
(9)

where Fk is the cumulative distribution function of gamma distribution with unit scale and shape param-
eter k, and with δ > 0, the shift parameters that controls the probability of zero precipitation (Scheuerer
and Hamill, 2015).

Exploratory analysis of the model sensitivity to the number of parameters suggests that 5 coefficients are
required in order to describe the distribution of point observations appropriately. Two coefficients (α0
and α1) are associated with the mean of the distribution, µB:

µB(yA) = α0 +α1yA, (10)

which is a function of the averaged observed precipitation over an area A (yA). Two other coefficients
(β0 and β1) are associated with the standard deviation of the distribution, σB:

σB(yA) = β0 +β1
√

yA, (11)

which is a function of the square root of the area averaged observed precipitation (
√

yA). The use of a
power transformation in the relationship between precipitation intensity and uncertainty can be traced
back to pioneering work on post-processing of ensemble precipitation forecasts (Hamill et al., 2008).
The fifth coefficient corresponds to δ which defines the shift associated with the CSGD. Optimization is
performed using squared parameters to ensure that they are positive, and with the set (α0 = 0.1, α1 = 1,
β0 = 0.1, β1 = 1 and δ = 0.1) as initial values of the optimization process.

In Figure 16, the estimated CSGD parameters (α̂0, α̂1, β̂0, β̂1, and δ̂ ) are plotted as a function of the size
of the averaging area ∆A. The additive parameter α̂0 is linearly increasing with ∆A while the multiplica-
tive parameter α̂1 is constant (around 1) for all averaging scales. The shift parameter δ̂ is also increasing
linearly with ∆A. With similar values for α̂0 andδ̂ , the mean of the CSGD is close to yA, which means
that the expected mean precipitation intensity does not vary across scales.

One of the two coefficients associated with the variance of the distribution (β̂0) exhibits a slight increase
with ∆A while the other one (β̂1) has a large variability as a function of the averaging scale ∆A. β̂0
and β̂1 influence the uncertainty associated with the CSGD distribution. Indeed, they determine the
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Figure 16: Estimated parameters for the Censored Shifted Gamma model, α̂o, α̂1, β̂0, β̂1, and δ̂ , as a function of
the averaging scale ∆A (in km) with 25%-75% confidence intervals estimated with block-bootstrapping. The red
lines represent the generalized uncertainty model for daily precipitation.

variance and skewness of the distribution through the shape parameter θ (Eq. 8). In particular, β̂1
brings heteroscedasticity into the model: it allows the precipitation uncertainty to be a function of the
precipitation intensity. As expected, RE of a single observation increases with the size of the target grid
box, in agreement with results from previous studies (Lopez et al., 2011).

Based on these results, we propose the following generalized uncertainty model for daily precipitation:

α0(∆A) = 0.005
√

∆A, α1(∆A) = 1,

β0(∆A) = 0.0005∆A, β1(∆A) =−0.02∆A +0.55
√

∆A,

δ (∆A) = 0.005
√

∆A (12)

to be combined with Eqs (10) and (11).

In Figure 17, this model is validated by means of PIT histogram and Q-Q plot. The histogram looks
slightly U-shaped which indicates a slight underestimation of the representativeness uncertainty by the
model. The Q-Q plot shows that the fitted model captures well the tail of the point observation distribu-
tion (black points). In other words, the CSGD approach allows to generate large precipitation amounts
at an appropriate frequency.

The estimated parameters characterize precipitation RE throughout the year. However, seasonality in
the magnitude of RE should be expected (Lopez et al., 2011). Inspecting stratified rank histograms for
August in Figure 18, we see that the model captures well small scale variability associated with low box-
averaged precipitation but tends to underestimate precipitation variability associated with more intense
box-averaged precipitation. Conversely, over winter months, the parametric model tends to overestimate
spatial variability associated with large amount of area-averaged precipitation (not shown). This illus-
trates the limitation of the simplistic approach followed here. Parameters that vary as a function of the
time of the year would be needed in order to tackle this deficiency. Future refinement of the present
method could also consider, for example, CSGD parameters that vary as a function of weather situation
(such as, for example, convective versus non-convective situation), orography, or region (e.g. tropics vs
extratropics).

In Figure 19, the general impact of accounting for RE is shown: CRPS and relative CRPS difference are
plotted as a function of the forecast lead time. Results with and without representativeness uncertainty
are compared. A large impact is visible in particular at short lead times: from 12% at day 1, the relative
difference becomes smaller than 2% after day 7 (left panel). Verification results for the Winter period
are very similar (Fig. 29 in the Appendix). Since the ensemble spread (and forecast error) is small at the
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Figure 17: Model validation through PIT histograms (left), and Q-Q plot for the original sample yA displayed in
grey, and the fitted model ỹA displayed in black (right). Results for averaged observation for ∆A = 40km, August
2018.

rank

[%
]

1 5 10 15 20

0.00

0.02

0.04

0.06

yA = 0.3

rank

[%
]

1 5 10 15 20

0.00

0.05

0.10

0.15

yA = 3.54

rank

[%
]

1 5 10 15 20

0.00

0.02

0.04

0.06

0.08

0.10

0.12

yA = 6.81

Figure 18: Model validation through stratified PIT histograms for the same data-set as in Figure 17. Results are
shown for equi-populated categories corresponding to low, intermediate, and high yA form left to right. Mean yA
in K for each category is indicated on the top of each histogram.
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beginning of the forecast range, the scale mismatch between model and observations plays a substantial
role. This is less the case at longer ranges when the ensemble spread (and forecast error) is larger.

The differences in terms of skill as measured by CRPS can be explained by the large improvement of
the forecast reliability when accounting for RE. The ensemble spread is essentially increased by the per-
turbed ensemble approach and, as a consequence, the perturbed ensemble forecast is able to better capture
the variability of point observations. In order to illustrate this point, reliability curves and sharpness dia-
grams for an event-threshold of 1 mm/24h are shown in Figures 20.a and 20.b. With representativeness
uncertainty, the reliability curve is closer to the diagonal while the sharpness of the ensemble is notice-
ably decreased. For higher thresholds (Fig. 30 in the Appendix), the lack of reliability of the ensemble
even after addressing representativeness provides evidence that there are remaining system problems that
likely need to be addressed through prediction system improvement and/or post-processing.

Now, we inspect the role of RE when assessing ensemble forecasts in terms of discrimination. The
right panels in Figure 20 show the impact of accounting for observation errors on ROC curves. For
a 1 mm/24h threshold-event, the impact is neutral: the two curves that are compared are on top of
each other. The information content of the forecast is not modified for this type of event when adding
the representativeness uncertainty to the forecast. However, when focusing on larger event-thresholds,
such as 20 mm/24h, the area under the two curves clearly differs in terms of extent (Fig. 30 in the
Appendix). Note that the same number of members and so the same number of probability thresholds are
considered in both cases. So, the perturbed ensemble approach seems to produce a ”shift” in probability
distribution which appears beneficial for users with small probability thresholds. The ability of the
perturbed ensemble to forecast large values, and so to capture the tail of the observation distribution, is
rewarded in terms of forecast discrimination. However, there is no real increase in terms of information
content since no shift of the ROC curve towards the top left corner of the diagram is registered.

Figure 21 provides a summary of the forecast performance at day 5 as a function of the event threshold.
In terms of BSS, large impact is noted for low-intensity events while in terms of DESS, larger differences
are visible for more high-intensity events. This result is consistent with general characteristics of BS and
DES: BS is more sensitive to reliability while DES is more sensitive to discrimination (Ben Bouallègue
et al., 2019).

Finally, trends in forecast performance with and without accounting for RE are compared in Figure 22.
The main difference between the two plots consists in higher DESS at day 1 and slightly lower DESS
at longer lead time when accounting for representativeness. In particular, performance at day 1 are
distinguishable from performance at day 2 on the right panel. Overall, the trends for the different lead
times are qualitatively very similar before and after applying the perturbed ensemble. The quantitative
differences (and their interpretation) are in line with the ones seen in 2 m temperature and 10 m wind
speed long-term performance.

4 Conclusion

This report provides a general methodology for accounting for representativeness when verifying en-
semble forecasts. First, parametric models, based on normal, truncated normal, and censored shifted
gamma distributions, are fitted with high density observations in order to describe the representativeness
uncertainty associated with 2 m temperature, 10 m wind speed, and precipitation station measurements,
respectively. These models are successfully validated by means of PIT histograms and Q-Q plots, but
limitations of each model are also pointed out. Second, a perturbed ensemble approach is applied: it
consists in perturbing each ensemble member by means of the proposed parametric models. This step
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Figure 19: (a) CRPS (in mm/24h) with (black) and without (grey) accounting for representativeness uncertainty,
and (b) the corresponding CRPS relative difference (in %) as a function of the forecast lead time. Vertical bars
indicate 95% confidence intervals. Results valid for daily precipitation ensemble forecasts, Europe, Summer 2018.
(Published as Fig. 7 in Ben Bouallègue et al. (2020). c© American Meteorological Society. Used with permission.)
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Figure 20: (a) Reliability diagram, (b) sharpness diagram, (c) and ROC curve for an event-threshold of 1 mm/24h.
Results with (black) and without (grey) accounting for representativeness uncertainty when verifying ensemble pre-
cipitation forecasts at day 5. Vertical bars indicate 95% confidence intervals. Results valid for daily precipitation
ensemble forecasts, Europe, Summer 2018. (Published as Fig. 9 in Ben Bouallègue et al. (2020). c© American Meteorological
Society. Used with permission.)
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Figure 21: (a) Brier skill score (BS), and (b) diagonal elementary skill score (DESS) as a function of the event-
thresholds when verifying daily precipitation forecast at day 5. Vertical bars indicate 5%-95% confidence intervals.
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Figure 22: Long-term trends in daily precipitation ensemble forecast performance as measured by the diagonal
elementary score (DESS) with (right) and without (left) accounting for representativeness uncertainty. 1-year run-
ning mean over the past 16 years. The event under focus is defined as the 95% percentile of the eigenclimatology.

allows to include the uncertainty associated with station measurements in the verification process. Fi-
nally, verification results derived with and without the perturbed ensemble approach are compared and
analysed. It is shown, in summary, that accounting for observation representativeness error has a large
impact on the assessment of forecast reliability, of forecast skill at short lead times, and potentially on
forecast discrimination ability for rare events. These conclusions are valid for all 3 surface weather
variables analysed here.

An important side benefit of this study is that it provides the basis for model-independent post-processing
methods. Ensemble members (or deterministic forecasts) can be dressed with a parametric distribution
using for each variable the corresponding model proposed here. Because the model fitting is based
on independent observations only, it can be applied to forecasts from any model, simply adapting the
parameters as a function of the model grid-spacing. For 10 m wind speed and daily precipitation, the
derived probabilistic forecasts could be interpreted as valid at any given location of a model grid box.
For 2 m temperature, the derived forecasts are valid at the station location because the model is based on
the elevation difference between model representation and station. Importantly, the proposed approach
is fully parametric, and as such straightforward to apply (by any direct model-output user or forecast
provider) in order to generate as many ”members” as desired. This type of post-processing can be seen
as a way to account for model limitations, due to sub-grid scale uncertainty, but cannot correct for model-
specific deficiencies.

Because of their simplicity, the models proposed here could be considered as a benchmark for more
complex approaches. Parameters of the generalized uncertainty models are estimated based on a Euro-
pean dataset, but are intended to be applied globally. Representativeness error is described in general-
ized terms, but each model could be developed further by considering that sub-grid scale uncertainty is
weather-situation dependent or at least considering parameters that vary with seasons. More complex
models would benefit both verification and potential post-processing applications.

5 Future prospects

Accounting for observation uncertainty in the verification of ensemble forecasts is planned to be per-
formed routinely at ECMWF. Routine verification activities include monitoring the operational ensemble
system performance as well as monitoring long-term trends in the form of head-line scores for example.
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Routine verification also encompasses the assessment of ensemble experiments and in particular of new
IFS cycle candidates. Because of its potential strong impact on the ”colour” of a scorecard (as discussed
in Section 1), it is important to account for observation uncertainty in assessing cycle upgrades. This is
now possible with the in-house verification software Quaver, which, from version 1.4.0 on, is ready to
handle observation uncertainty using the perturbed ensemble approach.

Besides the variables investigated here (2m temperature, 10 m wind speed, and daily precipitation),
uncertainty models for other surface and upper-air variables are also implemented in Quaver. For upper-
air variables, random errors are considered as the main contributors to observation uncertainty and the
perturbed ensemble approach is applied using normal distributions when verifying geopotential height,
temperature, wind speed, and relative humidity against radiosondes. The error distribution is assumed
to be independent of the value of the variable except for relative humidity where a multiplicative model
is used. For upper-air wind speed, each component is treated separately. The standard deviation of the
normal distributions varies for each variable as a function of the pressure level, and is estimated by data
assimilation experts (Ingleby 2018, personal communication, Ingleby, 2017). Regarding ensemble wave
forecast verification, observation uncertainty for significant wave height has been estimated using triple
collocation technique (Abdalla et al., 2011). Based on this study, an uncertainty model for this parameter
will soon be implemented in Quaver. In contrast, uncertainty associated with cloud cover observations is
difficult to assess because of the mixture of observation types and the large difference between automated
and manual observation error characteristics (Mittermaier, 2012). So further investigations are required
for this variable. Finally, we can note that when verification is performed against analyses, the correla-
tion between analysis error and forecast error should be considered. The estimation of this quantity is
generally not trivial (Simmons and Hollingsworth, 2002; Peña and Toth, 2014) and the use of a simple
perturbed approach might not be appropriate in that case. Accounting for analysis uncertainty in forecast
verification is an active field of research.
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Complementary figures
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Figure 23: (a) CRPS (in K) estimated with (black) and without (grey) accounting for representativeness uncer-
tainty and (b) the corresponding CRPS relative difference (in %) as a function of the forecast lead time. Results
valid for 2 m temperature ensemble forecasts, Europe, Winter 2018-2019.
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Figure 24: (a) Brier skill score (BSS), and (b) diagonal elementary skill score (DESS) as a function of the event-
threshold. Results valid for 2 m temperature ensemble forecast at day 5, Europe, Winter 2018-2019.
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Figure 25: (a) Reliability diagram, (b) sharpness diagram, (c) and ROC curve for an event-threshold of 283 K.
Results valid for 2 m temperature ensemble forecast at day 5, Europe, Winter 2018-2019.
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Figure 26: (a) Reliability diagram, (b) sharpness diagram, (c) and ROC curve for an event-threshold of 298 K.
Results valid for 2 m temperature ensemble forecast at day 5, Europe, Summer 2018-2019.
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Figure 27: (a) CRPS (in m/s) estimated with (black) and without (grey) accounting for representativeness uncer-
tainty and (b) the corresponding CRPS relative difference (in %) as a function of the forecast lead time. Results
valid for 10 m wind speed ensemble forecasts, Europe, Winter 2018-2019.
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Figure 28: (a) Reliability diagram, (b) sharpness diagram, (c) and ROC curve for an event-threshold of 10 m/s.
Results valid for 10 m wind speed ensemble forecast at day 5, Europe, Summer 2018.
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Figure 29: (a) CRPS (in mm/24h) estimated with (black) and without (grey) accounting for representativeness
uncertainty and (b) the corresponding CRPS relative difference (in %) as a function of the forecast lead time.
Results valid for daily precipitation ensemble forecasts, Europe, Winter 2018-2019.
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Figure 30: (a) Reliability diagram, (b) sharpness diagram, (c) and ROC curve for an event-threshold of 20
mm/24h. Results valid for daily precipitation ensemble forecast at day 5, Europe, Summer 2018. (Published as Fig.
10 in Ben Bouallègue et al. (2020). c© American Meteorological Society. Used with permission.)
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