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Abstract 

In this study the impacts of the data assimilation of the SMOS soil moisture neural network trained 

on ECMWF product upon streamflow estimates were investigated. Two hydrological experiments 

were performed, one which used hydro-meteorological forcings produced with the assimilation of 

the SMOS data, the other using forcings which excluded the assimilation of the SMOS data. Both 

hydrological simulations produced streamflow estimates using the Global Flood Awareness System 

[GloFAS], run at ECMWF on behalf of the European Commission Copernicus Emergency Manage-

ment Service. Both sets of experiment results were verified against streamflow observations in the 

United States and Australia, and were also analysed globally with respect to a GloFAS simulation 

forced with ERA-5 re-analysis which provided a benchmark acting as global proxy observations. 

Skill scores were computed for each experiment against the observation datasets, the differences in 

the skill scores were used to identify where hydrological skill may be affected by the assimilation 

of SMOS soil moisture data. Results found that skill score differences between the two GloFAS data 

assimilation experiments were pronounced within a tropical band of latitude. Differences were also 

present in areas such as south east Asia and the Himalayas. There was no clear spatial trend to these 

differences, so it is not possible to conclude whether a particular region’s hydrological skill is im-

proved by the assimilation of SMOS soil moisture. Investigating the differences between the simu-

lations at individual gauging stations found that they often only occurred during a single flood event, 

for the remainder of the simulation period the experiments were almost identical. Future work could 

further understand the impact of SMOS soil moisture data assimilation by focussing the analysis on 

individual flood events and correlating any differences to the analysis increments. Therefore it is not 

possible to conclude whether the assimilation of SMOS soil moisture improves the hydrological 

skill of GloFAS streamflow predictions. However the assimilation may affect individual flood peaks 

but further analysis is required. 

 

1. Introduction 

As part of the European Commission Copernicus Emergency Management Service [CEMS] for floods, 

the European Centre for Medium Range Weather Forecasts [ECMWF] operates the Global Flood 

Awareness System [GloFAS]. This provides once daily [00 UTC] forecasts of streamflow globally at 

0.1° spatial resolution and daily temporal resolution up to 46 days ahead.  

Streamflow forecasts are produced by coupling the surface and subsurface runoff forecasts from the 

ECMWF Integrated Forecast System [IFS] with the kinematic channel routing procedure within the 

LISFLOOD hydrological model. The coupling is necessary because no lateral routing of runoff exists 

within the IFS.  

Within IFS the surface and subsurface runoff are calculated from the Hydrology Tiled ECMWF Scheme 

for Surface Exchanges of Land [HTESSEL] land surface model [LSM]. The soil water budget in HTES-

SEL is computed at each computational node using the Richards equation of water flow through the 

unsaturated soil profile. At the top boundary layer water enters the soil as precipitation minus evapora-

tion and runoff and at the bottom boundary layer water exits as free draining. The soil hydraulic con-

ductivity is calculated from the van Genuchten equation which is a function of pressure head which in 

turn relates to the soil texture. Different parameters are assigned to each soil texture class derived from 

the Food and Agriculture Organization [FAO] dataset. The saturated hydraulic conductivity is used to 

calculate the maximum infiltration rate which is then used to calculate the amount of runoff. Runoff is 
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generated in a Hortonian manner when the throughfall plus the snowmelt exceeds the maximum infil-

tration rate.  

Each forecast from the IFS is initialised from the ECMWF analysis fields. The analysis is produced by 

assimilating the first guess [i.e. the previous forecast] with the latest near real time hydro-meteorological 

observations. The Land Data Assimilation Scheme [LDAS] of the IFS includes an analysis of soil mois-

ture, which combines a two-dimensional screen level analysis of 2 metre temperate and relative humidity 

observations from SYNOP with soil moisture observations from satellite sensors. A Simplified Ex-

tended Kalman Filter [SEKF] is used to analyse the soil moisture state vector for each grid point at each 

time step [de Rosnay et al., 2013]. A more detailed description of the soil moisture data assimilation 

procedure can be found in the IFS documentation [ECMWF, 2018]. Currently satellite soil moisture 

observations from the Advanced Scatterometer satellite [ASCAT] and SMOS [since model cycle 46r1 

released 12th June 2019] are used within the LDAS soil moisture procedure. Therefore the assimilation 

of the SMOS soil moisture observations may have an impact upon the hydrological forecasting from the 

HTESSEL LSM. 

GloFAS produces global ensemble streamflow forecasts. It has been run at ECMWF since 2011 and has 

been operational since 23rd April 2018. It routes the forecasted surface runoff from HTESSEL along a 

one-dimensional channel network using a kinematic solution of the St. Venant equations [van der Knijff 

et al., 2010]. Calculating this requires information about the channel length, gradient, flow width and 

depth as well as the Manning’s roughness coefficient. This information is obtained firstly from the global 

river network database [Wu et al., 2012], which includes a river channel network at 0.1° spatial resolu-

tion from the Digital Elevation Model [DEM] created by the HydroSHEDS project [Lehner et al., 2008]. 

This is a hydrologically conditioned version of the original Shuttle Radar Topography Mission [SRTM] 

DEM to ensure continuous stream networks. River widths are obtained from the Global Width Database 

for Large River [GWD-LR, Yamazaki et al., 2014]. Bankfull water depth was estimated using the Man-

ning’s equation applied to long term average discharge observations. 

GloFAS also includes 463 large lakes and 667 reservoirs whose locations and attributes were obtained 

from global datasets [Zajac et al., 2017]. The outflow from each lake is computed using the relationship 

with lake level using the weir equation [Bollrich, 1992]. The extraction of water through irrigation is 

represented by subtracting from the forecasted streamflow a value taken from a monthly climatology 

[Hirpa et al., 2018]. Finally, open water evaporation is estimated using the Penman-Monteith with forc-

ings taken from IFS variables.  

Eight of the GloFAS model parameters were tuned in a recent calibration exercise, including the channel 

Manning’s n,the multiplier for lake outflow and flood storage and outflow for reservoirs [Hirpa et al., 

2018]. An Evolutionary Algorithm [EA] was used with the Kling-Gupta Efficiency metric [KGE] cal-

culated for streamflow as the objective function. The calibration was performed in 1,287 catchments 

ranging from 484 km2 to 4,800,000 km2 in size. At each station at least four years of observed daily 

streamflow data between 1995-2015 were required, these were mostly sourced from the Global Runoff 

Data Centre [GRDC]. The four-year observation sample was split into two years for calibration and two 

for validation. Within the former the calibration was performed using a maximum of 15 generations of 

the EA algorithm. Forcings of surface and subsurface runoff were obtained from the ECMWF IFS 

HTESSEL reforecasts between 1995-2015 which were a combination of model cycles 41r1 and 41r2. 

Results from the calibration found improved streamflow estimation skill in 67% of the 1,287 catchments 
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[77% when excluding North America] [Hirpa et al., 2018]. The skill improvement was lowest where 

there were large negative biases in the baseline simulations, which could be caused by precipitation 

underestimation [Hirpa et al., 2018]. For catchments which were not part of the calibration exercise, 

default parameter values taken from the literature were used. 

As described above, since ECMWF IFS model cycle 46r1 the surface and subsurface runoff forecasts 

from HTESSEL benefit from the assimilation of SMOS soil moisture observations. Since these forecasts 

are used to force the GloFAS model forecasts of streamflow, it therefore stands that these may also 

benefit from SMOS. To date however this potential benefit has not been investigated. Therefore the rest 

of this report describes the results of a data denial experiment to assess the sensitivity of GloFAS stream-

flow skill to the assimilation of SMOS within the IFS. 

2. Description of IFS SMOS Data Assimilation Experiment  

Two IFS simulations were performed to assess the role of SMOS data assimilation. One simulation 

included SMOS soil moisture data assimilation and the other excluded it. The simulations were run from 

1st March 2017 to the 21st May 2018 using model cycle 45r1 with grid TCo399 [approximately 

0.25°x0.25° horizontal resolution] and climate v015. 

The SMOS soil moisture data used in this experiment were similar to that from the neural network 

processor used for preliminary offline data assimilation experiments conducted by [Rodríguez-

Fernández et al., 2019]. It was created by training SMOS dual-polarisation multi-angular level 1 

brightness temperature measurements against ECMWF soil moisture analysis fields. However, for this 

study, the neural network product was trained on the ECMWF operational soil analysis instead of on the 

offline model soil moisture. In addition, data assimilation experiments were conducted in the IFS instead 

of the offline land surface model. So, they rely on coupled modelling and coupled assimilation 

approaches, and use a 12h assimilation window instead of 24h in the offline system. The SMOS IFS 

data assimilation experiments used in this report were also used to support the operational 

implementation of the SMOS NN product assimilation in IFS cycle 46r1 in June 2019 [de Rosnay et al., 

2019].  

3. Description of GloFAS Experiments 

The GloFAS suite was run using each of the aforementioned IFS experiments. The following output 

variables from the IFS experiments were used as forcings within GloFAS: total precipitation, surface 

runoff, subsurface runoff, surface net solar radiation, surface net thermal radiation, 10 metre wind U 

component, 10 metre wind V component, 2 metre temperature, and 2 metre dewpoint temperature. These 

were taken from the 060 and 18 UTC forecasts of the IFS experiments. The GloFAS model was run at 

24 hour timesteps valid between 00-24 UTC, therefore the IFS values needed to be mapped onto each 

24 hour timestep. For accumulated variables, such as total precipitation, surface and subsurface runoff, 

the 24 hour accumulations were created by combining data from the following forecast times [Table 1]: 
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Forecast Time Lead Time (hours) 

18 d-1 6 - 12 

06 d0 0 - 12 

18 d0 0 - 6 

Table 1 24 hour accumulations at day 0 (d0) were created by combining IFS experiment data at 

the above forecast times 

For instantaneous variables, such as 2-metre temperature and the wind components, the average is taken 

across the instantaneous values at 00, 06, 12 and 18 UTC on the relevant day. All the forcings were 

regridded using nearest neighbour from the TCo399 grid onto the regular 0.1°x0.1° grid [European 

Petroleum Survey Group - EPSG projection code 4326] used by GloFAS. 

Daily streamflow outputs from GloFAS at 0.1° x 0.1° resolution valid for 0-24 hours lead time were 

used in the subsequent streamflow verification analysis. The streamflows represented the GloFAS 

forecast of discharge within the river component of each 0.1° x 0.1° model cell. This GloFAS setup was 

identical to a previous experiment which used ERA-5 for the hydro-meteorological forcings. The results 

from that particular experiment will be used later as proxy observations at the global level. 

4. Streamflow Verification Methodology 

Results from the GloFAS streamflow experiments above were verified against in-situ observed 

streamflow values within Australia and the United States. These two countries were selected because of 

the good spatial coverage provided by their respective in-situ observations networks. Furthermore 

previous studies have suggested that SMOS soil moisture data have the greatest impact in these areas.  

283 locations were chosen in the United States and 32 within Australia. These locations had been 

selected in a previous verification study of GloFAS [http://www.globalfloods.eu/technical-

information/glofas-30V2day/] because they represented a range of different catchments found across 

the countries, as well as being at a spatial scale similar to that of GloFAS. It was necessary to shift the 

latitude and longitude coordinate of each in-situ location on to the nearest GloFAS river cell. This is 

because the 0.1° x 0.1° GloFAS channel network is a simplification of the real world channel locations, 

which can result in a small shift between the two. The shifting was done at each in-situ location by 

identifying the nearest channel cell in the GloFAS river network with a similar upstream area as the 

observed value. Additionally, a note was made at each in-situ about the extent of any anthropogenic 

intervention in the hydrological functioning of the river, for example if there were any dams or irrigation 

activity. 

It was necessary to extract the in-situ streamflow observations from the respective monitoring agencies, 

as data for the time period of the GloFAS experiments was not already held. In Australia the data were 

extracted from the Bureau of Meteorology [BoM]. These were daily average streamflow observations 

which had been quality controlled. In the United States the data were extracted from the United States 

Geological Survey [USGS] and were six hourly average discharges. These were further averaged onto 

daily time steps, the units were converted from cubic feet per second to cubic metres per second. The 
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observed time series at each in-situ location was assessed for missing data, and locations with less than 

90% completeness were eliminated from the subsequent analysis. 

The estimated streamflow from the two GloFAS experiments were extracted at each in-situ location on 

each day during the experiment period. Each GloFAS experiment was compared against the respective 

observations by calculating the modified Kling-Gupta Efficiency [KGEmod] index [Gupta et al., 2009; 

Kling et al., 2012]. The KGEmod is calculated as a combination of the correlation, the bias and the 

variability [Equation 1]: 

𝐾𝐺𝐸𝑚𝑜𝑑 = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 

𝑟 =
𝑐𝑜𝑣𝑠,𝑜

𝜎𝑠 ∙ 𝜎𝑜
 , 𝛽 =

𝜇𝑠

𝜇𝑜
 , 𝛾 =

𝜎𝑠 𝜇𝑠⁄

𝜎𝑜 𝜇𝑜⁄
 

where r = correlation, β = bias, γ = variability, s = simulation [i.e. the GloFAS experiment], o = 

observation, cov = covariance, σ = the mean and μ = standard deviation. 

The KGEmod is very useful for diagnosing the performance of a hydrological simulation as it combines 

three of the most important factors in producing good results. However great care must be taken if 

interpreting its results as a skill score owing to the lack of a benchmark predictor [Knoben et al., 2019]. 

Therefore a skill score [Wilks, 2011] is computed to compare the KGEmod results from the GloFAS 

simulations with and without SMOS soil moisture data assimilation [KGEmodSS]. Positive values will 

show where the GloFAS simulation which includes the assimilation of SMOS soil moisture data 

outperforms the simulation without the assimilation of SMOS. 

𝐾𝐺𝐸𝑚𝑜𝑑𝑆𝑆 =
𝐾𝐺𝐸𝑚𝑜𝑑[𝑤𝑖𝑡ℎ 𝑆𝑀𝑂𝑆] − 𝐾𝐺𝐸𝑚𝑜𝑑[𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑆𝑀𝑂𝑆]

𝐾𝐺𝐸𝑚𝑜𝑑𝑃𝑒𝑟𝑓 − 𝐾𝐺𝐸𝑚𝑜𝑑[𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑆𝑀𝑂𝑆]
 

where KGEmodPerf = 1 which is a perfect score for the KGEmod. 

5. Verification Results 

5.1. Verification against Observed Streamflow 

5.1.1. United States 

A wide range of KGEmod scores occur throughout the United States from the simulation with SMOS 

soil moisture data assimilation. A cluster of high values occur in the north west in the Colombia and 

upper Missouri basins, a cluster of low scores occurs in the Platte River in Nebraska [Figure 1a]. One 

explanation for the wide range of scores(?) could have been the presence of regulation within the river 

basins, a process which is only simplistically represented by GloFAS at some locations. However 

there is no apparent correlation between the KGEmod value and whether a river is regulated. For exam-

ple many of the locations with high KGEmod scores in the north west are also regulated, whilst the 

Platte River is only marked in one location as being regulated [Figure 1a].  
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The KGEmod skill scores are mostly centred around 0 [Figure 1b], meaning that there is little difference 

between the skill of the simulations with and without SMOS soil moisture data assimilation. The larg-

est negative KGEmod skill score values appear on the Platte River as well as the upper Nelson River in 

North Dakota. At these locations the KGEmod values are less than zero in both GloFAS simulations 

with and without SMOS data assimilation. Analysing the hydrograph near the outlet of the Platte River 

shows that both GloFAS simulated hydrographs are much below the observed discharge [Figure 2]. 

The main difference between them is the discharge peak which occurs on the 1st November 2017. The 

peak is greater in the simulation when SMOS soil moisture is assimilated, but because this coincides 

with a trough in the observations this may be what causes the lower skill. Further analysis in the Platte 

River found that GloFAS simulates three reservoirs within this basin [at Kingsley, Seminoe and Path-

finder]. These could explain the low KGEmod values in this basin as they may over-estimate the total 

reservoir storage and/or under-estimate the total outflow from one of, or all of, the reservoirs. 

There were 40 locations where the KGEmod skill score was 0.05 or more [Figure 1b], 31 of these loca-

tions had low KGEmod values [less than 0.40], meaning that care must be taken when interpreting the 

apparent improvements at these locations. Two locations within the Wisconsin River demonstrated 

positive KGEmod skill scores and KGEmod values greater than 0.40. At one of these locations both Glo-

FAS simulations capture the overall rise and fall within the observed discharge series, but neither cap-

ture the observed variability [Figure 2]. The GloFAS simulation which includes the assimilation of 

SMOS soil moisture has a large streamflow peak in May 2017 which better matches the observations, 

hence increasing the KGEmod. However the peak is still not as sharply defined as in the observations 

[Figure 2]. 

Across all 283 gauging station locations in the United States the GloFAS simulation with SMOS soil 

moisture data assimilation shows slightly improved bias and KGEmod values over the simulation 

without SMOS soil moisture data assimilation [Table 2]. A previous study [Verhoest et al., 2015] also 

investigated the hydrological impact of SMOS data assimilation but within the upper Mississippi ba-

sin. Whilst that study did not explicitly analyse streamflow they found that CDF matching of modelled 

soil moisture from the VIC [Variable Infiltration Capacity] model to SMOS soil moisture resulted in 

higher values [Verhoest et al., 2015]. This could explain the higher KGEmod values observed at some 

locations in the GloFAS experiment which has SMOS soil moisture data assimilation. For example at 

the Wisconsin river [Figure 2] the higher streamflow in June 2017 in the GloFAS experiment with 

SMOS could be the result of higher soil moisture values leading to more generation of surface runoff. 

 R Bias KGEmod 

Without SMOS DA 0.428 0.840 -0.504 

With SMOS DA 0.420 0.812 -0.472 

Table 2 Streamflow evaluation metrics averaged across the 283 United States gauging stations 
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Figure 1 a) Modified Kling-Gupta Efficiency skill score calculated from GloFAS experiment with 

SMOS data assimilation against observed streamflow from the USGS. b) The skill score calculated 

with the KGEmod from the GloFAS simulation with SMOS data assimilation referenced against the 

KGEmod from the GloFAS simulation without SMOS data assimilation. The background shows the 

GloFAS channel network. 
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Figure 2 Hydrographs at the a) Wisconsin River, and b) Platte River 

The KGEmod from the simulation with SMOS data assimilation was broken down into its constituent 

components of: bias, variability and correlation [Figure 3]. This was done to explain the trends in the 

KGEmod score above [Figure 1]. For the bias, values less than 1 show that GloFAS under-estimates 

streamflow with the reverse being true for values greater than 1. In this assessment GloFAS mostly 

has an under-estimation bias with some over-estimation in the south west [Figure 3]. The greatest un-

der-estimation occurs within the Platte River, which as discussed above could be related to the treat-

ment of reservoir storage within GloFAS [Figure 2]. The variability shows that GloFAS has a higher 

variability than the observations in locations where the KGEmod score was low [Figure 3]. At the Platte 

River the higher GloFAS variability than the observations occurs because its baseflow meaning it is 

more sensitive to the peak flows which occur in June and November 2017 [Figure 2]. At the same lo-

cation the GloFAS simulation with SMOS soil moisture data assimilation has a higher variability than 

the simulation without SMOS due to the greater November 2017 peak flow in the former simulation 

[Figure 2]. Correlation is greater than zero in most locations across the US, with 164 locations having 

a correlation greater than 0.4 [Figure 3]. Locations with the highest correlation also have higher KGE-

mod scores. There is little difference in the correlation scores at these locations between the GloFAS 

simulations with and without SMOS soil moisture data assimilation [Figure 2].  
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Figure 3 Constituents of the modified Kling-Gupta Efficiency skill score: a) bias, b) variability, 

and c) correlation. Calculated from the GloFAS experiment with SMOS data assimilation against 

USGS streamflow observations. 
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5.1.2. Australia 

The KGEmod values from the GloFAS simulation which includes SMOS soil moisture data assimilation 

show that values greater than 0.2 occur in the north of Australia [Figure 4]. For example in the Roper 

River both GloFAS simulations capture the peak streamflows between January to April 2018 [Figure 

5]. Both GloFAS simulations miss the observed peak in April 2017, but both capture the extremely 

low baseflow from May 2017 to January 2018 which may be the main cause of the higher KGEmod 

value at this location. The GloFAS simulation which includes SMOS soil moisture data assimilation 

has a lower peak flow in February 2018 than the GloFAS simulation without SMOS [Figure 5]. This 

better matches the observed peak flow at this time and may explain why the KGEmod value improves 

from 0.57 to 0.65 when SMOS soil moisture data assimilation is included [Figure 5].  

KGEmod values in the south east of Australia are mostly less than zero [Figure 4]a. The majority of 

these locations lie within the Murray Darling river basin which features a large amount of regulation to 

the natural river flow [Murray Darling Basin Authority, 2019]. Large quantities of water are extracted 

from the Murray Darling river for purposes including the irrigation of agricultural land, consequently 

observed streamflow would be lower than the original natural flow. The hydrographs near the outlet of 

the basin demonstrate this issue whereby both GloFAS simulations are greater than the observed 

streamflow [Figure 5]. Additionally the shape of both simulated GloFAS hydrographs does not match 

that of the observations. GloFAS includes three reservoirs within this basin but evidently these are in-

sufficient to represent the full impact of the water management regime within the basin. At this loca-

tion the GloFAS simulation with SMOS soil moisture data assimilation has lower peak flows than the 

GloFAS simulation without SMOS, something that also occurred in the north of the country [Figure 

5]. 

The KGEmod skill score in Australia shows a decline in KGEmod scores in the north of the country and 

in the upper Murray-Darling basin when SMOS soil moisture data are assimilated [Figure 4]b. How-

ever in 9 locations the KGEmod skill score is greater than 0.05, which shows an improvement when 

SMOS data are assimilated. All but two of these locations occur within the Murray Darling basin. The 

KGEmod skill score values were often attributable to a difference in one or two flood peaks during the 

simulation period between the simulations with and without SMOS data assimilation. For example at 

the outlet of the Murray Darling basin the positive KGEmod skill score value is due to the simulated 

peak in February 2018 being lower in the simulation which includes SMOS data assimilation which 

better matches the observation [Figure 5]. However for the rest of the simulation period the two simu-

lations are almost identical. It is not clear what particular aspect of the SMOS soil moisture data as-

similation might be causing these trends in the KGEmod skill score. Care should be taken when inter-

preting the KGEmod skill score trends in the Murray Darling basin however since neither GloFAS sim-

ulation captures the management processes. 

Averaging the streamflow evaluation metrics across all 32 gauging stations shows a slight decline 

from the simulation which includes SMOS soil moisture data assimilation [Table 3]. Previous studies 

have also investigated the impact of SMOS data assimilation upon streamflow prediction in the Mur-

ray Darling basin using the VIC hydrological model [Lievens et al., 2015 and 2016]. Their results 

found that SMOS data assimilation slightly improved the streamflow evaluation metrics, in contrast to 

the results found here. The differences between this study and those of Lievens et al., 2015 and 2016 

could be because this study looks across all of Australia, rather than just the Murray Darling basin. 
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Also, within the Murray Darling this study includes gauging locations near the outlet, whereas Lievens 

et al., 2015 and 2016 focus on smaller catchments within the upper reaches. These smaller catchments 

may be less prone to water management processes which may be negatively affecting the streamflow 

metrics in this study. 

 R Bias KGEmod 

Without SMOS DA 0.410 2.466 -1.248 

With SMOS DA 0.356 2.558 -1.340 

Table 3 Streamflow evaluation metrics averaged across the 32 Australian gauging stations 
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Figure 4 a) Modified Kling-Gupta Efficiency skill score calculated from GloFAS experiment with 

SMOS data assimilation against observed streamflow from the BoM. b) The skill score calculated 

with the KGEmod from the GloFAS simulation with SMOS data assimilation referenced against the 

KGEmod from the GloFAS simulation without SMOS data assimilation. 
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Figure 5 Observed and GloFAS simulated hydrographs at a) Roper River, Northern Australia and 

b) near the outlet of the Murray-Darling River. 

The components of the KGEmod show that the bias of the GloFAS simulation tends towards over-esti-

mation, particularly within the Murray-Darling basin [Figure 6]. This is highlighted in the hydrograph 

at the outlet of the basin [Figure 5] and likely reflects the lack of GloFAS’ ability to replicate the water 

management practices throughout the basin. For variability the GloFAS simulation under-estimates it 

in the north of the country and is slightly over-estimated in the Murray-Darling basin [Figure 6]. This 

could be due to GloFAS not under-estimating the magnitude of the flood peaks in the north of the 

country which would result in a lower standard deviation. In the Murray-Darling this is because the 

river management practices, not represented in GloFAS, aim to reduce the variability of the stream-

flow. The correlation is highest in the north of the country where river flows are more natural than in 

the Murray-Darling basin where the correlation is lower [Figure 6]. 
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Figure 6 Constituents of the modified Kling-Gupta Efficiency skill score: a) bias, b) variability, 

and c) correlation. Calculated from the GloFAS experiment with SMOS data assimilation against 

BoM streamflow observations. 
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5.2. Verification against GloFAS ERA-5 Simulation 

The previous analysis of GloFAS simulated streamflows against observations was hindered by the 

presence of regulation in many of the basins. Since these regulations are very difficult to simulate 

within GloFAS owing to the lack of process representation, it meant that it was difficult to assess 

whether the results in the performance metrics were due to the influence of SMOS soil moisture data 

assimilation or the river regulation. Furthermore the significant effort required to extract and process 

the streamflow observations meant it was only possible to perform the analysis in the United States 

and Australia. In this section a secondary analysis is performed globally but using a GloFAS simula-

tion forced with ERA-5 re-analysis data as a proxy for observed streamflow. 

The GloFAS ERA-5 simulation was produced in a previous study by forcing the LISFLOOD river 

routing procedure with the IFS variables described in section 3 but derived from ERA-5. 

The Mean Absolute Error [MAE] was computed from the river discharge for the GloFAS simulations 

with and without SMOS soil moisture data assimilation against the GloFAS ERA-5 simulation. 

𝑀𝐴𝐸 =
∑ |𝐺𝑙𝑜𝐹𝐴𝑆𝑆𝑀𝑂𝑆 𝑖 − 𝐺𝑙𝑜𝐹𝐴𝑆𝐸𝑅𝐴−5 𝑖|𝑛

𝑖=1

𝑛
 

where n = number of data points which in this case is the number of days during the simulation period. 

The MAE will show the average absolute difference between both GloFAS SMOS experiments and 

the GloFAS ERA-5 simulation. The metric was chosen instead of the KGEmod because the proxy ob-

servation dataset in this particular instance, from the GloFAS ERA-5 simulation, will have similar bi-

ases to the GloFAS SMOS experiments as they are produced by the same hydrological model. There-

fore it would be unnecessary to analyse some of the components of the KGEmod. Instead the MAE pro-

vides a simpler approach more suitable for this particular analysis. 

The units of the MAE will be in m3s-1 which is the same as the units of the GloFAS discharge simula-

tions. However this will mean that the catchment area will influence the results. To avoid this the 

streamflows were converted into specific discharge, whereby they are divided by their upstream area, 

and the MAE was computed from these. 

Results show that the greatest MAE values lie within a latitude band of 22° - -10° within the tropics 

[Figure 7]. Within this band the upper reaches of the Nile, Congo and Amazon rivers have some of the 

largest MAE values. High values are also found in the Indonesian archipelago, south east Asia, the 

Himalayas, the west coast of Africa and southern Mexico [Figure 7].  

To calculate the impact of the SMOS soil moisture data assimilation, the difference in the specific dis-

charge MAE from the GloFAS simulations with and without the data assimilation was calculated. Re-

sults show that the MAE from the GloFAS simulation with SMOS data assimilation is most frequently 

smaller than that from the GloFAS simulation without SMOS data assimilation [Figure 8]. However 

there are areas where the reverse is true, for example in North America especially around the Hudson 

Bay. The greatest differences, of whichever sign, are in the same locations as those which have the 

greatest MAE values [Figure 7]. 

It is not clear why the differences in the MAE values between the two GloFAS SMOS simulations 

emerge. It may be that one of the simulations has higher flows than the other for example. To investi-

gate this the differences in the 5th and 95th percentiles of the specific discharges [representing low and 

high flows respectively] were computed. The 5th percentile shows the greatest differences within the 
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same tropical latitude band as for the MAE [Figure 9]. In the upper Brazilian/Columbian Amazon ba-

sin the 5th percentile specific discharges from the GloFAS simulation with SMOS data assimilation are 

lower than those from the GloFAS simulation without SMOS data assimilation. Whereas in the Bol-

vian Amazon the reverse is true. No clear trend in the 5th percentile differences is in evidence in the 

Indonesian archipelago, as values of opposing sign occur next to each other. In North America in the 

tributaries of the Mississippi basin 5th percentile specific discharges are slightly lower in the GloFAS 

simulation with SMOS data assimilation. Whilst in north west America and most of Canada the Glo-

FAS simulation with SMOS data assimilation has higher 5th percentile specific discharges. Differences 

are more globally widespread in the 95th percentile specific discharges between the two GloFAS 

SMOS data assimilation experiments [Figure 10]. The greatest differences are within the Amazon ba-

sin, western Africa and the India/Bangladesh/Myanmar area. Weaker differences occur in eastern 

China, the Indonesian archipelago, South America, central Africa, northern Australia and northern 

Russia [Figure 10]. However there is no clear spatial trend to these differences, as differences of op-

posing sign occur close to each other. 
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Figure 7 Mean absolute error of GloFAS specific discharge compared against the GloFAS ERA-5 re-analysis simulation. 
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Figure 8 Difference in Mean Absolute Error skill score of specific discharge from the GloFAS simulations with and without SMOS data assimilation, when compared 

against the GloFAS ERA-5 re-analysis. Red shows an improvement in MAE with SMOS data assimilation, blue shows a decline. 
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Figure 9 Difference in the 5th percentile (low flow) of specific discharge from the GloFAS simulations with and without SMOS data assimilation. 
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Figure 10 Difference in the 95th percentile (high flow) of specific discharge from the GloFAS simulations with and without SMOS data assimilation. 
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6. Discussion & Conclusions 

One point for discussion is the use of a calibrated hydrological model to perform the streamflow 

predictions. As mentioned above, GloFAS was calibrated in a previous study by optimizing the 

streamflow parameters using forcings from a 20 year ECMWF reforecast [Hirpa et al., 2018]. The 

calibration of a given hydrological model can sometimes mean that it is difficult for any subsequent 

simulation to outperform it. However the GloFAS calibration study only tuned the streamflow 

parameters and left the vertical hydrological component, i.e. HTESSEL, unchanged. Hence it is still 

possible to improve the performance of this latter component, for example with the assimilation of 

SMOS soil moisture data within the forcings. This is evidenced by the improvements observed at some 

locations in the United States whereby peak discharges better matched the observations after the 

assimilation of SMOS soil moisture [Figure 2]. Increased soil moisture values from the assimilation of 

SMOS soil moisture, as suggested in Verhoest et al., 2015, could cause increased surface runoff 

production and hence greater streamflows. 

Another point to consider is the implicit bias correction within the SMOS soil moisture product that was 

used in this study. The SMOS product was created by applying a neural network procedure which was 

trained on ECMWF soil moisture data. This procedure would implicitly remove any biases between the 

SMOS observations and the ECMWF model. However this would restrict the data assimilation to only 

correcting for random model errors rather than also correcting the bias, preventing it from changing the 

behavior of the soil moisture [Lievens et al., 2016]. Assimilating the SMOS neural network product 

trained on the SMOS level 2 soil moisture data could offer a solution, as this product is not bias corrected 

to the ECMWF model. However it would not currently work within the ECMWF data assimilation 

system as it breaks the assumption of zero observation-model bias. A possible solution for future work 

would be to perform a parameter analysis of HTESSEL which may involve tuning its parameters which 

control the vertical soil water budget. 

Overall in this study two GloFAS experiments have been conducted using hydro-meteorological 

forcings from the IFS experiments which include and exclude the assimilation of SMOS soil moisture 

data. Streamflow predictions from both GloFAS experiments have been evaluated against observations 

either from in-situ measurements or from a GloFAS ERA-5 simulation using the KGEmod and MAE 

metrics respectively. The KGEmod skill score was calculated to show where hydrological skill could have 

been improved by the assimilation of SMOS soil moisture and the difference in the MAE values between 

the two experiments was calculated for the same purpose. The results showed no clear spatial trend to 

any changes in hydrological skill which emerged. The greatest changes between the simulations occur 

within the tropical latitude band. Outside of this the changes between the simulations were smaller. 

Further investigation was made as to how the hydrological skill of the two GloFAS simulations changed 

by analysing the impacts upon low and high flows. There was no clear spatial trend to these changes 

either. Investigating the hydrographs at specific station locations found that differences in KGEmod could 

often be attributed to differences in a single flood peak, whilst the remainder of the simulated 

hydrographs were identical. In some instances the flood peak in the simulation with SMOS data 

assimilation was the greatest, whilst the opposite was true in other instances. This suggests that future 

work should focus on finding out how the SMOS data are affecting the GloFAS simulations. Rather 

than looking over an entire simulation period it should focus upon a specific flood event where SMOS 
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data are available. It could then look at the increments between the first guess and the analysis. This 

would show the impact of SMOS soil moisture data assimilation upon the HTESSEL soil moisture and 

if it correlates to differences in the GloFAS simulations. Globally this analysis could be expanded by 

analyzing the correlation between the soil moisture increments resulting from SMOS and the differences 

in the GloFAS streamflow simulations. 
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