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Learning earth system models

Abstract

Recent progress in machine learning (ML) inspires the idea of improving (or learning) earth system
models directly from the observations. Earth sciences already use data assimilation (DA), which un-
derpins decades of progress in weather forecasting. DA and ML have many similarities: they are both
inverse methods that can be united under a Bayesian (probabilistic) framework. ML could benefit
from approaches used in DA, which has evolved to deal with real observations – these are uncertain,
sparsely sampled, and only indirectly sensitive to the processes of interest. DA could also become
more like ML and start learning improved models of the earth system, using parameter estimation,
or by directly incorporating machine-learnable models. DA follows the Bayesian approach more ex-
actly in terms of uncertainty quantification, and retaining existing physical knowledge, which helps
to better constrain the learnt aspects of models. This article makes equivalences between DA and ML
in the unifying framework of Bayesian networks. These show, for example, that four-dimensional
variational (4D-Var) data assimilation is equivalent to a Recurrent Neural Network (RNN). More
broadly, Bayesian networks are graphical representations of the knowledge and processes embodied
in earth system models. Even if their full Bayesian solution is not computationally feasible, they give
a framework for organising modelling components and knowledge, whether coming from physical
equations or learnt from observations. These networks can be solved using approximate Bayesian in-
verse methods (as in variational DA, or backpropagation in ML) and could be used to merge the best
of DA and ML. Development of all these approaches could address the grand challenge of making
better use of observations to improve physical models of earth system processes.

1 Introduction

Machine learning (ML) has made rapid progress in diverse areas including the classification of images
(Krizhevsky et al., 2012; Le, 2013), translation between languages (Sutskever et al., 2014; Wu et al.,
2016) and superseding human skill at the game of go (e.g. Silver et al., 2016, 2017). These applications
can require neural networks with millions to billions of trainable parameters, large numbers of layers,
and specialised architectures, such as convolutional networks. These tools are broadly referred to as
‘deep learning’ (LeCun et al., 2015) and, along with many other kinds of ML, are now available through
easy-to-use open-source software such as SciKit Learn (Pedregosa et al., 2011), Keras (Chollet et al.,
2015) and TensorFlow (Abadi et al., 2015). Along with developments in the broader fields of artificial
intelligence (AI), computer science, and statistics, this has driven a re-evaluation of the possibilities of
ML in the earth sciences (Dueben and Bauer, 2018; Boukabara et al., 2019, 2020). Many proposed
applications start from two assumptions: that ML provides an all-purpose non-linear function-fitting
capability, ’a universal approximator’ (Hornik, 1991), and that ML fits (or ‘emulators’) will be faster
than existing physical modelling approaches. Such a tool could be used almost anywhere in the earth
sciences, and many applications have been explored (Chevallier et al., 2000; Krasnopolsky et al., 2005a;
McGovern et al., 2017). Further, and a main focus of this article, ML is proposed as a way to better use
the vast amounts of observational data available from satellites, in-situ scientific measurements, and in
future, internet-of-things (IOT) devices. The goals include making better remote sensing products (Ball
et al., 2017) and building models of earth-system processes directly from the data (Schneider et al., 2017;
Reichstein et al., 2019).

The earth sciences already have a framework for using observations, which has underpinned three
decades of improvements in weather forecasting (Bauer et al., 2015; Eyre et al., 2020) and is known
as data assimilation (DA). As an example, in 2012 weather centres were able to give 5 days warning
of the landfall of Hurricane Sandy in the vicinity of New York. This would not have happened without
millions of observations from weather satellites and the DA framework that was used to ingest this in-
formation into the forecasting systems (McNally et al., 2014). Despite different origins and applications,
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DA and ML have a lot in common, being able to learn about the world from data, and using ‘inverse
methods’ to do so. There are strong mathematical similarities between the ‘variational’ form of DA and
the way neural networks are trained (Hsieh and Tang, 1998; Abarbanel et al., 2018). In particular, these
both use gradient descent techniques, and the adjoint method for calculating gradients in DA (Errico,
1997) is mathematically identical to the standard approach in ML, known as backpropagation. It is not
possible to summarise the full complexity of DA or ML here, nor all the mathematical equivalences
between them. However, from a broad enough viewpoint, DA and ML are just two flavours of inverse
method that can be united under Bayesian statistics.

Known problems in ML include the difficulty of incorporating existing physical knowledge (Von Rueden
et al., 2019; Boukabara et al., 2020) and the brittleness of its results, such as image classifications that
fail after small changes in object orientation (Alcorn et al., 2019) or the change of a single pixel in
an image (Su et al., 2019). Improved handling of uncertainty is seen as a key development for using
ML in earth system applications (Boukabara et al., 2020; Reichstein et al., 2019) but this is still under
development and focuses on predictive uncertainty (Gal and Ghahramani, 2016; Lakshminarayanan et al.,
2017). DA as currently applied has robust and well-established ways of handling uncertainty in all
parts of the problem. DA can incorporate prior knowledge, which includes both physical laws and the
accumulated knowledge built up from past observations. It also has tools for dealing with the complexity
of real observations, which are usually sparsely and irregularly distributed, and measured using indirect
techniques (Rodgers, 2000; Eyre et al., 1993, 2020). Looking from the shared Bayesian viewpoint, it
might be straightforward for ML to adopt some of these tools during its adaptation to earth science
applications.

DA could also take on some of the characteristics of ML. It has mainly been employed for state esti-
mation, such as providing the initial conditions for weather forecasts, and generally a perfect forecast
model has been assumed. Parameter estimation in DA relaxes this perfect model assumption and allows
model parameters to be updated alongside the state (Aksoy et al., 2006; Norris and Da Silva, 2007).
However, parameter estimation, and more broadly automated model discovery, has not been done widely
in the earth sciences, and whether this is due to difficulty or lack of effort is not clear. In theoretical
settings, DA has been used as an alternative ML framework to learn a geophysical model (Bocquet et al.,
2019) and hybrid DA-ML approaches seek to incorporate a trainable model, such as a neural network,
as a component of a physical model (Tang and Hsieh, 2001) or as a complete replacement for physical
models within the main DA process for state estimation and forecasting (Brajard et al., 2020). However
it is still to be seen whether these approaches will scale up to real geophysical applications. Finally,
even among earth scientists, ML may be better known than DA. This might come from the apparently
daunting mathematical framework of DA, the relative lack of training material available on the internet,
or the reliance of most weather centres (and other users of DA) on bespoke and often private software
systems. DA could learn from ML on this too.

This article will explore the crossover between ML and DA, with particular focus on how earth system
models could be learnt directly from observations. Section 2 establishes a Bayesian framework for
comparing DA and ML, focusing on uncertainty characterisation. Section 3 extends this to see how
DA, and some forms of ML, can use observations to follow a chaotic dynamical system like the earth’s
atmosphere. A summary of typical physical modelling and observational issues in earth system DA is
given in Sec. 4. Based on this, Sec. 5 considers how to learn better earth system models, Sec. 6 looks at
the computational tools and Sec. 7 concludes.
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2 Uniting ML and DA under a Bayesian framework

Both DA and ML solve an inverse problem, which we can understand by first defining the forward
problem, where a function (or ‘model’) h() maps from a state x to an observations y, and the function
has some parameters w:

y = h(x,w), (1)

Here, y, x and w can be vectors or scalars. The inverse problem (Tarantola, 2005) is to find the state
x and/or parameters w from the observations. This becomes difficult when the function is either hard
to invert, or there is no unique solution, for example when the same observations can be produced by
different combinations of state and parameters. Through this article, we will have two different forward
models in mind:

• In ML, inputs x are known as ‘features’, and outputs y are known as ’labels’. The forward model
will typically be a deep neural network, and its parameters (or weights) w are learnt either from a
large training dataset made by humans, such as a set of image classifications (Deng et al., 2009), or
in an adversarial manner against another ML model (Goodfellow et al., 2014; Silver et al., 2017).

• To obtain initial conditions x for a global weather forecast through DA, observations y are typically
combined from a time window around 6 h or 12 h long. Around 10 million observations are used
per 6 h period. The state x is valid at the start of the window and a physical model is used to move
the atmospheric state to the appropriate time of the observations (a ”state model”) and to simulate
observations from the geophysical state (an ”observation model”, or ”observation operator”). In
y = h(x,w) these two are combined, and typically the model is assumed perfect, meaning w is
fixed.

In geophysical forecasting, DA is usually cycled through time, but this is covered in Sec. 3 and for the
moment we consider a static problem. One major approximation will be made to simplify the discussion:
learning of parameters will stand proxy not just for parameter-finding but for function-finding too. Given
a broad enough function, such as a set of differential equations of different orders, parameter-finding can
in any case also be function-finding (Bocquet et al., 2019).

Given that none of the variables in the inverse problem are fully known, they must be subject to un-
certainty, and the most general way to represent uncertainty is through the mathematics of probability.
Bayes’ theorem solves the inverse problem (also known as ‘inference’) from a probabilistic point of view
(Gelman et al., 2013) and data assimilation and other inverse problems can be derived from it (Lorenc,
1986; Wikle and Berliner, 2007; Stuart, 2010). Probabilistic problems can also be expressed in a graph-
ical form known as Bayesian networks (Needham et al., 2007), which are themselves used for solving
machine learning problems (Ghahramani, 2015). As will be seen in this article, these networks provide a
convenient graphical way of describing complex procedures like atmospheric DA, but they also provide
a general mathematical framework for defining complex inverse problems.

The Bayesian network in Fig. 1a encodes the same problem as Eq. 1 but from the probabilistic view-
point, with circles (or ‘nodes’) representing uncertain variables, and arrows (or ’edges’) representing
causal relations between variables – in the current case, the direction of the forward function. The graph
as a whole represents the joint probability distribution of variables, here P(y,x,w). An assumption of
independence between x and w will be made initially, but later relaxed in Sec. 3 and in the appendix.
The diagram shows the exact symmetry between DA and ML: DA usually holds w constant to estimate
x; ML holds x constant to estimate w.
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Figure 1: (a) A Bayesian network representing machine learning (legends in blue) or data assimilation (legends in
black). Arrows represent dependence between variables (in other words, the direction of the forward model). (b)
Probability distributions of the prior (dashed) and posterior (solid, updated from the observation indicated by a
vertical dotted line) of these variables, for an illustrative scalar example of the Bayesian network on panel a.

From an ML point of view, it may seem odd that it is the features and weights (x and w) that are exactly
equivalent, when typically it is the features and the labels (x and y) that are lumped together as ”the data”.
But often a dependent relation between features and labels is clear: there may be infinitely many images
that contain a cat, but an image classification system need only contain one label for ”cat”. Moreover,
the symmetry between features and weights comes from acknowledging that all variables are uncertain:
any updates to the weights need to be traded off against the possibility of errors in the features.

To make use of the Bayesian framework, we have to indicate what we already know, our ‘prior’ knowl-
edge, as a probability distribution, here P(x) and P(w), the prior probabilities of particular features and
weights (or states and parameters). Encoding existing knowledge in a probability distribution allows
it to be statistically weighed against new knowledge coming from observations, which are themselves
uncertain. In DA, we typically start with a detailed deterministic estimate for the the current state of the
atmosphere x – for example we already have a weather forecast for today based on past data. There is
also a statistical representation of the errors in that forecast, P(x), typically based on a combination of an
ensemble of forecasts and climatological statistics (Bonavita et al., 2016).

The final component in a Bayesian framework is the probabilistic version of the forward model, in
this case P(y|x,w), the conditional probability of observing y given x and w. This is the probabilistic
equivalent of the typical feedforward neural network in ML or the models for the atmosphere and the
observation in DA. Given the three probabilistic models, P(x), P(w) and P(y|x,w), we can incorporate
observations to find the updated probability of the state and the parameters, known as the posterior
probability, P(x,w|y). The chain rule of probability can be used, as in the derivation of Bayes theorem,
to find a generalised solution to the DA or ML problem in Fig. 1 (see appendix):

P(x,w|y) = P(y|x,w)P(x)P(w)
P(y)

. (2)

The denominator P(y) is a normalising factor that makes sure the equation produces a valid PDF that
integrates to 1, but its calculation can often be avoided (see below, and appendix). Fig. 1b illustrates this
with a scalar example: an observation, indicated by the vertical dotted line, helps reduce the posterior
uncertainty of the state and parameters. As with the standard version of the Bayes theorem, this ‘solves’
the inverse problem: we have a way to improve our knowledge of unknown or partly known variables (x
and w) by comparing observations y to predictions from a model.

The Bayesian framework can seem abstract, partly because its practical application is harder than it may
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appear. A brute force solution would be to explore all combinations of possible x and w, making point
evaluations the forward model P(y|x,w) – essentially a parameter search, which as the size of the vectors
w and x increases, rapidly becomes impossible through ‘combinatorial explosion’, also known as the
’curse of dimensionality’. Bayesian techniques took off with methods to more economically sample
the search space, such as the Markov Chain Monte Carlo (MCMC) approach (Gelman et al., 2013).
However, these approaches are still not feasible for typical DA problems like weather forecasting, due to
the cost of running the forward model (if ML emulators could make that faster, then MCMC techniques
could be more viable (Cleary et al., 2020)). Another way to make Bayesian techniques more efficient is
to assume all uncertainties are described by Gaussian distributions. This approach will get us back to a
more recognisable DA or ML formulation.

If we can combine a Gaussian distribution of errors with the forward function h(), then we have a way to
mathematically evaluate the conditional probability of observing a particular value y, (Rodgers, 2000):

P(y|x,w) = 1
c1

exp
(
−1

2
(y−h(x,w))2

(σ y)2

)
, (3)

The normalising constants of the Gaussian are folded into c1 = σ y
√

2π . Here σ y is the observation error.
It is also possible to include forward modelling error (i.e. error in h()) but for simplicity in this article we
have assumed that all model errors are explained by errors in the parameters w. For convenience, this and
the next two equations have been written with scalar variables, but one of the benefits of this approach
is that it can be generalised, in a computationally feasible way, to handle millions of observations and
high-dimensional states such as gridded representations of the atmosphere. The full equations can be
found in many of the aforementioned citations. To specify Gaussian prior probability distributions of the
state and parameters in DA (or features and weights in ML) then we need central starting estimates, xb

and wb. In DA, xb is known as the background (for example yesterday’s forecast of today’s weather). In
ML, wb would be the initial settings for the weights. With estimates of the size of the Gaussian error in
each, σx and σw, and some more normalising constants, we have:

P(x) =
1
c2

exp
(
−1

2
(xb− x)2

(σ x)2

)
;P(w) =

1
c3

exp
(
−1

2
(wb−w)2

(σw)2

)
, (4)

Putting these into the Eq. 2 version of Bayes’ rule, taking the logarithm of both sides, hiding the nor-
malising constants in c, and multiplying by -1, we get a quadratic cost function that is conventionally
denoted J():

J(x,w) =−ln(P(x,w|y))+ c =
(y−h(x,w))2

(σ y)2︸ ︷︷ ︸
Jy

+
(xb− x)2

(σ x)2︸ ︷︷ ︸
Jx

+
(wb−w)2

(σw)2︸ ︷︷ ︸
Jw

. (5)

The minimum of J(x,w) is the location of the most probable x and w, given the observation y, and it
can be found economically using gradient descent methods, just as in the variational form of DA and in
forms of ML that use backpropagation, particularly neural networks.

The different terms of the cost function, denoted Jy, Jx and Jw, can be related back to the familiar forms
of DA and ML. The observation and state terms Jy and Jx are always present in DA. Here we already have
good knowledge of the state of the atmosphere x, based on a short-range (’background’) weather forecast.
It is important to represent its uncertainty, σx, relative to that of the observations, σy. Bayes theorem,
and hence Eq. 5, gives the tools for making just the right nudge in the direction of the observations to
improve on the background forecast and find a posterior estimate of P(x) that is closer to the truth than
either the background state or the observations. The relative size of the errors determines how much
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weight is given to observations versus prior knowledge, so error diagnosis and modelling is the key to
successful DA (Bormann and Bauer, 2010; Bannister, 2008; Bonavita et al., 2016).

In DA the perfect model assumption should allow the final Jw term to be ignored. However, real models
and observations are not perfect, and in practice systematic errors are estimated using various flavours of
Jw term. One type, known as variational bias correction, estimates a bias model as part of the observation
model (Dee, 2004; Eyre, 2016). It is also possible to estimate errors in the state model, an approach that
is known as ’weak constraint’ in variational DA (Trémolet, 2006; Laloyaux et al., 2020). The closest that
routine DA gets to learning models is parameter estimation, where typically a small subset of parameters
from the state model are allowed to be estimated alongside the state (Aksoy et al., 2006; Norris and
Da Silva, 2007).

Turning to ML, the first term, Jy, is recognisable as the squared loss function that is often used to measure
the misfit between the ML-generated label h(x,w) and the ‘true’ label y. A squared loss term is equivalent
to assuming Gaussian errors in the labels and setting all those errors to 1. The second term Jx represents
errors in the features, and is not present in ML algorithms to this author’s knowledge. Omitting this
term is equivalent to assuming a perfect knowledge of the features x. The final term Jw is the weights
regularisation term that is often used in ML. The typical squared norm regularisation, w2, (also known
as Tikhonov regularisation, or ridge regression) is therefore equivalent to assuming that all weights have
a prior best estimate of 0 (wb = 0) with Gaussian errors of 1. However, typical ML approaches do not
use these explicit descriptions of uncertainty in the features, labels or parameters.

Uncertainty representation in ML tends to focus on prediction errors (Gal and Ghahramani, 2016; Laksh-
minarayanan et al., 2017; Gagne et al., 2019; Sønderby et al., 2020). The problem of erroneous labels is
recognised, albeit through ad-hoc regularisation tools such as dropout (Srivastava et al., 2014) or adding
network layers to learn label noise (Jindal et al., 2016). The process of data normalisation (putting the
features and weights onto a common scale, such as 0 – 1, prior to training) must also implicitly set up a
balance of errors in Eq. 5, although whether this is the right balance is not guaranteed. Some error-related
balancing must also be achieved through the hyperparameter tuning that is needed to get good results in
ML. With the Bayesian perspective, the errors could be specified quantitatively in the loss function
(Eq. 5) and more explicitly weighed against errors in the other parts of the problem. An example would
be uncertainty in the features, such as the pixel errors that can make image classification fail (Su et al.,
2019). Adding a Jx term to the loss function might help address this, at least during the training phase. If
the errors were predictable (for example, some images might contain glinting from direct sunlight, some
sensors might be subject to higher pixel errors) then different features could be given different weights.
This would mirror the way that observation error models in DA are becoming situation-dependent (Geer
and Bauer, 2011). These could be more quantitative ways to prevent over-fitting in ML.

Assigning meaningful parameter uncertainty is difficult in ML. In DA we typically have highly infor-
mative prior knowledge, and its uncertainty characterisation is critical. In ML there is typically no prior
knowledge of the parameters. However, ML parameter errors are sometimes assumed implicitly. In a
typical transfer learning task, ML weights are pre-trained in one domain, and then re-trained on a typi-
cally more limited set of data in a different domain (Cireşan et al., 2012). If it were possible to specify
prior errors for the weights (σw), then old (prior) and new information could be objectively weighted in
this process. Otherwise, the weighting would depend on ad-hoc decisions such as the relative amount of
new training data and how many epochs to use in the training. However, it has been the work of decades
to find good ways of diagnosing and representing errors for DA. One technique proposed for ML is to
represent the prior error of a neural network as a Gaussian Process (GP) (Neal, 1995) and it is possible
to make an exact equivalence between GP and deep neural networks (Lee et al., 2017) but it is hard to
find evidence of this being used in practice. It would be attractive to learn these errors as part of the
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Figure 2: The solid circles and lines show a Bayesian network representing one cycle of a cycled data assimilation
system, such as 4D-Var or the Kalman Filter, but with the added facility of parameter or model estimation. The
posterior P(xt+1,w|yt) provides the prior information on the state and parameters, P(xt ,w), for the next cycle (see
appendix). Adding the dotted parts gives a Bayesian description of a recurrent neural network (RNN).

process, rather than being forced to specify them – this is implicit in most ML, and an explicit goal in
DA research (Satterfield et al., 2018).

3 Cycling through time

Bayes’ rule is just one link in a chain of probabilistic information gathering. Figure 1 and Eq. 2 do
not stand alone, but instead the posterior probability from one application of the Bayes rule gives the
prior probability for the next, allowing new knowledge to be incorporated when it comes available. Joint
probability distributions can be factorised, via the chain rule of probability, into a series of conditional
distributions. When some variables are conditionally independent of others, it allows the problem to
be simplified and broken into a chain of smaller calculations. Bayesian networks, explained in more
detail in (Gelman et al., 2013; Needham et al., 2007; Ghahramani, 2015), are a graphical representation
and consequence of these rules: probabilistic calculations for one node need only involve the variables
on which that node has a direct dependence. In the context of DA, the state model carries information
through time, so Bayesian calculations can be cycled forward, updating a modelled representation of the
world (a ‘digital twin’) with new information as it arrives in real time. This approach can be used for
controlling machines and robots (linking to developments in control theory and especially the Kalman
filter) and it is also how we can track and forecast the state of physical, biological, and earth processes
in real time. These techniques are particularly applicable for chaotic dynamical systems, such as the
atmosphere, where errors between the forward model and the true state are continually growing, but can
be reduced again by a DA cycle using new observations.

Figure 2 incorporates this key additional property of the forward model, its forecast of the future (prob-
abilistic) state of the atmosphere. This is shown by including two time levels for the atmospheric state,
xt and xt+1, with yt representing all the observations in the time window between them (for example,
the 6 h or 12 h window mentioned earlier). We can solve the network in Fig. 2 in two steps, with the
appendix giving full details. The first step would update a prior estimate of state and parameter un-
certainty P(xt ,w) given the observations yt , to find P(xt ,w|yt). This follows the Bayes solution to the
network we started with in Fig. 1, but allowing dependence between x and w. From this updated starting
point, we can run the same probabilistic model forward in time to perform the 12 h integration to forecast
P(xt+1,w|yt). This then provides the background joint probability of the state and parameters, P(xt ,w)
for the next cycle of data assimilation (dropping the known conditional variable yt from the notation).
In the second step it is not strictly necessary to simulate the observations, but for diagnostic reasons it
is usually done, so in practice the first and second step use the same model, one that we could write

Technical Memorandum No. 863 7



Learning earth system models

x1

x2

x3

x4

w

y1

y2

y3

x1

x1.1

x1.2

x1.3

w dynamics

x2

w radiation

w clouds

w turbulence

Dynamics

Cloud physics

Radiation

Turbulence

y2 clear-sky

y2 all-sky

w satellite

Figure 3: Bayesian networks representing the internals of a hypothetical forward model for atmospheric data
assimilation. Left: timesteps; right: inside one timestep.

deterministically as xt+1,yt = f (xt ,w). This is a reason why this article does not make more distinc-
tion between the ”state model” and ”observation model”. The network diagram represents all the main
data assimilation approaches including ensemble Kalman filters (Evensen, 2009) and four-dimensional
variational data assimilation (4D-Var), which is the basis of the most successful DA algorithms used in
weather forecasting (Lorenc, 1986; Rabier et al., 2000; Lorenc and Jardak, 2018).

The time dimension in the DA process can be equated with the layers in a feedforward neural network
(Abarbanel et al., 2018) but a clearer parallel is between DA and Recurrent Neural Networks (RNNs).
The dotted parts of Fig. 2 make the equivalence. An RNN takes a sequence of inputs, here labelled zt ,
and provides a sequence of outputs yt . The network has learnable parameters w that are the same for
every iteration. As well as providing the outputs yt , the network also provides input to itself for the next
iteration, which gives it a memory to store the evolving state xt . These correspondences make RNNs
an obvious candidate for monitoring and forecasting a chaotic dynamical system like the atmosphere,
and in providing a complete replacement for DA using ML (Park and Zhu, 1994; Pathak et al., 2018;
Vlachas et al., 2020; Sønderby et al., 2020). Making the link back to atmospheric data assimilation,
the additional time-dependent inputs zt actually do exist - this term can describe external forcings or
boundary conditions, such as the sea-surface temperature (if the ocean is not coupled into the atmospheric
model) or the changing solar flux or carbon dioxide in the atmosphere.

So far our forward model has hidden a lot of detail, such as the layer configurations in a deep neural
network or the internals of the physical models in DA. But Bayesian networks can also represent these
internal structures and hierarchies as smaller probabilistic problems. For example, geophysical state
models will usually propagate the state forward in time through a series of timesteps x1, x2 and so on,
and Fig. 3 shows a Bayesian network representation of this. In most modern DA algorithms including
4D-Var, the atmospheric state at each timestep is passed through the observation operator to simulate
observations relevant to that timestep, y1, y2 and so on. To solve this network by Bayesian factorisation,
we could start at the end and work back in time, finding P(x3,w|y3) in the same way we solved the
original network in Fig. 1, using the Bayes rule. To take our information further back in time to get
P(x2,w|y2,y3), we solve a network like that in Fig. 2, but for the initial state xt rather than the final
state xt+1. We can continue back in time until we get P(x1,w|y3,y2,y1). This full Bayesian approach
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is hypothetical; in 4D-Var this role is performed by the adjoint technique, equivalently backpropagation
in ML. However, both in these networks and their real-world simplified implementations, we can take
observational information both forward and backward in time.

4D-Var DA uses backward-in-time propagation of information only within the 12 h observation window,
and the overall cycling scheme (Fig. 2) propagates information forward from one cycle to the next. Past
observations are an important part of the current knowledge of the atmospheric state, and a typical global
forecast is based on information extracted from observations over the last 10 days (Fisher et al., 2005).
For ML approaches attempting to replace DA altogether, keeping a representation of the atmospheric
state is a way to retain information from past observations, and this suggests RNN-type approaches. To
benefit from this information in a non-recursive network without any explicit representation of the state,
the features would have to include the last 10 days of observations.

4 Physical processes and observations

Within each timestep, an atmospheric model has components for the dynamics and thermodynamics
of the atmosphere, as well as non-resolved processes such as cloud and precipitation (moist physics),
radiation, turbulence, and others. To provide a simplified representation, Fig. 3 further breaks down the
model timesteps and shows these operators acting sequentially on the state, though real models can have
more complex arrangements. As mentioned before, and to make the parallels with ML, in this article
the physical knowledge is represented in a simplified way by the parameters w, even where in reality
the knowledge may be encoded in equations. The knowledge can be broken down into that needed by
different schemes. Some knowledge is used in multiple areas. For example, the microphysical details
of cloud and precipitation particles, such as their sizes and shapes, affect how fast the particles fall, the
rate at which they evaporate, and many other processes in the cloud physics. Simultaneously, the size
and shape of these particles is important in the radiative transfer of the atmosphere. Hence the cloud
parameters affect both the cloud physics and radiation steps.

Observations, particularly those made by satellites, also have a complex dependence on the physical
state of the atmosphere. Satellite sensors typically measure the intensity of upwelling earth radiation
(the radiance) at a particular frequency, relying on the DA process to infer the physical state of the
atmosphere or surface (Eyre et al., 2020). Modelling of clear-sky satellite observations (y2 clear-sky) relies
on the same spectroscopic physical parameters (and many of the same equations) used in the model
radiation scheme, hence the dependence on wradiation. There are also observation-specific parameters,
represented by wsatellite. Increasingly satellite radiances are being assimilated in ‘all-sky’ conditions,
i.e. including clear-sky, cloudy and precipitating scenes (Bauer et al., 2010; Geer et al., 2018). These
observations are shown by y2 all-sky, and they are modelled including the radiative effect of cloud and
precipitation particles. Hence this relies on physical knowledge shared with the cloud and radiation
schemes, wclouds and wradiation. Here, the Bayesian network representation helps clarify issues that are
deeply hidden in real atmospheric DA systems; for example the cloud physics, the radiation scheme, and
the observation operator may in practice all make different physical assumptions about unrepresented
cloud microphysics (Geer et al., 2017).

Figure 3 helps explain another key property of DA (and more generally, Bayesian inverse methods): the
ability to infer indirect information from observations. The observations in the first timestep of a DA
cycle, y1, are a special case, being directly dependent on the background state x1 via only an observation
operator. But those in the second timestep, y2, are dependent on all the dynamical and physical processes
in step 1, and we can improve our knowledge of these processes based on later observations. In atmo-
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spheric 4D-Var DA, this property is known as the tracer effect because its most obvious initial example
was inferring winds from humidity or ozone features in the atmosphere (Andersson et al., 1994; Peubey
and McNally, 2009) (‘tracer’ meaning an atmospheric constituent whose evolution is mainly driven by
advection, which is applicable to humidity and ozone under some circumstances). However its impact is
far broader, and it is how satellite observations are used to provide information on the positions of atmo-
spheric fronts, to infer winds and other dynamical information, and even to improve the hidden internal
details of tropical cyclones (Bauer et al., 2010; Geer et al., 2018).

5 Learning new earth system physics

The cloud physics step in Fig. 3 is a main target for ML or DA approaches seeking to learn new physical
models from observations (Schneider et al., 2017; Gentine et al., 2018). Global models for weather and
climate work with horizontal grid scales from around 10 km upwards, but the scales of typical cloud
features, such as deep convection, can be 1 km or less. The microphysical part of cloud processes – the
formation and growth of individual cloud and precipitation particles – involves scales down possibly to
the molecular level. Hence, cloud parametrisations must model the average impact of these much smaller
scale-processes at the model grid scale. Uncertainty in cloud parametrisations leads to major uncertainty
in climate change projections (Zelinka et al., 2020) and must also reduce our ability to predict weather
on shorter timescales. Further, as earth system modelling moves further into representing surface and
biological processes, where we have even less ability to express our understanding in physically-based
forward models, ML is again an attractive approach to improve scientific knowledge (and hence models)
using observations (Reichstein et al., 2019).

However, ML approaches will have difficulty finding the necessary observations. Initial ML training of
cloud physics or radiation schemes used the inputs and outputs from existing coarse-resolution models
(Krasnopolsky et al., 2005a) – for example by extracting the states x1.1 and x1.2 from the idealised model
in Fig. 3 and using them as the features and labels to train an ML emulator. This proves that ML emulators
can be incorporated in forecast models, and could help with efficiency savings, but it does not learn new
knowledge. It is also possible to train ML emulators using higher resolution models, including cloud
resolving models (Rasp et al., 2018; Gentine et al., 2018; Brenowitz and Bretherton, 2018) which could
help improve parametrisation quality. However, cloud resolving models are not the truth and still rely
on parametrisations of the microphysics, possibly the same as used in the global models. The problem
of using real observations is that we do not have regular-gridded vertical profiles of the full state of the
atmosphere at the the inputs and outputs of the model timestep (e.g. x1 and x2), let alone at the input and
output of a single physical process (e.g. x1.1 and x1.2). To approximate this with in-situ observations,
such as colocated radiosondes, aircraft measurements and ground site data, it might take an entire field
campaign to gather a handful of input-output pairs for training.

For global coverage and generalisation, we are reliant on satellite observations. However, these are
sensitive to broad-layer quantities and a huge range of atmospheric states can all generate the same ob-
servation. This is what makes satellite retrieval and DA a classic inverse problem (Eyre et al., 1993;
Rodgers, 2000; Eyre et al., 2020). Detailed forecasting of the atmosphere needs a higher vertical res-
olution than is routinely observable, so DA fills in the high-resolution details (the ”null space” of the
observations) using the atmospheric model to infer information indirectly from other observations (via
forward and backward in time propagation of observational information). A further issue for variables
that vary on fine scales, such as clouds or earth surface properties, is that the location represented by
the observation can be very different from the grid-box average that a model parametrisation seeks to
represent. DA gives the tools for representing this uncertainty as part of the observation error budget
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where it is known as representation error (Janjić et al., 2018). Especially for cloud and precipitation,
representation error can be a dominant part of the observational error budget (Geer and Bauer, 2011).

A second main issue for ML is how to incorporate existing scientific (’domain’) knowledge. A popular
proposal is to put physical constraints as additional terms in the loss function (Beucler et al., 2019; Wu
et al., 2020) and other approaches exist (Von Rueden et al., 2019). However a Bayesian approach could
start from the existing physical knowledge – in Fig. 1 this would be encoded in prior estimates of the
parameters w (and in practice in the physical equations these represent), with P(w) describing the level
of confidence in these existing models. Parameterised processes result from a mixture of processes and
equations, some that are well known, some that are much less so. This would motivate the use of a
more fine-grained network structure in the learning, retaining important well-known equations wherever
it makes sense, in order to better constrain the unknown parts of the problem. An example from radia-
tive transfer would be to retain the physical solution of the radiative transfer equations, which is fast,
physically justified, and accurate. The question whether ML approaches should be used for components
inside physical representations, or whether ML should entirely replace a parametrisation, has been under
debate since the early days (Chevallier, 2005; Krasnopolsky et al., 2005b).

For a weather forecasting centre that is already operating a data assimilation system that encodes decades
of specialist weather forecasting knowledge, the obvious approach would be to extend the existing DA
system to learn aspects of the model, whether this is by doing parameter estimation, or by learning
new functional representations using neural networks or equivalent approaches (Bocquet et al., 2019).
Fig. 3 helps describe some of the benefits of learning within an existing data assimilation system. For
example the cloud parameters, wclouds, are surrounded by constraints – implicit training data – that will
help reduce their uncertainty. The cloud physics step is the most obvious: the uncertainty of the states
x1.1 and x1.2 is constrained by the better-known physics that surrounds them (such as the atmospheric
dynamics) as well as by all the data that is assimilated into the weather forecasting system, whether or
not it is directly sensitive to clouds. As explained earlier, in a cycling DA system, the uncertainty in these
states is reduced by by forward propagation of information from observations over the past 10 days (for
the atmosphere) as well as by backward-in-time propagation of information from observations that are in
the future from the perspective of the model timestep. Further information on wclouds is provided by the
dependence of the radiation scheme on these parameters, so that states x1.2 and x1.3 are also constraints on
our knowledge of the clouds. Finally, the cloud-sensitive observations, y1clouds, are also directly sensitive
to cloud parameters. DA helps provide not just the obvious information at the inputs and outputs of the
model component being learnt, but it combines all possible observational information that is relevant,
both in space and across time. Further, if the parameters or models that we are learning are constant over
the days and years, these models or parameters would learn from thousands of cycles of training data, at
every one of millions of grid points in the model.

Incorporating model learning into the wider DA system has several other potential benefits. Modelling
systems contain compensating errors coming from the different parts of the model. It might not be
possible to improve on a cloud physics scheme that produced an excessive warming, if it were already
compensated by a radiation scheme that generated excessive cooling. A data assimilation system could
allow many parameters to be adjusted simultaneously, within their estimated uncertainties, and it could
use other observational or physical constraints to help resolve any ambiguities. A parametrisation that
was in constant training inside a DA system could adapt to large, otherwise unmodelled changes in the
earth system, such as a volcanic eruption, or long-term trends in air pollution (which could for example
affect the microstructure of clouds). Even without explicit parameter training, DA systems implicitly
incorporate knowledge from observations to compensate for modelling errors. One example comes from
long-term climate reanalyses: even if their models use a static level of CO2 in the atmosphere, they can
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still exhibit realistic global warming trends imposed by the observations themselves. This is because DA
directly warms the atmosphere, taking the place of the missing physics (Cai and Kalnay, 2005).

However, DA systems need to be careful about attributing sources of systematic error. Sometimes these
come from biases in the observations themselves (Eyre, 2016). We may suspect inadequate knowledge of
the fundamental physics behind the models, but this is hard to determine when observation calibrations
and biases are themselves uncertain (Brogniez et al., 2016). It will be an ongoing challenge to quantify
systematic uncertainty in both the existing physical knowledge and in the observations (Carminati et al.,
2019) to support physically-based model and parameter learning, to avoid attributing errors to the wrong
source.

Model learning (or parameter estimation) has not been widely done in DA for the earth sciences. It is
not clear if this is because it is too hard or because not enough effort has been invested – certainly it
has not been a priority at weather forecasting centres. Possible problems include the difficulty of simul-
taneously estimating multiple parameters, the presence of strong nonlinearities and state dependencies
in the parameter response, and whether the available observations are even capable of constraining the
parameters (if not, this is known as non-identifiability) (Aksoy et al., 2006; Posselt and Vukicevic, 2010;
Posselt, 2016). However, for cloud physics, hopes are rising for a future ‘microphysical closure’ (Geer
et al., 2017) when cloud-sensitive observations are assimilated from all-sky satellite radiances, cloud
and precipitation radars and lidars, lighting imagers, and in-situ instrumentation, all combined with the
physical constraints from the rest of the forecast model and the non-cloud observations in the system.
There is similar scope for DA systems to use satellite data to help learn models in areas like sea-ice and
land surface processes, where current scientific knowledge is limited, or where parameters vary at fine
scales, such as variations in land cover.

A halfway strategy is also possible, taking inspiration from the use of ML in postprocessing forecasts
(McGovern et al., 2017), where ML is a kind of situation-dependent bias correction for a partly-erroneous
forecast made by a physical model. Weak-constraint DA (Trémolet, 2006) is similar, in that it does
not improve the forward model, but estimates a spatial field of model errors. ML could be equally
applicable to learning this kind of model error (Bonavita and Laloyaux, 2020). However, in weak-
constraint DA it can be hard to separate these errors from errors in the state, if they occur on similar
spatial scales (Laloyaux et al., 2020). Hence learning the actual models (or their parameters) would still
be preferred as it can focus the learning more precisely where it is needed, truly learning new knowledge
from observations.

6 Computational aspects

The computational forms of current DA and ML approaches are shaped by available resources, and
by their applications. Broadly, earth science applications of DA tend to use supercomputers, which
are required for the forward modelling of the atmosphere and ocean, as well as the background error
modelling, both of which have non-local dependencies (and hence a lot of inter-process communication,
which is optimised on supercomputers). ML approaches typically use cloud computing, taking advantage
of algorithms that require less communication such as stochastic gradient descent (SGD) (Kingma and
Ba, 2014), along with the compatibility of neural network processing with graphics or tensor processing
units (GPUs or TPUs). One practical problem is to combine typical DA or science applications in Fortran
with ML software such as Keras and TensorFlow, which are a Python frontend and a C++ backend (Ott
et al., 2020).

But many aspects of ML and DA computing are similar, including the use of adjoint methods or back-
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propagation to compute the gradients of the cost/loss function. There is a link to Bayesian networks
here too: the factorisation process described earlier requires these networks to be directed acyclic graphs
(DAGs). On the ML side, DAGs are also the basis of TensorFlow, which represents each neural network
layer as a node and the communications between them as edges. On the DA side, we could follow the
Bayesian hierarchy down to the individual line of code, the atomic level of the Bayesian factorisation.
DA is deterministic, not probabilistic, on this level, but by line-by-line code differentiation (differen-
tiable programming) it is possible to form the adjoint and TL models that propagate knowledge and
uncertainty from one line to the next. TensorFlow allows layers with free-form algebraic computations,
and can automatically differentiate these layers to allow them to be part of the backpropagation process.
It is possible to automatically differentiate C++ and other code (Hogan, 2014) but most code for DA
applications is hand-differentiated – separate lines of code (or separate subroutines) are typed in to rep-
resent the nonlinear (direct) computation, for the TL, and for the adjoint. This is a conscious choice,
based on the difficulty of using automatic differentiation tools, and the possibility to hand-optimise and
hand-regularise the code – for the purposes of differentiation, nonlinear or non-differentiable steps can
be modelled by smooth functions (Janisková and Lopez, 2013). One potential application for an ML
emulator of an existing physical parametrisation is to use its backpropagation gradients as a replacement
for an adjoint model, and hence to use ML as another type of automatic differentiation for existing code.

As mentioned in the introduction, most operational DA codes are based on proprietary software, but there
are attempts to provide more re-usable and open-source DA code (English et al., 2017) and https://
www.image.ucar.edu/DAReS/DART/ and https://www.jcsda.org/jcsda-project-jedi.
An attractive future possibility would be to use the principles of Bayesian networks and a DAG imple-
mentation like in TensorFlow, to organise earth system models as networks of much smaller modular
components. Existing Fortran subroutines would be packaged up, along with their pre-differentiated
counterparts (TL and adjoint models) and a description of their uncertainties, representing prior knowl-
edge to be incorporated in the wider network. In this framework it would be easy to mix neural networks
and physical algorithms, making it easier to do DA and ML with them – and hence to learn new knowl-
edge from observations. For ML applications already based around software like TensorFlow, it may
also be possible to implement DA algorithms using the tools already available (such as free-form alge-
braic layers and new terms in the loss function) and to incorporate external physical models (such as
observation operators) as additional layers.

Part of the drive towards using ML to learn from earth-system observations is the assumption that ML
emulators will be faster than physical models of the observations (Boukabara et al., 2019). However,
the runtime cost of observations in one 4D-Var DA system is just 2%, with the main cost coming from
the DA algorithm and from the physical models of the earth system (English et al., 2020). Observation
computations are easy to parallelise, since the simulation of each observation from the model fields can
be done independently after an initial interpolation and communication step. This also suggests that
the most promising venue for incorporating ML techniques in earth sciences lies in the physical models
themselves.

7 Conclusion

The earth sciences are trying to improve model representations of difficult areas such as clouds and
precipitation, and to include new modelling areas, such as earth surface and biological processes. All
these areas are difficult to represent on the grid scale of current global models, making it hard to use
physical laws to describe these processes, and in some cases the physical laws are not known. The
development of existing models through human effort seems to become ever trickier – for example,
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despite many important subsequent refinements, the core physical parametrisations in many models are
around 30 years old (Tiedtke, 1989, 1993). Parametrisations can themselves be just compact functional
summaries of limited observational data – for example widely used assumptions on snow fallspeeds and
shapes are based on measurements made in the Cascade mountains during the winters of 1972 and 1973
(Locatelli and Hobbs, 1974). For all these reasons it is attractive to start learning model improvements
directly from the vast numbers of observations that have been made over decades, and that are continuing
to be made.

Any plan to learn directly from observations will have to deal with the same challenges that have driven
the development of DA in the earth sciences – among them the need to represent uncertainty in a quan-
titative way, and the need to make use of observations that are sparsely distributed in time and space,
indirectly related to the processes of interest, and giving incomplete information. Further, although it
is tempting to discard existing physical knowledge and start from scratch with ML (Dueben and Bauer,
2018; Pathak et al., 2018; Sønderby et al., 2020), any Bayes-respecting approach would try to benefit
from that prior knowledge. In areas where there has been a lot of investment in DA frameworks, model
learning is likely to be most achievable within the existing framework, whether as classic DA parame-
ter estimation or ML-like learning of functional forms. However, parameter estimation has made little
progress so far in these areas and the feeling is that it will be very difficult. Nevertheless, given the
potential benefits, and whatever the methods, the automatic learning of models from observations must
be one of the grand challenges of earth sciences.

There are many ways ML could benefit from approaches used in DA, particularly where ML aims to
replace the DA process:

• Real observations are sparse and irregular, and indirectly and ambiguously dependent on the geo-
physical state. DA uses physical observation operators in the forward model and Bayesian inverse
methods to extract optimal information on the geophysical state. To replicate this, ML could in-
corporate physical observation models as an output layer.

• Where our physical knowledge is good, physical models allow us to constrain parts of the problem
and localise uncertainties to their correct sources. Hence, physical model layers could also be
incorporated in neural networks for constraining the geophysical state.

• The Bayesian framework requires physical quantification of the uncertainty in the observations, the
state and the model. The equivalent feature, label, and parameter uncertainty could be similarly
quantified in the ML loss function, and might replace ad-hoc regularisation approaches like data
normalisation.

• High quality earth system forecasts aggregate global observational information from at least the
past 10 days (and longer in the ocean). ML approaches must aim to use all this data.

• The Bayesian equivalence between cycling DA and Recursive Neural Networks (RNN) has been
established; this shows that the main job of a recursive network in geophysical state forecasting is
to propagate this state forward in time, as a way to retain information from past observations.

If these approaches were followed, ML could end up looking a lot like DA.

Conversely, ML shows DA the huge possibilities for automatically improving or learning models in areas
where human-driven approaches are struggling. DA has relied on a perfect model assumption that is in-
creasingly untenable. A fully generalised Bayesian approach to both observational and model uncertainty
is just as needed in DA. There are also useful ways that ML emulator models could be incorporated in all
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parts of the DA process: as learnable modules in an otherwise physical model framework; for learning
model and observation systematic errors; as accelerators for making parts of the process faster (particu-
larly in areas where models need to be run many times, which occurs in both ensemble and variational
approaches); and as an alternative tool for automatic differentiation in variational DA. Further, DA needs
improve its software tools and make them more generally available, re-usable and documented, in the
way that ML already has done. Approaches developed for ML, such as stochastic gradient descent, could
also be adopted.

In this article, Bayesian networks were used to graphically describe the processes of DA and ML at
a general level, as well as to provide a unifying mathematical basis for comparing them. Although a
full Bayesian network solution would be unfeasible, they are the general solution to which practical
techniques approximate. Bayesian networks are a directed acyclic graph (DAG), which also provides a
way for earth system models to be broken into modules, and combined with ML models in a way that
permits diverse learning methods such as DA and ML. With the assumption of Gaussian errors leading
to the variational DA framework, these networks can be implemented and solved using differentiable
programming, in other words backpropagation and adjoint techniques. The graph framework, similar
to what is implemented in TensorFlow, could thus provide an overarching infrastructure for continually
updating our knowledge and our estimates of its uncertainty. Ultimately this is a vision that combines
both machine learning and data assimilation.
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A Mathematical notes

The chain rule of probability allows the factorisation of a joint probability distribution in terms of condi-
tional probabilities. For example the joint probability distribution of observations y, state x and parame-
ters w is P(y,x,w) and can be factorised in six ways including:

P(y,x,w) = P(x|w,y)P(w|y)P(y); (6)

P(y,x,w) = P(y|x,w)P(x|w)P(w). (7)

By equating the two right hand sides:

P(x|w,y)P(w|y) = P(y|x,w)P(x|w)P(w)
P(y)

(8)

The left hand side gives the conditional joint probability distribution that can be rewritten P(x,w|y). In
the initial example of the Bayesian network in Fig. 1, x and w are independent (before the observation of
y) so P(x|w) = P(x) and this leads to the simplified form given as Eq. 2, which was used to emphasise
the symmetry between parameter and state estimation. However we also now have a form that can be
used repeatedly to update our knowledge of the joint PDF of the state and the parameters, as new sets
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of observations come in. This is done by noting that from the chain rule the joint PDF of x and w,
P(x,w) = P(x|w)P(w):

P(x,w|y) = P(y|x,w)P(x,w)
P(y)

(9)

The posterior on the left hand side then gives the prior for the application of Bayes rule to a new set of
observations. For convenience of notation, going forward we can drop the conditionality on the older
observations.

The term P(y) is not needed when we assume Gaussian errors and start to solve Bayesian problems
variationally as in Eqs. 3 – 5. However it can be calculated if needed using the sum rule of probability,
so that P(y) =

∫
x
∫

w P(y,x,w)dwdx, in a process referred to as marginalisation, in this case over w and
x. Marginalisation is a key part of the process in solving Bayesian networks (Needham et al., 2007;
Ghahramani, 2015) but for high-dimensional x and w in typical earth science problems, integration over
the whole state and parameter domain is unfeasible.

Now we need to work out how to go forward in time and to cycle 4D-Var, as represented in the Bayesian
network in Fig. 2 (ignoring zt). This figure describes a joint PDF P(yt ,xt+1,xt ,w) where we now have
two time-levels of the state. We can factorise this is in two helpful ways, bearing in mind how 4D-Var is
solved, first as in Eq. 9 estimating the updated state and if necessary parameters from the observations,
then running the forward model that gives xt+1:

P(yt ,xt+1,xt ,w) = P(xt+1|w,xt ,yt)P(w|xt ,yt)P(xt |yt)︸ ︷︷ ︸
P(xt+1,w,xt |yt)

P(yt); (10)

P(yt ,xt+1,xt ,w) = P(xt+1|w,xt ,yt)P(xt |w,yt)P(w|yt)︸ ︷︷ ︸
P(xt ,w|yt)

P(yt). (11)

The Bayesian network represents that xt + 1 is conditionally independent on all variables other than its
parents, P(xt+1|w,xt ,yt) is identical to P(xt+1|w,xt). We expect this from a (probabilistic) dynamical
model of the atmosphere: the forward evolution of the system depends only on the initial state xt and
the parameters w, in other words we assume the atmosphere has the first-order Markov property. We
now have a general description of the DA problem with, from the right, an update of the state and
parameters from the observations, P(xt ,w|yt), solved by Eq. 9, and then the probabilistic forward model
P(xt+1|w,xt):

P(xt+1,w,xt |yt) = P(xt+1|w,xt)P(xt ,w|yt) (12)

A problem is that the prior probability distribution needed by the next cycle of DA is P(xt+1,w|yt) and
we have an extra ”nuisance variable” xt , which we know imperfectly. Hence we would need to integrate
(marginalise) over xt :

P(xt+1,w|yt) =
∫

P(xt+1,w,xt |yt)dxt =
∫

P(xt+1|w,xt)P(xt ,w|yt)dxt (13)

In practically feasible versions of DA, for example in Ensemble Kalman filters (Evensen, 2009) and in
hybrid 4D-Var (Bonavita et al., 2016) this step is represented by running an ensemble of deterministic
forward models, from which the parameters of the prior PDF are estimated.
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