
doi: 10.21957/hv3sp41ir5

www.ecmwf.int/en/about/media-centre/media-resources

Metview’s Python interface
opens new possibilities

COMPUTING

from Newsletter Number 162 – Winter 2019/20

10

11

12

13

14

12.7
12.8
13.8
13.7
13.1
13.6
14.1
13.6
14.6
14.1
13.8
14.1
14.1
13.1
14.0
13.5
13.2
12.5
13.1
14.0
13.3
13.9
14.5
12.6
13.4
12.6
12.5
12.7
11.8
12.7
12.0
13.5
13.0
12.8
13.1
14.1
12.7
13.3
13.5
12.0
12.2
12.9
12.6
12.2
11.6
11.7
10.4
11.5
11.4

http://www.ecmwf.int/en/about/media-centre/media-resources

Iain Russell, Linus Magnusson, Martin Janousek, Sándor Kertész Metview’s Python interface opens new possibilities

2 doi: 10.21957/hv3sp41ir5

This article appeared in the Computing section of ECMWF Newsletter No. 162 – Winter 2019/20, pp. 36–39

Metview’s Python interface opens new
possibilities
Iain Russell, Linus Magnusson, Martin Janousek, Sándor Kertész

Metview is ECMWF’s interactive and batch processing software for accessing, manipulating and
visualising meteorological data. Metview is used extensively both at ECMWF and in the Centre’s Member
and Co-operating States. A national meteorological service may for example use it to plot fields produced
by the ECMWF model and a regional model, calculate some additional fields such as temperature
advection, and plot vertical cross sections. The recent addition of a Python interface to Metview has
expanded its range of uses and has made it accessible to more potential users. Already, applications in
the areas of verification and diagnostics are using the new interface to great effect. The use of Python
also opens up new ways of using Metview’s functionality, such as through Jupyter notebooks for running
data analyses or interacting with training material. For more information on Metview and how to install it,
see Box A.

Metview
Since the release of version 1.0 in 1993, Metview
has benefited from constant development work over
the years to keep up with the demands of ever-
increasing data volumes and more sophisticated
ways of interacting with data. In addition to a
graphical user interface (GUI), it introduced its
own powerful scripting language called Macro.
This high-level language allows users to develop
concise scripts to process their data and to run
those scripts in the operational environment as well
as in the research environment. A big advantage of
providing a high-level programming language is that
Metview developers have been free to change the
underlying libraries that Metview uses; for example,
the libraries that Metview used for GRIB and BUFR
decoding, as well as for data regridding, have been
changed in recent years without users having to
rewrite any of their code.

Metview is available on ECMWF machines
through the modules system. Outside ECMWF, it is
available in two parts: the binary layer and the Python
module. The binary layer can be used as a standalone
application through its graphical user interface or its
Macro language. One way of installing it is to use the
conda package manager. From a conda environment
on Linux or macOS, the following command will install
Metview’s binaries: conda install metview -c
conda-forge. Metview’s web pages also provide links
to repositories that provide RPM package manager
binary installations, and the Ubuntu community
maintains a Metview package for their users.

The Python module requires the binary layer to be
installed. Available on PyPi, installation is performed
simply through the command pip install
metview. The source code of the Python module is
available on github.

A

Metview’s new Python interface
Python is a scripting language released in 1991. Its popularity has increased greatly in the last few years
and it is often taught at universities. This means that Python code can be readily written and understood
by many scientists. With the wide use of NumPy and several other scientific modules for calculations, the
Python environment has become increasingly attractive to scientific programmers. Within this context,
it was clear that developing a Python interface to Metview would allow it to be used in conjunction with
many other scientific packages, and it would enable more users to start using it without having to learn
a new programming language. These potential benefits prompted ECMWF to develop this interface, with
the help of the software company B-Open.

The goal of this project was to create a Python module that would provide this interface. The module
would give programmers the power of Metview’s high-level meteorological data access, manipulation
and plotting functions while fully interacting with the rest of the Python ecosystem. To achieve this,
some simple principles were applied: the module should expose all the functionality of Metview’s Macro
language, but handle native and scientific Python data types where appropriate. Through the use of the
cffi package, the Python bindings (special code that bridges two programming languages) are able to
load a shared C++ library that is installed with Metview and query for a list of available functions. A small

Iain Russell, Linus Magnusson, Martin Janousek, Sándor Kertész Metview’s Python interface opens new possibilities

doi: 10.21957/hv3sp41ir5 3

translation layer handles the conversion of data types between the C++ and Python code. This system
makes it possible for new functions to be added to Metview’s C++ code without the need for an update
to the Python bindings. It also handles the fact that Python’s indexing starts at zero, whereas Metview
internally uses 1. Version 1.0.0 of the Python interface was released in December 2018 after much in-
house testing of alpha and beta versions.

All of Metview’s functions are available in Python through the metview namespace, often abbreviated to
mv. Figure 1 shows the code required to retrieve 2-metre temperature at different forecast steps and then
create a set of time-stamped value averages. The result of the retrieval is a Fieldset object, an iterable
container with many overridden operators. For example, t2m_fc - 273.15 would return a new Fieldset
with temperatures adjusted to degrees Celsius. Note that most functions can be called in an object-
oriented way and a functional way, for example:

t2m_fc.valid_date()

could also have been written as

mv.valid_date(t2m_fc).

import metview as mv

t2m_fc = mv.retrieve(
 type = 'fc',
 levtype = 'sfc',
 param = '2t',
 date = -5,
 step = [6,12,18,24],
 grid = 'o1280')

z = zip(t2m_fc.valid_date(), t2m_fc.average())
for i in z:
 print(i)

(datetime.datetime(2019, 10, 18, 18, 0), 288.0034532855043)
(datetime.datetime(2019, 10, 19, 0, 0), 287.5664412794946)
(datetime.datetime(2019, 10, 19, 6, 0), 287.9902335998964)
(datetime.datetime(2019, 10, 19, 12, 0), 288.3080870352618)

Figure 1 Python code using Metview
to retrieve and average a time series of
forecast fields.

Providing Metview’s functions through a Python module is just one part of making the Python interface
work within Python’s scientific ecosystem: interoperability with other Python modules requires that data
structures can be passed between them. Python has an increasingly well-established set of scientific
modules, based around the NumPy module, to efficiently handle data arrays. Metview functions that take
vector arguments or return vector results in the Macro language take or return NumPy arrays in Python.

A Pandas dataframe is a Python object that contains rows and columns of data, with many methods
for analysis and manipulation. Metview’s Geopoints, Odb and Table classes can export their data to a
Pandas dataframe with the to_dataframe() method. Figure 2 shows some code that filters temperature
observation data from a BUFR file, computes the differences between those observations and the model
forecast data (read from GRIB), and exports the result to a Pandas dataframe for further analysis.

An xarray object presents data as a labelled multi-dimensional hypercube. For meteorological data,
the dimensions of this hypercube could be latitude, longitude, step and level, for example. In order to
map GRIB data into the model used by xarray, a new Python module called cfgrib was developed with
B-Open. To ensure compatibility with ECMWF data, cfgrib leverages the ecCodes Python module to
handle GRIB data. This effort has been very successful, and xarray now officially supports cfgrib as a
GRIB engine. Not all GRIB data can be described in such a way. In particular, the geography of non-
regular grids, such as reduced Gaussian grids, has no real analogue in xarray, but such grids can still be
considered 1-dimensional data arrays for the purposes of computation.

Iain Russell, Linus Magnusson, Martin Janousek, Sándor Kertész Metview’s Python interface opens new possibilities

4 doi: 10.21957/hv3sp41ir5

Metview also uses cfgrib: a Fieldset object has a to_dataset() method, which uses cfgrib to generate
an xarray dataset from its data. One advantage of this is the convenience with which it is possible to work
on specific dimensions of a data cube. Figure 3 shows an example where Metview reads a GRIB file that
contains multiple time steps and vertical levels. Then xarray is used to compute the ensemble mean for
each level and time step, and the result is passed back to Metview for plotting, with an implicit conversion
back to GRIB in the process.

import metview as mv

model_t2m = mv.read('t2m_forecast.grib')
obs_bufr = mv.read('obs.bufr')

obs_t2m = mv.obsfilter(
 data = obs_bufr,
 parameter = 'airTemperatureAt2M',
 output = 'geopoints')

diff = model_t2m - obs_t2m
df = diff.to_dataframe()
print(df.describe())

 latitude longitude level value
count 1363.000000 1363.000000 1363.0 1363.000000
mean 46.445407 22.170946 0.0 -0.235432
std 8.546075 14.236381 0.0 1.215969
min 30.110000 -22.730000 0.0 -5.261390
25% 40.435000 13.425000 0.0 -0.905671
50% 45.680000 23.110000 0.0 -0.370365
75% 51.550000 32.985000 0.0 0.310031
max 70.930000 45.950000 0.0 6.031244

Figure 2 Python code using Metview
to compute the differences between
observations and a forecast field. The result
is converted into a Pandas dataframe for
further analysis.

import metview as mv

fs = mv.read('wgust_ens.grib')

ds = fs.to_dataset()
ds_mean = ds.mean(dim='number')

mv.plot(ds_mean) Figure 3 Using xarray to aggregate on a

dimension of the hypercube.

New ways of interacting with Metview
A popular way of interactively presenting and running Python scripts is through a Jupyter Notebook, an
open source web application for creating and sharing documents containing text, code and graphics.
This allows code to be edited and run from within a web browser that is connected to a Python-based
server running either on the same machine or remotely. The output, be it text or graphics, can be saved
as part of the notebook, allowing others to view it, even if they do not run the code themselves. If the
Jupyter server is running locally, Metview’s plot() command will invoke an interactive plot window. If the
command mv.setoutput(‘jupyter’) is called, then subsequent plots will appear inline in the notebook,
as shown in Figure 4. Jupyter opens new opportunities to interact with Metview and makes it possible to
create rich tutorials in the form of notebooks that users can download and run themselves.

Iain Russell, Linus Magnusson, Martin Janousek, Sándor Kertész Metview’s Python interface opens new possibilities

doi: 10.21957/hv3sp41ir5 5

Use in verification
The availability of Metview’s classes and functions in Python has prompted a significant overhaul
of a major package in ECMWF’s operational verification software. Metview now takes care of all
meteorological data decoding, filtering and post-processing, including geography-aware calculations,
extending the applicability of the verification software to a wider range of data formats, grids and
parameters. Using Metview has significantly reduced the code base of this application and opened up the
path to a more modular and fast-to-develop software architecture.

Use in evaluation and diagnostics
For model evaluation and diagnostics, Metview’s Python interface is a clear step forward. In many cases,
diagnostic work results in a time series of values (or another type of array). Here the combination in
Python of using Metview for the calculations on the GRIB files and the Pandas module for making the
time-series analysis has proven to be very powerful. One example application is a simple cyclone tracker
intended for advanced diagnostics, for which an example of output is shown in Figure 5a. The program is
a Python script that uses the Metview module to first retrieve data from the MARS archive. Next, a Python
function performs the cyclone tracking by using several Metview functions on the fieldset containing
the mean-sea-level-pressure. It returns a new position of the cyclone, which is used together with the
distance(), mask() and integrate() functions in Metview to obtain various diagnostic quantities.
These are collected in a Pandas dataframe, which can then for example be used for plotting with the
matplotlib library. An example is shown in Figure 5b, where various diagnostics for a tropical cyclone are
plotted for two high-resolution forecasts (HRES) and two ensemble control forecasts (ENS CF).

Learning about Metview’s Python interface
Although the bulk of the Macro documentation has not yet been revised to include Python code, a large
amount of work has gone into updating the Metview Gallery so that every example now has a Python
version of the code. Also available from the Gallery are a set of Jupyter notebooks with more detailed
examples. A number of webinars were given in the last year, and their content is also available from
the Metview web pages. Metview’s built-in code editor can also help: if running Metview’s graphical
user interface, many characteristics of computations and plots can be configured interactively and then
committed to code by dropping the edited icons into the Code Editor. The editor also provides help with
Metview’s Python functions by opening the reference web pages at the correct place.

Figure 4 Metview’s plots can appear
inline in a Jupyter notebook.

Iain Russell, Linus Magnusson, Martin Janousek, Sándor Kertész Metview’s Python interface opens new possibilities

6 doi: 10.21957/hv3sp41ir5

40°W

50°N

40°N

30°N

20°N

20°W

HRES

920 950 965
(hPa)

975 990 1005

BestTrack ENS CF

a Tropical cyclone track plot b Tropical cyclone diagnostics plots

HRES BestTrack

Figure 5 Charts computed and plotted in Python with Metview, showing (a) the track of Hurricane Lorenzo in the
ECMWF HRES forecast from 28 September 2019 (circles) and the observed track from the BestTrack database
(hourglass). The colours of the symbols indicate the central pressure of the cyclone (in hPa). Panel (b) shows
diagnostics of central pressure (top-left), maximum wind speed (top-right, solid) and maximum model wind gusts
(top-right, dashed), maximum radius to gale winds (middle-left), surface heat flux in the model (middle-right),
maximum significant wave height (bottom-left) and wind/presssure relation (bottom-right). The forecasts shown
are HRES (red) and ENS control (blue) from 24 and 28 September. The black lines/dots show BestTrack data.

The future
Since Python is a more accessible language than C++, many users will more easily be able to contribute to
Metview. Adding new functions to Metview’s Python module would be straightforward, but they would not
be accessible from the graphical user interface. Work is planned to add the ability to develop Python-based
modules that will run alongside the existing C++ modules as part of Metview’s service-oriented architecture.
This would enable these modules to be run both from the graphical user interface and from Python. In the
meantime, Metview’s Python interface code is available on github, and we welcome contributions.

Metview’s Python interface is a great start in terms of providing high-level meteorological data handling,
manipulation and plotting functions to Python, but it is also considered a fundamental building block for
future Python work, which could provide higher-level abstractions and further interfacing with established
Python modules.

For more information on Metview, visit: https://confluence.ecmwf.int/metview.

Metview’s Python interface can be found on github: https://github.com/ecmwf/metview-python.

© Copyright 2020

European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, England

The content of this Newsletter is available for use under a Creative Commons Attribution-Non-Commercial-
No-Derivatives-4.0-Unported Licence. See the terms at https://creativecommons.org/licenses/by-nc-nd/4.0/.

The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability
for error or omission or for loss or damage arising from its use.

https://confluence.ecmwf.int/metview
https://github.com/ecmwf/metview-python
https://creativecommons.org/licenses/by-nc-nd/4.0/

