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A new hybrid formulation for the background error covariance: evaluation

Summary

A new hybrid formulation for the background errors in the European Centre for Medium-Range Weather
Forecasts (ECMWF) 4D-Var was proposed in Massart (2018) and tested in simple configurations. In
the following document, we evaluate this new formulation in a more realistic configuration. In order to
perform the evaluation, the new formulation had to be adapted to the current implementation of ECMWF
4D-Var. The 4D-Var analysis is the result of an incremental 4D-Var that successively minimises linear
versions of the cost function (outer loop iteration). In ECMWF incremental 4D-Var implementation,
the resolution of the tangent-linear and adjoint versions of the model and observation operators used in
the analysis increases with each outer loop. We demonstrate that the new hybrid formulation can be
used together with this implementation of the incremental 4D-Var, but one has to consider carefully the
change of resolution between outer loops.

We designed three experiments to carry out the evaluation. The first experiment is based on static back-
ground errors and referred to as Bs. The second experiment is based on the operational formulation of
the background errors as implemented in CY45R1 and referred to as Bo. The last experiment is based
on the new hybrid formulation with an hybrid weight of 50 %, and is referred to as α -Bh. They are all
designed so that the experiments have the same background error variances on average.

The evaluation is based on a comparison between the α -Bh experiment and the two other at the hor-
izontal resolution of TCo 399, with 3 outer loops, and over a winter season, from November 2017 to
February 2018 (4 months). The comparison against the static formulation aims at assessing the impact
of flow-dependent background errors. The comparison against CY45R1 operational formulation aims
at assessing if the new formulation could complement the current one and help improving the forecast
scores.

The main result from the evaluation is that the analysis of the α -Bh experiment is spatially smoother
that the analysis from the two other experiments even if, for this experiment, the fields of the atmo-
spheric model variables have more energy in the small scales (from the wavenumber around 100). We
deduce that this feature accelerates the convergence of the minimisation of the α -Bh experiment. This
experiment requires between 1 and 2 less iterations than for the Bs experiment, and between 5 and 7 less
iterations than for the Bo experiment. We also deduce that the smoothness of the analysis from the α -Bh

experiment is likely to be the reason why the first-guess derived from it is on average closer to the ob-
servations than the one derived from the two other experiments, by 0.5 % compared to Bs and by 1.3 %
compared to Bo. For the satellite sounding data, the Bo experiment performs better and the main differ-
ence is for the ATMS instrument for which the Bo first-guess is closer to the observations by an average
of 3.3 % compared to α -Bh first-guess. This difference may explain why the forecast (compared against
its own analysis or observations) from the α -Bh experiment is the best, but only up to day 3 to 5. Then,
the medium-range forecast from the Bo experiment tends to be the best.

Overall, the results show that the new hybrid formulation of the background errors provides better fore-
cast scores than when using static background errors. Yet, it currently fails to compete with the current
formulation for medium-range forecasts. Nonetheless, the results also show that the current formulation
could be improved. For example, the wind forecast is better for all forecast ranges in the southern hemi-
sphere and tropics when it is derived from the α -Bh experiment. The relative humidity forecast from
the α -Bh experiment is also in general the best. These results encourage us to further develop the new
hybrid formulation.
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1 Introduction

The meteorological analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF)
aims at finding the best meteorological state at the beginning of a time period called the assimilation
window, given all the available observations distributed over the assimilation window and given an a
priori estimate (or background) of the meteorological state at the beginning of the assimilation window.
The search of the optimal initial state also requires the background error and the observation error co-
variances (Talagrand, 1997). The background error covariances are of the order O

(
109

)
. That makes

them too large to be computed and stored in a matrix form. Instead, the background error covariances is
decomposed in a sequence of operators (see Appendix C of Fisher et Andersson, 2001). Currently, each
of the operators is parametrised using an ensemble of short range forecasts that are valid at the same time
as the analysis and that are issued from an ensemble of data assimilations (EDA, Bonavita et al., 2012).
The background error correlation operator also uses a climatology of the background errors. This makes
the present formulation of the background error flow dependent (using the EDA members of the day)
and hybrid (using climatology as part of the correlation operator). We refer hereafter to this formulation
as the operational formulation (or Bo formulation).

In Massart (2018), we described another approach to model the background error covariances. This
new approach makes direct use of the ensemble of short range forecasts issued from the EDA members
of the day to build an ensemble-based estimate of the background error covariances. However, this
approach requires a localisation function to reduce the sampling noise of the ensemble-based estimate.
The estimate is then combined with static background error covariances based on a climatology. By
combining an ensemble-based estimate and static background error covariances, this approach is a hybrid
formulation as the current formulation. There are several possible implementations of this new hybrid
formulation (Desroziers et al., 2014). In the IFS, we chose to augment the control variable with so-
called alpha variables (Massart, 2018). We refer hereafter to this formulation of the background error
covariances as the alpha control variable formulation (or α -Bh formulation).

In Massart (2018), the results from the α -Bh formulation were presented only for simple configurations
designed to validate the correctness of its implementation. In this document we aim at a more complete
evaluation of this new formulation. To this end, we had to enhance the implementation of the α -Bh

formulation to account for the incremental approach currently used in the ECMWF 4D-Var analysis
(Courtier et al., 1994). The first part of this report describes the incremental formulation and the specifics
for the α -Bh formulation implementation. One main feature of the incremental formulation is to perform
a series of minimisations of a cost function, each sequence of the series being referred to as outer loop.
For each outer loop, the cost function to be minimised is a linear version of the original cost function, but
uses a tangent-linear and adjoint versions of the model and observation operators at a lower resolution
than the original one. We show that the localisation length-scale used for the α -Bh formulation depends
on the resolution used for the model in each outer loop. The second part of this document presents
the impact of a resolution-dependent localisation length-scale on the analysis for a simple configuration
with 3 outer loops. This helps setting up the configuration for a more complete evaluation of the α -Bh

formulation over a 4 months period covering the 2017/2018 winter. This evaluation is presented in the
last section before the general conclusion.
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2 Implication of the 4D-Var incremental formulation for the background
errors modelling

The implementation of the 4D-Var in the ECMWF Integrated Forecasting System (IFS) aims at estimat-
ing the best model state x(t0) at the initial time t0 of the assimilation window (spanning from time t0 to
time tN) given all the information available. In its simplest form, the information comes from a set of
observations {yo

i ,∀i ∈ [0,N]} distributed over the N +1 time-slots t0 to tN , and from a prior estimate or
background xb of the initial state, together with their error covariances, respectively the {Ri,∀i ∈ [0,N]}
and B matrices. The best estimate referred to as xa (t0), is obtained by minimising the non-linear cost
function

J
(
x(t0)

)
=

1
2

(
x(t0)−xb

)T
B−1

(
x(t0)−xb

)
+

1
2

N

∑
i=0

[
Hi ◦Mi

(
x(t0)

)
−yo

i

]T
R−1

i

[
Hi ◦Mi

(
x(t0)

)
−yo

i

]
, (1)

where Hi and Mi are respectively the observation operator at time ti and the non-linear model that propa-
gates the model state x(t0) from initial time t0 to time ti.

The minimisation of the cost function of Eq. (1) is currently achieved by an iterative algorithm that
computes successive values of the cost function and its gradient (inner loop iteration). The computational
cost of an individual evaluation of the cost function and its gradient over a time window is about four
times as expensive as a forecast over the same time window. As an example, for an assimilation window
of tN − t0 = 12hours, reaching the minimum of the cost function in 30 iterations would have the same
computational cost as a 60 day forecast. This computational cost of the minimisation process being
not affordable, Courtier et al. (1994) proposed the incremental formulation in order to reduce it. The
incremental formulation consists in (i) a linearisation of the cost function around a first guess state, and
(ii) a reduction of the resolution of the model used in the linear cost function obtained after step (i). The
next sections present in more details the incremental formulation and the implementation of the α -Bh

formulation when using the incremental formulation.

2.1 Current implementation of the incremental formulation

2.1.1 First guess states

Let us introduce a sequence of K +1 first guess states xg
k , where k ∈ [0,K] indexes the linearisation loop

of the non-linear cost function of Eq. (1). The initial first guess (k = 0) is chosen to be the background
state,

xg
0 = xb . (2)

For each loop k ∈ [0,K], the non-linear cost function J (x(t0)) is firstly linearised around the first guess
states xg

k leading to the linear cost function Jk, and secondly Jk is expressed in terms of the increment δxk
between the model state and the first guess,

δxk = x(t0)−xg
k . (3)

If δxa
k is the increment that minimises the linear cost function Jk for the loop k, i.e.

δxa
k = argmin

δxk

[
Jk (δxk)

]
, (4)
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then the first guess state for the next loop (k+1) is defined as

xg
k+1 = xg

k +δxa
k . (5)

2.1.2 Linearisation of the cost function

To use the increment δxk of Eq. (3) for the linearisation of the cost function of Eq. (1), one has to first
linearise the model equivalent of the observation at time ti,

Hi ◦Mi (x(t0)) = Hi ◦Mi
(
xg

k +δxk
)

= Hi ◦Mi
(
xg

k

)
+Hi Mi δxk +O (δxk) , (6)

where Hi and Mi are the tangent-linear version of Hi and Mi respectively, linearised around xg
k . Note that

Hi and Mi are varying with each loop k and should be indexed with k. We nevertheless omit the index k
to simplify the notation.

To further simplify the expression of the cost function, we also introduce the innovation vector for each
outer loop k, i.e. the difference between observation and model equivalent from the first guess state of
the current loop xg

k ,
do,g

i,k = yo
i −Hi ◦Mi

(
xg

k

)
. (7)

When neglecting the second order terms O (δxk), the linearisation of the cost function of Eq. (1) around
the first guess state xg

k leads to

Jk (δxk) =
1
2

(
x(t0)−xb

)T
B−1

(
x(t0)−xb

)
+

1
2

N

∑
i=0

[
Hi Mi δxk −do,g

i,k

]T
R−1

i

[
Hi Mi δxk −do,g

i,k

]
, (8)

where x(t0)−xb = xg
k −xb +δxk.

The minimisation of a linear cost function Jk of Eq.(8) with an iterative process is known as inner loop.
The iterative process by which the non-linear cost function J is linearised around a more accurate first
guess state is known as outer loop.

2.1.3 Change of variable

To improve the condition number of the linear cost function and to accelerate the convergence, we in-
troduce the same change of variable as already presented in Massart (2018), with the control vector χ ,

χ = B− 1
2

(
x(t0)−xb

)
or x(t0) = xb +B

1
2 χ . (9)

Replacing x(t0) in Eq. (3) using Eq. (9) leads to

δxk = B
1
2 χ +xb −xg

k . (10)

The linear cost function of Eq. (8) can then be expressed in terms of the control vector χ ,

Jk (χ) =
1
2

χ
T

χ

+
1
2

N

∑
i=0

[
Hi Mi

(
B

1
2 χ +xb −xg

k

)
−do,g

i,k

]T
R−1

i

[
Hi Mi

(
B

1
2 χ +xb −xg

k

)
−do,g

i,k

]
. (11)
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Its gradient with respect to the control vector χ is

∇χJk (χ) = χ +
N

∑
i=0

MT
i HT

i R−1
i

[
Hi Mi

(
B

1
2 χ +xb −xg

k

)
−do,g

i,k

]
, (12)

where MT
i and HT

i are the adjoint versions of Mi and Hi respectively.

2.1.4 Incremental approach

Another aspect of the incremental formulation is the possibility to use a lower resolution version of the
tangent-linear operators Hi and Mi (and their adjoint) for the inner loops of the minimisation process
(Fig. 1). It is usual to start with a resolution much lower than the one of the non-linear model and to
increase the inner loop resolution with each outer loop. In that case, xb and xg are interpolated to the
resolution of the inner loops and the product B

1
2 χ is also computed at the resolution of the inner loops.

In the current formulation, the control vector χ is truncated in the wavelet space at the spectral resolution
of the inner loops. In order to express the product B

1
2 χ at the resolution of the inner loops, there is a

specific treatment for B
1
2 to ensure that it represents the covariances at that resolution.

Figure 1: Schematic of the IFS 4D-Var incremental formulation algorithm. Outer
loops are performed at high resolution using the full non-linear model. Inner itera-
tions are performed at lower resolution using the tangent-linear forecast model, lin-
earised around a 12-hour succession of model states (the trajectory) obtained through
interpolation from high resolution (S denotes the interpolation operator, J the cost
function and x the atmospheric state vector). Figure extracted from the IFS documen-
tation (https://www.ecmwf.int/node/19306, Chapter 2: 4D variational
assimilation).
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2.2 Incremental formulation with the new hybrid background error model

2.2.1 Algorithm

The α -Bh formulation implemented in the IFS by Massart (2018) consists in a modification of the change
of variable of Eq. (9) with

x(t0)−xb = γ
s Bs 1

2 χ
s + γ

e Be 1
2 χ

e , (13)

where χs and χe are the parts of the control vector χ that use the static background errors Bs and the
ensemble-based background errors Be respectively. The weights γs and γe have to satisfy the relationship
γs2 + γe2 = 1.

Using Eq. (3) in Eq. (13) leads to an increment δxk for the loop k of the form

δxk = γ
s Bs 1

2 χ
s + γ

e Be 1
2 χ

e +xb −xg
k . (14)

Comparing Eq. (14) to Eq. (10) shows that the incremental approach does not need any specific imple-
mentation for the α -Bh formulation in terms of algorithm. For the next outer loop k+1, the first guess
is then a combination of the static and ensemble-based background errors,

xg
k+1 = xb + γ

sBs 1
2 χ

a,s
k + γ

eBe 1
2 χ

a,e
k , (15)

where χ
a,s
k and χ

a,e
k are the parts of the control vector χa

k corresponding to χs and χe respectively and
resulting from the minimisation in the current loop k.

Just like in the current implementation, in case of change of inner loops resolution from one outer loop
to the next, the product Be 1

2 χe has to be at the right resolution. First, χe is truncated in the wavelet space
at the spectral resolution of the inner loops as it is done for the other parts of χ . Concerning Be, there
are two aspects to consider: the resolution of the used EDA members and the localisation length-scale.
These two aspects are treated separately in the next two sections.

2.2.2 Resolution of the perturbations

The α -Bh formulation makes a direct use of the M members xb
m, ∀m∈ [1,M] of the EDA. The mean value

is removed from each member to build M perturbations. Currently all members of the EDA have the same
spectral resolution of TCo 639, which corresponds roughly to a grid spacing of ∆x ≈ 20km. When using
the α -Bh formulation together with the incremental formulation, the background error matrix Be should
be interpolated at the inner loop resolution. This means that the EDA members have to be interpolated
and used at the resolution of the inner loop.

In the following, the interpolation is carried out by extracting the EDA members from the ECMWF’s
archive and specifying the spectral resolution and the grid. We realised afterwards that this interpolation
is not equivalent to the spectral truncation used to build the current background errors at different reso-
lutions (for which the spectral coefficients corresponding to the wavenumbers larger than the truncation
are set to zero). To illustrate the impact of the interpolation used in this work on the background errors,
we computed the background error variances σb

j
2 for a given resolution j,

σ
b
j

2
=

1
M−1

M

∑
m=1

(
T j xb

m −µ j

)2
, with µ j =

1
M

M

∑
m=1

S j xb
m , (16)
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(a) Temperature (b) Divergence

Figure 2: Examples of power spectrum of the estimated background error variance for
(a) temperature and (b) divergence at model level 118 (around 900 hPa). Each line
corresponds to the variance computed from the EDA members truncated at a given
spectral resolution (see label for the approximate spatial resolution of each spectral
truncation).

where T j is the interpolation at the truncation of the wavenumber j.

Figure 2 presents the power spectrum of σb
j

2 for temperature and divergence at model level 118 (≈ 900hPa)
for the interpolation T j at various truncations ranging from an equivalent grid spacing of ∆x ≈ 30km to
∆x ≈ 200km. If a spectral truncation had been used, all the curves would have been on top of each other
until the wavenumber of the truncation. With the current interpolation, for temperature, the background
error variance for each wavenumber is only slightly affected by the interpolation. On the other hand, the
power spectrum of the variance for divergence varies significantly with the truncation and the variations
are happening at all wavenumbers.

We have tested the effect of having a spectral truncation instead of the truncation performed by the
retrieving process from the archive. We found that the impact is relatively small compared to other
signals (not shown).

2.2.3 Localisation length-scale

In order to reduce the sampling noise induced by using a limited number of EDA members in the new
hybrid formulation, we documented in Massart (2018) the need for a localisation function. We also
presented how to diagnose the optimal value of the localisation length-scale (under some assumptions),
using the HybridDiag software developed by B. Ménétrier and presented in Ménétrier et Auligné (2015).

Here, we want to assess the sensitivity of the diagnosed optimal value of the localisation length-scale
with respect to the spectral truncation of the EDA members. As we did for the variances in the previous
section, we applied a given spectral truncation to the EDA members and we computed the corresponding
localisation length-scale from these truncated members. We then repeated this operation for the set
of spectral truncations used previously and we accordingly have a diagnosed value of the localisation
length-scale per spectral truncation.

We found that for each spectral truncation, the diagnosed optimal value of the localisation length-scale
varies little with altitude between 1000 hPa and 100 hPa (not shown). We therefore computed the mean

10 Technical Memorandum No. 856



A new hybrid formulation for the background error covariance: evaluation

Figure 3: Impact of the resolution of the EDA members on the diagnosed mean local-
isation length-scale for divergence (black), vorticity (purple) and temperature (red).
The mean localisation length-scale is the average of the diagnosed global localisation
length-scale between 100 hPa and 1000 hPa.

value along this pressure range. We found a sensitivity of the mean value to the spectral truncation for
all the atmospheric model variables of the control vector (Fig. 3). The relationship is almost linear, the
larger the truncation (i.e. the smaller the spatial resolution), the smaller the localisation length-scale as
diagnosed by HybridDiag.

This result suggests that one should use a different value of the localisation length-scale for each outer
loop when the resolution of the inner loops changes. For example, for an experiment with 3 outer loops
and with the inner loops resolutions being TL95 / TL159 / TL255 (or spatial resolution of about 200 km,
125 km and 80 km respectively), according to HybridDiag one should use the following value for the
localisation length-scale of temperature for each outer loop: 450 km, 350 km and 300 km.

3 Evaluation of the incremental formulation with a resolution-dependent
localisation length-scale

In the previous section we found that the new α -Bh formulation for the background error covariances
can be applied together with the standard incremental formulation. We also found that the localisation
length-scale should be dependent of the inner loop resolution of each outer loop. In this section, we
present the effect of a resolution-dependent localisation length-scale, starting with single-observation
experiments and then using the full observing system.

3.1 Single observation experiment

We mimic here the single observation experiment HYB 100 75m of Massart (2018), where a single
observation of temperature is assimilated at the beginning of the assimilation window. However, we
changed the location of the observation to a region where the uncertainty on surface pressure (as derived
from the EDA) is higher, i.e. 55◦N,68◦W , for the selected date (1 November 2016). The altitude of the
observation is still 900 hPa.
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The observation is assumed to be an aircraft observation. This means that the observation operator is
linear. Moreover, the observation being located at the beginning of the assimilation window, the forecast
model does not have any influence on the increment.

3.1.1 Experimental setup

We are using here the incremental formulation with three outer loops. For the successive outer loops, the
inner loop resolutions are TL 95, TL 159 and TL 255. For this configuration, we have two experiments,
both with an hybrid weight γe2 = 1 (fully ensemble-based background errors). The only difference
between the two experiments is the value of the localisation length-scale used for each outer loop. For
the first experiment, referred to as Cst. Loc., the localisation length-scale is constant with a value of
300 km. The second experiment, referred to as Var. Loc., has varying localisation length-scale for each
outer loop: from 800 km for the first outer loop to 480 km for the second and 300 km for the third. These
values are chosen to be larger than the ones found in the previous section for the first two outer loops in
order to better illustrate the possible effect of resolution-dependent localisation length-scale.

3.1.2 Results

Figure 4 displays the temperature increments for the first experiment after each of the three outer loops
and the total increment at the model level closest to the observation level. The first outer loop produces
a negative increment with a large-scale almost isotropic shape due to the broad resolution of the loop
(TL 95). The second and third outer loops produce much smaller scale increments with positive and
negative values about an order of magnitude less than the values of the increment from the first loop. The
total increment is then similar to the one from the first loop but with a more refined structure due to the
increased resolution and the refinement of the smaller structures from the second and third outer loops.

For the second experiment with varying localisation length-scale, the increment after the first loop has a
larger scale structure than the one from the previous experiment (Figs. 4a and 5a). This is expected as
the localisation length-scale is more than twice larger. The second and last loop have then much work to
do by first removing the increment far (with respect to the localisation length-scale) from the observation
location and secondly refining the smaller scale structures close to the observation location (Figs. 5b
and 5c).

After the three outer loops, the total increment is nonetheless similar in shape and in amplitude in the two
experiments (Figs. 4d and 5d). For this simple experiment with a single observation at the beginning of
the window and a linear observation operator, only the localisation length-scale of the last loop matters.
This statement cannot be generalised to the situation for which we are assimilating all the available
observations. The model and the observation operators are indeed linearised around the first guess for
the current outer loop. As the first guess is dependent on the localisation length-scales used within the
previous outer loops, the successive linear versions of the non linear cost function are therefore also
dependent on the localisation length-scales used within the previous outer loops.

3.2 Full observing system experiment

To better understand the implication of a resolution-dependent localisation length-scale, let us take the
example of the two previous experiments: one with a constant localisation length-scale and one with a
resolution-dependent one. For the two experiments, having a different localisation length-scale in the first
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(a) Loop 1 (b) Loop 2 (c) Loop 3 (d) Total

Figure 4: Example of temperature increments after each of the 3 outer loops (a to c)
and total increment (d) obtained from a single observation of temperature localised
in the middle of the domain and for the hybrid experiment with the same localisation
length-scale for all the outer loops.

(a) Loop 1 (b) Loop 2 (c) Loop 3 (d) Total

Figure 5: Same as Fig. 4 but with varying localisation length-scale for each outer
loop: from 800 km for the first outer loop to 480 km for the second and 300 km for the
third.

outer loop results in having a different analysis increment. For each experiment, its analysis increment
is added to the background to build the first guess and the new model trajectory for the next outer loop.
They are both unique to the experiment and therefore the tangent-linear and adjoint versions of the model
and observation operators are also specific to the experiment. This implies that the linear cost function of
Eq. (8) to minimise for the second loop could be considerably different between two experiments. The
same logic applies for the next outer loops.

The non-linear cost function J is nonetheless the same for the two experiments. For a mildly non-linear
cost function with one global minimum and an infinite number of outer loops, the analyses should be the
same for both experiments and should be the global minimum of J . The linear cost functions being
different between the experiments for each outer loop, the path to reach the global minimum is also
different. Therefore, for a finite number of outer loops, we may expect to find a different analysis that
would correspond to a local minimum along the path determined by each experiment.

3.2.1 Experimental setup

To assess the impact of the localisation length-scale on the final analysis, we now assimilate all observa-
tions available on 1st November 2017, 00 UTC. Using a full ensemble-based background error was found
not to be optimal and a regularisation from a static background error is desirable. For that purpose, we
use a weight γe2 of 75%, which allows a significant part of increment to come from the ensemble-based
part of the background error covariances, while still providing sufficient regularisation.
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3.2.2 Results

To compare the experiments, we first examine the spectral density of the increments for all the atmo-
spheric model variables and all model levels. For the 3D variables, we compute the difference in spectral
space between the constant localisation (Cst. Loc.) and the variable localisation (Var. Loc.) experiments,
as a function of model level.

For the total increment of the logarithm of surface pressure (Fig. 6), the localisation length-scale has
an impact mainly on the high wavenumbers (small scale structures). The experiment with the largest
localisation length-scale has more energy after the first outer loop. The difference further increases with
the next outer loops with an offset in the spectra starting from wavenumber 20. For the low wavenumbers
(large scale structures), there is a difference after the first outer loop, but the difference tends to shrink
with the next outer loops, and the total increment is similar for the two experiments in this spectral region.

The behaviour of the increments for all the other atmospheric model variables and for all levels is similar
to the one of the increment of the logarithm of surface pressure (Fig. 7):

1. low wavenumbers: no clear pattern for the difference between the two experiments (for all model
levels and all model variables) and the difference is shrinking with the number of outer loop ;

2. high wavenumbers: positive offset in the spectral density of the increments for the experiment with
the variable localisation length-scale starting from wavenumber 20 and offset increasing with the
number of outer loop.

To understand how these differences in the increments impact the analysis, we can examine some diag-
nostics in observation space. First, we compute the analysis fit to observation (i.e. “observation” part
of the cost function) normalised by the initial value of the cost function, as a function of the outer loop
index (Fig. 8a). Note that we have two values for the second and third outer loop: one value after adding
the analysis increment (first guess) and one value after minimisation (analysis).

After the first loop, the experiment with the constant localisation length-scale slightly outperforms the
experiment with the variable localisation length-scale. The difference gets less and less with the next
outer loops. This means that the localisation length-scale does not have a strong impact on how the
system fits the observations globally. When looking more in detail, the experiment with the varying
localisation length-scale has a better fit to almost all observations except the radar rain rates and all-sky
satellite radiances (not shown). This could be linked to the fact that the observation operators are non-
linear for these data and the experiment with a resolution-dependent localisation length-scale provides
lower quality first-guesses fields in first outer loop due to a broader length-scale.

The second diagnostic is the reduction of the gradient norm as a function of the inner loop iteration,
for the 3 outer loops (Figs 8b to 8d). The experiment with the constant localisation length-scale con-
verges sightly faster than the one with the variable localisation length-scale for the first outer loop. The
behaviour is then similar for the last two outer loops.

Overall, varying the localisation length-scale together with the resolution of the inner loops has an impact
on the analysis, but the experimentation so far does not show if the impact is positive or not. This will
be assessed again in future configurations of the α -Bh formulation. In the following, the localisation
length-scale will be kept constant for two main reasons. First, the diagnosed localisation length-scale
shows some clear regional variations. The priority would be to first use a space-dependent localisation
length-scale before varying it with the inner loop resolution. Secondly, when the localisation length-
scale varies between the outer loops, there is more energy in the small scale for all variables. The new
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(a) Loop 1 (b) Loops 1+2 (c) Total

Figure 6: Spectral density of the total increment of the logarithm of surface pressure
after each outer loop (a) to (c), for the static experiment (red) and the hybrid experi-
ments with constant (blue) and varying (cyan) localisation length-scale.

(a) Vorticity – Loop 1 (b) Vorticity – Loops 1+2 (c) Vorticity – Total

(d) Divergence – Loop 1 (e) Divergence – Loops 1+2 (f) Divergence – Total

(g) Temperature – Loop 1 (h) Temperature – Loops 1+2 (i) Temperature – Total

Figure 7: Difference (in %) in the spectral density of the total increment of the atmo-
spheric model variables between the experiment with the varying localisation length-
scale and the experiment with the constant localisation length-scale. From top to
bottom: vorticity, divergence and temperature. From left to right: difference of the
total increment after each outer loop from 1 to 3.
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(a) Fit to observation (b) Loop 1 (c) Loop 2 (d) Loop 3

Figure 8: Impact of the localisation length-scale variation on the convergence of the
4D-Var: (a) reduction of the observation cost function as a function of the outer loop
and (b) to (d): reduction of the gradient norm as a function of the inner loop iteration
for each outer loop. In red: static experiment, in blue: hybrid experiment with fixed
localisation length-scale (300 km), and in cyan: hybrid experiment with varying local-
isation length-scale (800 km/480 km/300 km). The hybrid experiments have a hybrid
weight γe2 = 0.75 here.

formulation already produces increments with more energy in the small scales when compared with the
experiment with the static B matrix as illustrated for the logarithm of surface pressure (Fig. 6). It is
believed that too much energy in the small scales may have a negative impact on the analysis. Based on
this evidence, we choose to keep the localisation length-scale constant.

4 Evaluation of the new formulation over a winter season

The previous results with the single observation or the full observing system plus some additional prelim-
inary tests over longer periods gave us confidence in the correctness of the implementation of the α -Bh

formulation. This section assesses the benefits of the new approach compared to the current formulation
by cycling the assimilation experiments over a period of 4 months.

4.1 Configuration

4.1.1 Experiments

Three experiments are discussed and compared in this section. The first experiment referred to as Bo

uses the wavelet background errors as used in operation for CY45R1. The second experiment referred
to as Bs uses static wavelet background errors (see section 4.1.2). The last one referred to as α -Bh uses
the new hybrid formulation. We do not present here the sensitivity of the α -Bh formulation with, for
example, the hybrid weight or the number of perturbations. We wanted to have a first assessment of the
α -Bh formulation performance before trying the optimise its performance with more specific tuning.

All the three experiments share the same configuration except for the background error formulation.
They are based on IFS CY45R1. The outer loop resolution is TCo 399 and the inner loop resolutions
are successively TL 95 / TL 159 / TL 255, all using 137 vertical levels. The period during which they are
compared spans from beginning of November 2017 to end of February 2018 (4 months of the Northern
Hemisphere winter).
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4.1.2 Static background errors

The α -Bh and Bo experiments have consistent background errors as they are both based on the perturbed
members of same EDA. In order to have a consistent static background error covariance matrix, we
computed it as an average of Bo matrix over the period of comparison (see Appendix A for more details).
This means that on average the background error standard deviation of each of the atmospheric model
variables is the same for all experiments over the period of interest. Nonetheless, the correlation length-
scales are different between the three background error covariance matrices and we can expect sightly
different effective covariances between the experiments.

Our strategy of building a static background error covariance matrix allows a fair comparison. This is
nevertheless not applicable in an operational environment as the future background errors are unknown.
In that particular situation, one could use the same method as the one used to building the climatological
background error correlations and based on an average over about a year.

4.1.3 Hybrid α -Bh background errors

One main difference for the α -Bh formulation here compared to previous experiments is the use of time
lag for the perturbations. Previously, we used 25 perturbations at the analysis time and ±3hour before
(or the equivalent of 25×3 = 75 members). We now use hourly perturbations in the same time range of
±3hour (or the equivalent of 25×7 = 175 members).

(a) Diagnosed pressure of the tropopause (b) Tapering zone

Figure 9: (a) Mean pressure level of the diagnosed “humidity” tropopause for Novem-
ber 2017. (b zonal and temporal mean of the zone where the tapering of the hybrid
weight happens (shaded area). The hybrid weight is 0 above the shaded area, and 0.5
below. Within the shaded area, the weight varies according to Eq. (4.10) of Gaspari
et Cohn (1999) where the logarithm of the pressure is used as a distance.

The current implementation of the α -Bh formulation impose to have the same horizontal localisation for
all model levels. In Massart (2018), we showed that the global mean of the localisation length-scale as
diagnosed by the HybridDiag software is almost constant in the troposphere and then varies much more
with the vertical in the stratosphere. Therefore, it was decided not to apply the α -Bh formulation in
the stratosphere. We first diagnose for each grid point the model level corresponding to the “humidity”
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tropopause in the background field (model level for which the specific humidity is larger than 3 mg.kg−1

and the specific humidity two model levels below is larger than 5 mg.kg−1, when looking for model
levels located in the pressure range between 500 hPa and 70 hPa). Then, for each horizontal grid point,
we are using a hybrid weight of 0.5 in the vertical up to 5 model levels below the “humidity” tropopause.
Then the tapering starts and reaches zero at 5 model levels above the “humidity” tropopause (Fig. 9).
This ensures that the formulation is used mainly in the troposphere, but relies on the ability to diagnose
properly the “humidity” tropopause.

We perform the horizontal localisation on the EDA perturbations after applying an operator based on the
variations of the Laplacian operator proposed by Berre et al. (2017). Unless specified otherwise, we are
using the same transformations as the ones presented in in Massart (2018).

4.1.4 Localisation of specific humidity perturbations

The first results obtained with the α -Bh formulation showed a large increase of RMS error in relative
humidity compared to the experiment with the static B matrix over the polar regions in the analysis and
therefore in the first hours of the forecast (Fig. 10a). This was confirmed when the forecast from the two
experiments (α -Bh and Bs) were compared to relative humidity observations in the Arctic (Fig. 10b).
The RMS error was up to 2% higher for the α -Bh experiment at 700 hPa and decreased until day 3
from which the change in RMS error was not significant anymore. For this reason, we restarted the
α -Bh experiment and we localised the ensemble perturbations of specific humidity without using any
transformation based on the Laplacian operator. This allowed to remove the observed increase in the
RMS error in relative humidity. This is the version of the α -Bh experiment that is discussed in the rest
of the document.

(a) Versus own analysis (T+12)
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Figure 10: Change in RMS error in relative humidity between the α -Bh and the Bs

experiments when the Laplacian operator is used for the localisation of the specific
humidity in the α -Bh experiment. Positive values (or reddish colours) mean that the
α -Bh experiment is worse than the Bs experiment.
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4.2 Results

4.2.1 Convergence diagnostics

We first compare the convergence behaviour of the experiments. On average over the whole period of
interest, the α -Bh experiment is the one that requires the least inner loop iterations to converge for each
outer loop (Tab. 1). The Bs experiment requires between 1 and 2 more iterations, while the Bo experiment
requires between 5 and 7 more iterations.

These convergence behaviours are consistent with the condition number diagnostics (Tab. 2). The α -Bh

experiment has the lowest mean and median values of the condition number. Even for the last outer
loop, there is an increase of almost 100% between the mean value of the condition number for the α -Bh

experiment and the one for the Bo experiment, and an increase of 25% for the Bs experiment with respect
to the α -Bh experiment.

We saw previously that the α -Bh-like experiment produces increments with more energy in the small-
scales and this was expected to negatively influence the convergence. Here, the α -Bh experiment still
produces increments with more energy in the small-scales (Appendix B, page 36), yet its convergence is
better. The energy in the small scales does not seem to perturb the convergence here.

The α -Bh experiment also had cases where the convergence was more difficult, as for the two other
experiments. The condition number indeed reaches values much larger than its median value for some
assimilation cycles. This is usually associated with increased number of inner loop iterations. There are
no significant differences though between the α -Bh experiment and the two other experiments in terms
of number of cycles with bad convergence over the period of interest.

To further investigate why the α -Bh experiment converges faster and has a lower condition number than
the two other experiments, we consider now the reduction of the observation part of the cost function
(or Jo) computed as the ratio between the value of Jo

k at the end of each outer loop k (using the analysis)
divided by the initial Jo

0 value for the first outer loop (using the background). The Jo reduction is a global
measure of how the analysis fits the observations.

The value of Jo and therefore the Jo reduction depends on the number of ‘active’ observations. Com-
paring the Jo reduction between experiments is significant only if the number of observations used by
each experiment is similar. This is the case between the α -Bh experiment and the Bs experiment with an
increase in the usage of observations by about 0.04% in the first experiment (Tab. 3). On the other hand,
the Bo experiment uses about 1.2% less observations than the Bs experiment. This is not a large differ-
ence, but one has to be more cautious when comparing the Jo reduction of the Bo experiment against the
two others.

As the mean value of the Jo reduction is similar to the median value over the period of interest, we just
present the mean value (Tab. 4). The best fit-to-observation is for the analysis from the Bs experiment
and the worst is from the Bo experiment. The α -Bh experiment is in-between and gets closer to the Bo

experiment for the last loop. This means that on average over all observations and after 3 outer loops,
the α -Bh experiment seems to perform similarly to the Bo experiment, but in less iterations. At the same
time, the Bs experiment provides an analysis closer to the observations in just about one iteration more
than for the α -Bh experiment. Having flow dependent background errors leads to slightly higher values
for the analysis fit-to-observation.

Even if the global reduction of Jo is similar for the Bo and α -Bh experiments after 3 outer loops, they
differ if we detail the diagnostic by observation type (Tab. 5). The α -Bh experiment has a worse fit-
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Table 1: Basic statistics of the number of inner loop
iterations for each outer loop minimisation and for
the three experiments. In purple, the maximum
value across the experiments for each statistic and
in green the minimum value.

Bs α -Bh Bo

Min. 1 min. 23.0 21.0 25.0
max. 31.0 28.0 35.0
mean 26.3 24.1 31.2
median 26.0 24.0 31.0

Min. 2 min. 24.0 23.0 27.0
max. 28.0 27.0 33.0
mean 26.1 25.3 30.2
median 26.0 25.0 30.0

Min. 3 min. 26.0 25.0 27.0
max. 38.0 38.0 41.0
mean 27.5 26.4 30.9
median 27.0 26.0 31.0

Table 2: Same as Tab. 1 but for the condition num-
ber.

Bs α -Bh Bo

3 761.427 2 195.577 8 575.633
48 014.949 88 298.863 38 273.039
4 536.362 3 445.418 13 266.499
4 108.099 2 615.873 12 184.716
1 213.523 1 180.399 2 958.827

177 687 683.999 5 810.697 474 565.251
741 994.627 1 379.798 6 150.357

1 509.259 1 310.957 3 902.236
1 186.404 1 160.257 1 990.397

206 490.115 128 341.354 252 694.669
2 524.490 2 019.636 3 885.214
1 510.029 1 261.863 2 679.927

Table 3: Total number of ‘active’ observa-
tions for each outer loop (in %) normalised
by the total number from the Bs experiment.
In purple, the maximum value across the ex-
periments, and in green the minimum value.

Minimisation α -Bh Bo

1 100.040 98.350
2 100.041 98.762
3 100.041 98.763

Table 4: Mean value of the reduction of Jo after each outer
loop minimisation with respect to the initial Jo and for the
three experiments. In purple, the maximum value across
the experiments, and in green the minimum value.

Minimisation Bs α -Bh Bo

1 0.803 0.807 0.809
2 0.665 0.669 0.671
3 0.624 0.631 0.631

Table 5: Mean of the reduction of Jo by observation type for the last
minimisation with respect to the initial Jo and for the three experi-
ments. In purple, the maximum value across the experiments, and in
green the minimum value.

Observation type Bs α -Bh Bo

Land stations and ships 0.474 0.479 0.482
Aircraft data 0.502 0.511 0.513
Atmospheric motion winds 0.674 0.693 0.678
Drifting Buoys 0.366 0.371 0.374
Radiosondes 0.400 0.415 0.409
Balloons and profilers 0.364 0.375 0.374
Satellite sounding data 0.748 0.750 0.752
Scatterometer 0.509 0.528 0.516
Limb observations 0.563 0.573 0.576
Ground-based precip. composites 0.366 0.390 0.385
All-sky satellite radiances 0.499 0.511 0.510

Table 6: Total number of ‘active’
observations used in Tab. 5 (in %)
normalised by the total number
from the Bs experiment.

α -Bh Bo

100.00 100.00
100.00 100.00
100.01 100.07
100.00 100.00
100.00 100.03
100.00 100.01
100.05 98.43
100.00 100.00
100.00 100.00
100.34 100.35
100.01 100.01
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to-observation for the data types related to wind measurements (atmospheric motion winds and scat-
terometer) and related to in-situ measurements (radiosondes, balloons and profilers). Otherwise, the Bs

experiment has a systematic better fit-to-observation than the two other experiments for all observations.

The number of ‘active’ observations is similar in all experiments (within ±0.3%) for all observation
types except for the satellite sounding data (Tab. 6). For these particular data, the Bo experiment has on
average 1.5% less ‘active’ data. Most of the difference comes from AMSU-A for which the number of
‘used’ data is similar between the experiments (not shown). The α -Bh and the Bs experiments have then
more ‘active’ data due to a different first-guess check (based on the background error standard deviation)
but the variational quality control gives little weight to these additional data.

4.2.2 Analysis

In this sub-section we investigate in more details the analysis departure. The mean analysis departure can
be interpreted as the bias of the analysis compared to the observations. The analysis departure provides
a limited information on the analysis as it is computed in observation space. The direct comparison
between analyses from the different experiments provides a more comprehensive picture of the impact
of the background error choice on the analysis. We are hence using the Bs experiment as the reference to
compute the analysis difference with the two other experiments. Then, we compute the mean value and
the standard deviation of the analysis differences.

We saw previously that the increments from an α -Bh-like experiment have more energy in the small
scales than those of a Bs-like experiment after one assimilation cycle. To assess if this remains true in
the context of the current experiments, we computed the mean spectra of the analysis fields at 0Z and
12Z for each of the three experiments. We then compute the difference against the mean spectra from the
Bs experiment and normalise it by the mean spectra of the Bs experiment. We present in Appendix B.2
(page 37) the normalised spectra for the atmospheric model variables for the month of November only, as
an average over a longer period could include a seasonal signal. The general structure of the normalised
spectra are, however, similar for the other months.

The analyses at 0Z and 12Z are fields at the spectral truncation of 399 resulting from a short range forecast
of 3 hour based on an increment at the spectral truncation of 255. This means that for the wavenumbers
lower than 255, the analysis is directly constrained by the increment, and for the wavenumbers greater
than 255, the analysis is the result of how the model absorbs the increment in the short range forecast.

In the next sections, we compare the analyses from the three experiments both directly in the physical or
spectral space, or indirectly using the analysis departure. We first start with the model variables linked
to the dynamics and then with the ones linked to the thermodynamics.

Dynamics

To better understand why the analysis from α -Bh experiment has a worse fit-to-observation in terms of Jo

reduction than the two other experiments when dealing with observations related to wind measurements,
we first investigate the analysis departure with the ASCAT and AMVs data. ASCAT provides data that
can be compared to the model u and v components of wind at the altitude of 10 m. The Atmospheric
Motion Vectors (AMVs) provide a picture of the wind above the surface.

Globally, the α -Bh experiment has the lowest mean value of the ASCAT analysis departure except for the
northern hemisphere (Tab. 7). Elsewhere, the Bo experiment has the highest mean value of the ASCAT
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Table 7: Mean value and standard deviation of the analysis departure (in m.s−1) with
respect to ASCAT observations per region and per analysis experiment. In purple the
maximum value of the statistic per region, and in green the minimum value. The last
column is the observation partition per region (in %).

Mean Std. dev. Obs.
Region Bs α -Bh Bo Bs α -Bh Bo part.
S. Hemis. -0.0623 -0.0566 -0.0645 0.8037 0.8088 0.8055 43.63
tropics -0.0323 -0.0281 -0.0568 0.8155 0.8339 0.8179 31.50
N. Hemis. -0.2082 -0.2147 -0.2075 0.9249 0.9312 0.9311 24.87
Global -0.0891 -0.0869 -0.0977 0.8412 0.8519 0.8447 100.00

analysis departure. The main difference is found in the tropics where the α -Bh experiment has a bias
of almost half of the one from the Bo experiment. This is due to a stronger (negative) u component of
wind in the α -Bh experiment, when the Bo experiment has overall a weaker u component of wind and a
weaker (positive) v component of wind (Fig. B.1, page 36). This signal is particularly strong west of the
Andes (not shown).

The α -Bh analysis is the closest to the ASCAT observations on average, but at the same time the analysis
departure from this experiment has more spatial and temporal variability than the two other analyses.
When compared to the Bs experiment, the difference in the standard deviation of the analysis departure
with ASCAT does not show any particular pattern (not shown) and the increase is similar in all regions
of the globe.

Just above the surface, the mean analysis departure with AMVs is similar for all experiments except
in the tropics. There, the α -Bh analysis has slightly more bias than the two other experiments in the
vertical region between 700 and 500 hPa, with an increase up to 0.05 m.s−1 for a bias around 0.3 m.s−1

(not shown). The α -Bh experiment has weaker (negative) u component of wind than the Bs experiment
which is already too weak compared to the observations (Fig. B.1, page 36). The Bo experiment performs
slightly better than the α -Bh experiment thanks to a stronger u component of wind around 850 hPa.

The standard deviation of the analysis departure with AMVs is globally higher by about 1% for the α -Bh

analysis compared to the Bs analysis and sightly higher than the Bo analysis (Fig. C.1, page 38). The
largest difference is found in the tropics.

Meanwhile, the spatial standard deviation of the increment of the u and v components of wind (not
shown) and the spatial standard deviation of the u and v analysis (Figs. 11a and 11b) is smaller in the
α -Bh experiment than in the Bs one. The change is significant mainly in the tropics and below 200 hPa.

These results are all consistent with a smaller background error covariance in the α -Bh experiment.
Even if the three experiments have consistent background error variances as detailed in section 4.1.2, the
effective covariance may vary due to the correlations. The localisation process in the α -Bh experiment
may reduce the correlation length-scales and therefore lower the effective covariance when compared to
the two other experiments. In contrast, the Bo experiment may have a more variability in the effective
covariance when compared to the Bs experiment because of the flow-dependent correlations. This would
be consistent with the increase in the spatial standard deviation in the troposphere when compared to the
Bs experiment (Figs. 11c and 11d).

The spectral distribution of the energy of the α -Bh analysis compared to the Bs analysis shows less
energy in the medium and large scales, especially for divergence (Fig. B.3a, page 37). Our interpretation
is that having a lower effective covariance prevents the observations to bring as much information in the
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(a) U component of wind – α -Bh - Bs (b) V component of wind – α -Bh - Bs

(c) U component of wind – Bo - Bs (d) V component of wind – Bo - Bs

Figure 11: Change in standard deviation field in u (left) and v (right) component
of wind (in m.s−1) at initial time between the α -Bh and the Bs experiments (top)
and between the Bo and the Bs experiments (bottom). The grey areas indicate a non
statistically significant change.

medium and large scales as a larger effective covariance would. A lower effective covariance restrains
the analysis to fit too closely to the observations and then has more difficulty to reproduce the spatial
variability that could be present in the observations. On the other hand, the α -Bh analysis has more
energy in the small scales, starting from wavenumber around 100. To better understand this, a separate
study on the modes of the background and observation error covariance matrices should be conducted.
In the meantime, we recognise that overall the α -Bh analysis is smoother than the analyses of the two
other experiments.

Thermodynamics

On average over the period of interest, there is little change in the mean fields in the temperature analysis
between the α -Bh and the Bs experiments. The analysis from the α -Bh experiment is cooler by a few
hundredths of a degree in the region around the tropopause, and also in the troposphere at mid-latitudes
and in the tropics (Fig. B.2a, page 36). The largest differences occur in the Antarctic where the cooling
around the tropopause reaches 0.09 K. When compared to radiosondes data, this cooling helps reducing
the bias in the analysis (not shown). Where the analysis from the α -Bh experiment is cooler in the
tropopause region, it is also wetter, but by not much more than 1%. The opposite is happening in the
tropics where the α -Bh analysis is both cooler and drier in the mid-troposphere. Close to the surface,
the α -Bh analysis becomes wetter but it is still cooler. When compared to radiosondes data, this cooling
increases the analysis bias, while the increase in humidity reduces the bias.

The mean behaviour of the Bo experiment is similar to the one of the α -Bh experiment. The change in
mean is nonetheless more pronounced for the relative humidity in the tropopause region where the the
Bo analysis is wetter by more than 2 % than the two others (Fig. B.2d, page 36). The comparison with
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specific humidity measurements from radiosondes data suggests that this change in the Bo experiment
makes its analysis more biased than the analyses from the two other experiments. There is also a small
increase of temperature in the region between 500 hPa and 300 hPa which is not present in the α -Bh

experiment, which seems to increase the analysis bias when compared to aircraft data.

(a) Temperature – α -Bh - Bs (b) Relative humidity – α -Bh - Bs

(c) Temperature – Bo - Bs (d) Relative humidity – Bo - Bs

Figure 12: Change in standard deviation field in temperature (left, in k) and relative
humidity (right, in %) at initial time between the α -Bh and the Bs experiments (top)
and between the Bo and the Bs experiments (bottom). The grey areas indicate a non
statistically significant change.

The standard deviations of the temperature analyses are very close to each other for the three experiments
with differences of the order of 0.01K (Figs. 12a and 12c). The main significant difference comes from
the Bo experiment where the variability is lower in the Antarctic region around 300 hPa by about 0.05K.
This is associated with a lower variability of relative humidity by about 1 % (Fig. 12d). The small values
of these differences explain why the mean Jo reduction is similar between the experiments for satellite
data (Tab. 5).

4.2.3 First-guess

The forecast from the analysis is used in the next assimilation cycle to produce the background or initial
first-guess state. The comparison of this first-guess with observations provides insight into the quality
of the short range forecast. The observation part of the initial cost function at the beginning of each
assimilation cycle naturally provides this comparison, accounting for the observation errors.

The first value of the initial cost function may vary a lot between assimilation cycles. This makes inap-
propriate the computation of statistics based directly on the value of the initial cost function. Instead,
we choose the initial cost function of the Bs experiment after screening as a reference. The screening
process is based on the first-guess state and therefore the number of used observations may vary between
the experiments. In practice, the α -Bh experiment uses on average 0.04 % more observations than the Bs
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Table 8: Mean value of the relative change (in %) in the normalised initial cost func-
tion at the start of each assimilation cycle with respect to the initial cost function of
the Bs experiment. In purple, the maximum value across the experiments, and in green
the minimum value.

Bs α -Bh Bo

minimum 100.00 98.32 98.84
maximum 100.00 101.30 102.55

mean 100.00 99.50 100.81
median 100.00 99.50 100.77

Table 9: Same as Tab. 8, but for the mean only and by observation type. For the
satellite data, the separation by sensor is also presented.

Observation type Bs α -Bh Bo

Land stations and ships 100.00 99.69 100.50
Aircraft data 100.00 99.09 99.57
Atmospheric motion winds 100.00 99.82 100.11
Drifting Buoys 100.00 100.01 100.38
Radiosondes 100.00 98.90 99.82
Balloons and profilers 100.00 99.37 99.88
Satellite sounding data 100.00 99.84 99.45

AIRS 100.00 99.98 99.99
AMSUA 100.00 99.76 99.30
ATMS 100.00 99.24 95.93
CRIS 100.00 99.91 100.11
IASI 100.00 99.94 99.91

Scatterometer 100.00 99.08 99.46
Limb observations 100.00 98.97 99.52
Ground-based precip. composites 100.00 98.86 100.24
All-sky satellite radiances 100.00 99.26 99.52

AMSR2 100.00 98.96 99.38
AMSUA 100.00 98.98 99.15
GMI 100.00 99.35 99.61
MHS 100.00 98.96 99.26
MWHS2 100.00 99.72 99.80
MWRI 100.00 99.32 99.25
SAPHIR 100.00 99.69 100.11
SSMI 100.00 99.01 99.40
WINDSAT 100.00 99.01 99.16

Technical Memorandum No. 856 25



A new hybrid formulation for the background error covariance: evaluation

experiment (mainly ground-based precipitation composites and satellite sounding data) and the Bo ex-
periment uses 1.2 % less observations (mainly satellite sounding data) as already presented in Sec. 4.2.1
(Tabs. 3 and 6). To account for that change in the usage of observations, we divide the value of the cost
function by the number of used observations. Then, we divide the normalised cost function of the α -Bh

and Bo experiments by the normalised cost function of the Bs experiment for each cycle.

The statistics of the relative change of the normalised initial cost function is presented in Tab. 8. The
mean values of the change in the initial cost function is smaller for the α -Bh than the static one by 0.5 %.
This indicates a better first-guess fit-to-observation for the α -Bh experiment on average. The α -Bh

experiment is nonetheless sometimes worse for some assimilation cycles as the maximum change is
larger than 100 % by 1.3 %.

The Bo experiment has a worse first-guess fit-to-observation than the Bs experiment by 0.8 % on average.
If we split this global diagnostic by observation type, then the Bo experiment is worse mainly for data
close to the surface (land stations and ships, drifting buoys), ground-based precipitation composites
and AMVs (Tab. 9). For all satellites observations, aircraft data, and radiosondes the Bo experiment is
on average better than the Bs experiment, with few variations depending on the instrument. The best
improvements comes from the ATMS instrument with a reduction of the statistic by about (-4. %). Yet,
for almost all observation types but the satellite sounding data (and to a lesser extend the drifting buoys),
the α -Bh experiment is the best. The largest improvements from the α -Bh experiment are found for the
ground-based precipitation composites (-1.14 %) the radiosondes (-1.10 %) and the limb observations
(-1.03 %).

The values of the standard deviation of the first-guess departure confirm these results. For the limb
observations, the standard deviation of the first-guess departure with respect to the GPS-RO data is lower
by about 1 % for the α -Bh experiment compared to the Bs experiment for most altitudes (Fig. C.6,
page 40). The largest improvement comes from the southern hemisphere above 8 km. This result is
reinforced by the comparison with temperature measurements from radiosondes for which the standard
deviation of the first-guess departure is also on average lower by about 1 % for the α -Bh experiment
(Fig. C.7, page 40). These data feature an even larger improvement for the polar regions by more than
2 % between 300 hPa and 500 hPa. Concurrently, the Bo experiment is worse than the static experiment
in the Antarctic region and neutral to sightly better elsewhere.

The radiosondes also provide specific humidity measurements. The standard deviation of the first-guess
departure with respect to them is on average similar for the α -Bh experiment and larger by up to 3 %
for the Bo experiment, both compared to the Bs experiment (Fig. C.8, page 40). The degradation of the
Bo experiment comes from the tropics and from the high latitude regions, but not from polar regions. In
particular, in the Antarctic, the Bo experiment has the lower standard deviation at 300 hPa. For all other
pressure levels, the α -Bh experiment performs better.

These results for specific humidity are opposite to the ones obtained when the first-guesses are compared
to the ATMS instrument (Fig. C.10, page 41), for which the channels 18 to 22 are sensitive to tropospheric
humidity. For these channels, the Bo experiment improves the standard deviation by up to 4 % when
compared to the Bs experiment, and for all regions. In the meantime, the α -Bh experiment improves
the standard deviation by just 1 %. A similar signal is also found for the infrared instruments on board
geostationary satellites.

The last statistics we examine in more details is the standard deviation of the first-guess departure with
respect to the wind speed. Globally, the α -Bh experiment has the lowest value of standard deviation for
all pressure levels, but with a difference less than 1 % compared to the Bs experiment (Fig. C.5, page 39).
The Bo experiment is marginally better than the Bs experiment. Again, the largest improvement comes
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from the α -Bh experiment in the polar regions with values of the standard deviation reduced by 1.5 %
to 2 % compared to the Bs experiment. The improvement comes from both components of wind, but it is
sightly stronger for the u component of wind.

4.2.4 Forecast

To assess the quality of the forecast from each experiment, we have computed the classic IFS scorecard
used at ECMWF. If the reader is not familiar with the scorecard, they could find a detailed description
in the ECMWF Newsletter No. 160 (Summer 2019) where IFS Cycle 46r1 is compared against IFS
Cycle 45r1. The scores are based on the anomaly correlation (or cca f ) and root mean square (or rmse f )
of the forecast error. The forecast error is computed as the difference between the forecast field and
here the analysis field from the same experiment (“own analysis”) and valid for the same time as the
forecast. The forecast error is also computed as the difference between the forecast field interpolated at
the radiosondes locations and the radiosondes measurements.

We also computed the forecast error using the analysis field from operation. Since the resolution of the
operational analysis is much higher than the one used for our experiments (TCo 1279 versus TCo 399),
the operational analysis can be seen as the best available global estimate of the true state of the atmo-
sphere. We found that using the operational analysis was providing the same information on the forecast
error as the information provided by the observations. For that reason, we do not to show the results
obtained with the operational analysis.

The scores depict if the forecast error is larger or lower for an experiment A compared to the forecast
error of an experiment B. We will simplify the discussion hereafter by assuming that a forecast from
experiment A is better than a forecast from experiment B, if the cca f (or rmse f ) is larger (or smaller) for
the forecast error of experiment A compared to the forecast error of experiment B. In that case, it would
be a blue triangle in the scorecard (if the result is statistically significant). The opposite would lead to a
red triangle facing down (if the result is statistically significant).

Verification against own analysis

Figure 13 presents the scorecard of the α -Bh experiment versus the Bs experiment. The forecast verifi-
cation against own analysis shows that for almost all parameters and all levels, the α -Bh experiment is
better in the first 3 to 5 days. In the tropics, the scores are better for all forecast range. Elsewhere, the
α -Bh experiment is neutral to worse from day 7 to 10, but with a lower statistical significance.

For the short-range forecast, the general improvement from the α -Bh experiment has two exceptions.
The first one is for the temperature at 850 hPa in the southern hemisphere up to day 1. This increase
in root mean square error is located mainly on the edges of the polar front and subpolar belt, sightly
north of 60◦S in a region with a lot of activity and strong gradients. This increase is not present when
the forecast is compared against the operational analysis. This indicates that the diagnostic is affected
by residual correlations between the forecast error and the analysis error and does not represent the true
forecast error. The second exception is for the relative humidity up to day 1. This affects both the
southern hemisphere and the northern hemisphere and affects the whole troposphere (not shown). The
comparison against the operational analysis does not present any significant degradation there. This,
again, could be linked to remaining correlations between the forecast error and the analysis error.

For the Bo experiment, the comprehensive interpretation of the results from the verification of the forecast
against analysis (and against observation too, Fig. 14) is not the focus of this memo. Instead, we just
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Figure 13: Scorecard of the α -Bh experiment against the Bs experiment. There are
two columns per region: (left): anomaly correlation or ccaf and (right) root mean
square error or rmsef of forecast error. The top part of the table is the comparison
against own analysis while the bottom part is the comparison against observation. A
blue triangle pointing up means the α -Bh experiment is better while a red triangle
means the α -Bh experiment is worse. The more intense the color the more significant
the statistics. See IFS documentation for more details.

28 Technical Memorandum No. 856



A new hybrid formulation for the background error covariance: evaluation

Figure 14: Same as Fig. 13 but for the scorecard of the Bo experiment against the Bs

experiment.
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Figure 15: Same as Fig. 13 but for the scorecard of the α -Bh experiment against the
Bo experiment.
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focus on some particular results highlighting the differences with the α -Bh experiment. For that purpose,
we also present the scorecard of the α -Bh experiment against the Bo experiment (Fig. 15).

After day 3 to 5, the Bo experiment produces a better forecast (against own analysis) that the α -Bh ex-
periment in the northern hemisphere for almost all model variables, and a worse forecast in the southern
hemisphere and in the tropics. In the polar regions, the Bo experiment seems to provide a better forecast
in the Arctic but worse in the Antarctic. There are few exceptions to this general behaviour. The first
one comes from the relative humidity at 250 hPa with a better forecast from the Bo experiment for all
regions but the tropics. Both experiments nonetheless perform better than the Bs experiment, except for
the Bo experiment in the tropics. There, the α -Bh experiment produces the best forecast overall, but for
temperature at 850 hPa where the Bo experiment performs the best.

Verification against observations

When compared to observations, the forecast from the α -Bh experiment is essentially better than the one
from the Bs experiment only up to day 3 to 5 for all atmospheric variables. For the surface parameters,
the α -Bh experiment is better only in the southern hemisphere and significantly worse for the 2 m dew-
point and 2 m temperature in the tropics. For the longer range forecast, there are few significant changes
in the forecast skill. The two particular cases are the wind in the southern hemisphere where the forecast
from the α -Bh experiment is better for all levels but for the 10 m wind. The 10 m wind forecast is also
significantly worse in the Antarctic.

A significant degradation could be noticed for the geopotential at 100 hPa in the α -Bh forecast for both
hemispheres. This is unexpected since the hybrid formulation of the background error stops just above
the tropopause and, above, the formulation is the same as for the Bs experiment. This could come from
some tropospheric-stratospheric exchanges or due to a change in the surface pressure. This will have to
be further investigated in the future.

When the forecast error of the α -Bh experiment against observations is compared to the one of the Bo

experiment, we have a similar picture as when the forecast error is assessed using the own analysis. The
forecast for the first few days is generally better for the α -Bh experiment and, later on, the forecast from
the Bs experiment becomes better. The wind forecast in the southern hemisphere and in the tropics is the
exception from this behaviour and is better for the α -Bh experiment for the whole forecast range and for
all levels. The relative humidity forecast at 250 hPa is also better for the α -Bh experiment for the whole
forecast range. The 2 m dew-point and 2 m temperature forecasts from the Bo experiment are better for
all forecast range.

4.2.5 Interaction with VarBC

The change in the analysis between the experiments also depends on the change in the observations
usage for each experiment. We already explained that the observations used in the assimilation analysis
are first selected using a screening based on the first-guess state. The used observations thus differ
from one experiment to the other. Then, each experiment could also make a different usage of certain
observations that are bias-corrected. The bias-correction of these observations is indeed analysed within
the 4D-Var, together with the initial state, and may differ between the experiments.

Over the period we analysed, there is no significant change in the bias correction provided by the α -Bh

experiment and the one provided by the Bs experiment. For example, the difference between the bias
correction for the AMSU-A instrument is always lower than 0.01 K, with the maximum values found
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for the channels 5 to 7, channels sensitive to the tropospheric temperature. On the other hand, the
difference of the bias correction between the Bo experiment and the Bs experiment for the same the
AMSU-A instrument could reach 0.07 K, with the maximum values found for the channels sensitive to
the stratosphere.

5 Conclusion

A new hybrid formulation for the background errors was proposed in Massart (2018) and tested in simple
configurations. The purpose of the present work was to evaluate this new B-formulation against a static
B-formulation and against the current B-formulation in a more realistic configuration. The comparison
against the static formulation aims at assessing the impact of flow-dependent background errors. The
comparison against current formulation aims at assessing if the new formulation could complement the
current one and help improving the forecast scores.

Before performing the evaluation of the new hybrid formulation, this formulation had to be adapted to
the current implementation of ECMWF 4D-Var. The analysis is indeed the result of an incremental
4D-Var that successively minimises linear versions of the cost function. The resolution of the linear
version of the model used in the analysis increases with each outer loop. We demonstrated that the
new hybrid formulation can be used together with an incremental 4D-Var, but one has to consider the
change of resolution between outer loops. The change of resolution means that the fields derived from
the ensemble of data assimilation (EDA) and used in the new hybrid formulation have to be interpolated
at the inner loop resolution for each outer loop. This also means that the localisation length-scale should
be adapted to the inner loop resolution.

We assessed the impact of a resolution-dependent localisation length-scale on the analysis. We demon-
strated that this influences the analysis result compared to a constant localisation length-scale. At this
stage, we are not able to conclude if having resolution-dependent localisation length-scale is beneficial
or not. Our formulation of the localisation is currently simple with a constant value in space for the
length-scale. We plan to develop a spatially and time-varying localisation formulation in the near future
and, then, we will reassess the benefits of a resolution-dependent localisation length-scale.

We compared three experiments to evaluate the new hybrid formulation. The first experiment is based on
the current formulation of the background errors and referred to as Bo. The second experiment is based
on the new hybrid formulation and uses the forecast fields from the same EDA as the one indirectly
used in the Bo experiment in order to have a fair comparison. This second experiment is referred to as
α -Bh. It is using an hybrid weight of 50 % and the static part was built as follows. The variances of the
static background errors are the average of the variances of the Bo experiment over the period of interest.
The correlations are the climatological ones used in the Bo experiment too. We finally designed the last
experiment as the one using the static background errors and referred to it as Bs. This means that, on
average, the three experiments have the same background error variances.

We compared the three experiments over a winter season, from November 2107 to February 2018
(4 months). The main difference is that the α -Bh analysis seems less able to correct errors in the
large and medium scales probably due to an effective background error covariance that is reduced by
the localisation process. The α -Bh analysis is smoother than the other ones, despite having more energy
in the scales above wavenumber around 100. This is mainly the case for divergence (and to a lesser ex-
tend relative humidity) where the α -Bh analysis has less energy in the large to medium scales, up to the
wavenumber around 100. In the meantime, the Bo analysis has more energy in these scales and is more
active. We believe that lower effective covariance and the resulting smoothness of the α -Bh experiment
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explains why it converged faster than the two other experiments and why it has a lower condition number.

The first-guess derived from the α -Bh analysis is on average closer to the observations than the one
derived from the two other experiments, by 0.5 % compared to Bs and by 1.3 % compared to Bo. This is
true for all observation types except for the satellite sounding data for which the Bo experiment performs
better. For the satellite, the main difference is for the ATMS instrument for which the Bo first-guess is
closer to the observations by an average of 3.3 % compared to α -Bh first-guess. This could be one of the
reasons behind the difference behaviour between the experiment for the medium-range forecast.

When compared to their own analysis, the forecast from the α -Bh experiment is indeed better than
the forecast from the other experiments, but only up to day 3 to 5. Then the forecast from the Bo

experiment tends to be the best. There are few exceptions though also highlighted by the comparison
with observations. For all forecast range, the α -Bh experiment does produce the worse forecast for
the surface parameters (2 m dew-point and 2 m temperature and to a lesser extent 10 m wind), but for
the southern hemisphere. The wind forecast is better for all forecast range in the southern hemisphere
and tropics when it is derived from the α -Bh experiment. The relative humidity forecast from α -Bh

experiment is also in general the best.

The effective background error covariance and therefore the smoothness of the α -Bh analysis are very
much dependent of the localisation length-scale. A smaller localisation length-scale may decrease the
effective covariance and prevent the analysis to fit the spatial variability present in the observations
and thus may provide a smoother analysis. A larger location length-scale may increase the effective
covariance and allow the analysis to have more spatial variability as the analysis would fit better the
observations. By influencing the distribution of the energy of the increments in the spectral space, the
localisation length-scale consequently influences the forecast. For all these reasons, we will pay more
attention in the future to our formulation for the localisation. In particular, we will investigate the benefits
of having a space-dependent localisation length-scale and then a time-dependent one by updating it at
every assimilation cycle. This work will be carried on together with moving toward using perturbations
derived from the currently operational 50 members EDA.

The smoothness of the α -Bh analysis can also be a consequence of the implementation choices of the
α -Bh formulation. Indeed, the increments of the model variables derived from the ensemble-based part
of the background error covariances are intimately linked together through the α variables. This reduces
the degree of freedom for each variable. We should assess in the future the cost and benefits of having
different α variables for each model variable. Moreover, the α variables are supposed to be valid for all
model levels in the troposphere. This also reduces the degree of freedom of the analysis. On the other
hand, this seems not to be an issue as there is no clear difference in behaviour on the vertical for the
α -Bh analysis when compared to the Bs analysis.

Finally, the forecast of the surface parameters are mostly worse for the α -Bh experiment. The diagnostics
for the localisation length-scale suggest that the length-scale may differ significantly between the lowest
model levels and the mid-troposphere. It may be necessary, in the future, to restrict the new hybrid
formulation to the free troposphere and, eventually, to have a decoupled hybrid formulation for the
planetary boundary layer.
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Appendix A Building a climatology of the background errors

In the IFS, the background error covariance matrix is decomposed into three main operators that can be
applied sequentially: the background error correlations of the unbalanced variables (C), the background
error standard deviation (Σb) and the balance operator K,

B = KSJ Σ
b CΣ

bT ST
J KT . (17)

The operation SJ performs the spectral transform at the highest wavenumber NJ for the variables of the
unbalanced control vector that are in spectral space.

In the new hybrid formulation for the background errors, it is expected to combined the ensemble-based
covariance matrix Be with a static covariance matrix Bs (see Massart (2018) for more details). In order
to have consistent background errors for all the experiments presented in this document (see Sec. 4), we
decided to build the static covariance matrix Bs as the average of the flow dependent ensemble-based
background errors over the experimental period (1 November 2017 to 1 March 2018). Let us assume that
we have K assimilation cycles of 12 h during this period and that for each cycle k we have computed the
flow-dependent standard deviation of the background error Σb

k . Then we computed the static background
error standard deviation Σs as the square-root of the mean variance over the K assimilation cycles,

Σ
s =

√
1
K

K

∑
k=1

Σb
k

2
. (18)

For the background error correlation matrix, we just used the climatological correlation matrix Cs used to
compute the flow-dependent correlation matrix for each cycle. We did not average the statistical balance
operator, so the static background error covariance matrix take the form

Bs = KSJ Σ
s Cs

Σ
sT ST

J KT . (19)

There was an additional step to consider. The background error standard deviation Σb
k is computed at a

given resolution and a scaling factor α is apply to compensate for the difference in resolution between
Σb

k and the resolutions of the inner loops. The scaling factor α varies with time and is different for all
atmospheric model variables and all levels. It is based in the mean standard deviation per level and per
variable. We then computed the mean standard deviation profile per variable over the K assimilation
cycles following the same formula as used in Eq. (18).

(a) TL95 (b) TL159 (c) TL255

Figure A.1: Example of mean profile of background error standard deviation for tem-
perature (in K) and for 3 resolutions: (a) TL95, (b) TL159, (c) TL255. The values are
obtained from an average over the period 1 November 2017 to 1 March 2018 and the
shade area represents the variability (one standard deviation) during this period.
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Appendix B Change in analysis mean fields

B.1 Zonal mean

(a) U component of wind – α -Bh - Bs (b) V component of wind – α -Bh - Bs

(c) U component of wind – Bo - Bs (d) V component of wind – Bo - Bs

Figure B.1: Change in mean field in u (left) and v (right) component of wind (in m.s−1)
at initial time between the α -Bh and the Bs experiments (top) and between the Bo and
the Bs experiments (bottom). The grey areas indicate a non statistically significant
change.

(a) Temperature – α -Bh - Bs (b) Relative humidity – α -Bh - Bs

(c) Temperature – Bo - Bs (d) Relative humidity – Bo - Bs

Figure B.2: Same as Fig. B.1 but for temperature (left, in k) and relative humidity
(right, in %).
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B.2 Mean spectra

(a) Divergence (b) Vorticity

(c) Temperature (d) Relative humidity

Figure B.3: Spectra of the normalised mean difference (in %) between the analysis of
the α -Bh experiment and the one from the Bs experiment as a function of pressure.
The mean is computed over the month of November 2017. The difference is normalised
by the mean spectra of the Bs experiment.

(a) Divergence (b) Vorticity

(c) Temperature (d) Relative humidity

Figure B.4: Same as Fig. B.3, but for the difference between the Bo and the Bs exper-
iments.
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Appendix C Statistics of the experiments against observations

C.1 Analysis

C.1.1 Wind related observations

(a) Antarctic (b) South. Hemis. (c) Tropics (d) North. Hemis. (e) Arctic

Figure C.1: Normalised standard deviation (in %) of the AMV analysis departure as
a function of pressure level and by region, and for all three experiments: (red) Bs,
(blue) α -Bh, (orange) Bo. The normalisation is with respect to the Bs experiment.
The error-bars represent the variability of each value.

C.1.2 Temperature related observations

(a) Antarctic (b) South. Hemis. (c) Tropics (d) North. Hemis. (e) Arctic

Figure C.2: Same as Fig. C.1 but for the standard deviation of the analysis departure
with respect to temperature measurements from radiosondes.

(a) South. Hemis. (b) Tropics (c) North. Hemis.

Figure C.3: Same as Fig. C.1 but for the standard deviation of the analysis departure
with respect to temperature measurements from aircraft data.
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C.1.3 Humidity related observations

(a) Antarctic (b) SH (c) Tropics (d) NH (e) Arctic

Figure C.4: Same as Fig. C.1 but for the standard deviation of the analysis departure
with respect to specific humidity measurements from aircraft data.

C.2 First-guess

C.2.1 Wind related observations

(a) Antarctic (b) South. Hemis. (c) Tropics (d) North. Hemis. (e) Arctic

Figure C.5: Normalised standard deviation (in %) of the wind speed first-guess de-
parture compared to radisondes, as a function of pressure level and by region, and
for all three experiments. The normalisation is with respect to the Bs experiment. The
error-bars represent the variability of each value.
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C.2.2 Temperature related observations

(a) South. Hemis. (b) Tropics (c) North. Hemis.

Figure C.6: Same as Fig. C.5 but for the standard deviation of the first-guess departure
with respect to specific GPS-RO measurements.

(a) Antarctic (b) South. Hemis. (c) Tropics (d) North. Hemis. (e) Arctic

Figure C.7: Same as Fig. C.5 but for the standard deviation of the first-guess departure
with respect to temperature measurements from radiosondes.

C.2.3 Humidity related observations

(a) Antarctic (b) South. Hemis. (c) Tropics (d) North. Hemis. (e) Arctic

Figure C.8: Same as Fig. C.5 but for the standard deviation of the first-guess departure
with respect to specific humidity measurements from aircraft data.

C.2.4 Satellite related observations
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(a) South. Hemis. (b) Tropics (c) North. Hemis.

Figure C.9: Same as Fig. C.5 but for the standard deviation of the first-guess departure
with respect to CRIS measurements.

(a) South. Hemis. (b) Tropics (c) North. Hemis.

Figure C.10: Same as Fig. C.5 but for the standard deviation of the first-guess depar-
ture with respect to ATMS measurements.

(a) South. Hemis. (b) Tropics (c) North. Hemis.

Figure C.11: Same as Fig. C.5 but for the standard deviation of the first-guess depar-
ture with respect to AMSUA measurements.
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