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Background

® Clouds play an important role in weather and climate
®* Precipitation
* Cloud-aerosol-radiation interactions

® Uncertainties on clouds are large

® Cloud and climate change: clouds radiative effect enhance
global warming by 0%-100% (large uncertainty).

* Lidar are widely used to detect clouds

* Simulation of lidar signals from clouds would help
understand the cloud properties, and improve the lidar
retrieval algorithms.



Simulation processes

®1. Calculate single scattering properties.

* 2. Simulate the lidar signals from clouds
with Monte Carlo radiative transfer model,

(Why is a RTM needed? Multiple scattering.)

* 3. Compare with observations, and analyze
the optical properties of ice clouds.
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Single scattering properties

Single scattering properties are especially important for
lidar signals, especially for backscattering properties.

* 1. Shape of cloud particles
* 2. Orientation of cloud particles
* 3. Calculation with scattering models



Shape of cloud particles

* Water cloud droplets: spheres

* Note: very larger ones might be considered as spheroids
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Orientation of ice cloud particles

® Most radiative transfer models & "
assume cloud particles are all ) 0 v
randomly oriented.
@ ®)

®* However, plates and columns
might be horizontally oriented
when they fall in fluid (air).




A simple experiment:
orientation of a column falling in fluid




A simple experiment:
orientation of a plate falling in fluid




Sundog: Horizontally oriented particles

Tangent arc:

Oriented columns

Sundog:

riented plates



Single scattering properties of ice cloud particles

* 1. Spherical water cloud droplets
Lorenz-Mie theory
* 2. Randomly oriented particles (including 6 habits)
IGOM (Yang et al. 2005)
Phase function P=P(0,)
* 3. Horizontally oriented plates and columns
PGOH (Bi et al. 2011)
Phase matrix P=P(6, o, 6., ¢.)



Monte Carlo radiative transfer model

Simulate N photon packages (N=200 million) , and then
calculate their contribution to lidar returns.
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Simulation: CALIPSO - CALIOP

* Wavelength:
1064nm

°* Time: 2006t

° Altitude: ~700km

532nm;

°* FOV: 130prad
® Diameter: Tm

= _ /N
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* Off-nadir ang
* Horizontal

e: 0.3°/3°

resolution:333m
® Vertical resolution: 30m
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Simulated variables

* Attenuated backscatter
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Probability density function of opaque clouds
Off-nadir angle: 0.3 degree
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Probability density function of opaque clouds
Off-nadir angle: 0.3 degree
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Why does the “tail” disappear when the off-
nadir angle changes from 0.3 to 3 degrees?
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Simulation results: Ice clouds
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Comparison of simulations with observations
(off-nadir=0.3)
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Simulation results

* Horizontally oriented ice cloud particles:
Consistent very well with observations
®* Randomly oriented particles:

The simulated backscatter is systematically lower than
observations. (underestimated by ~40%)

Why is there an underestimation?



Problem with the Geometric methods?

Geometric method simulate a backscatter much less than accurate
models based on Maxwell’s equations. A process might be missing.
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A backscattering peak for ice crystals?

Liu et al. (2013)
Rough ice crystals
Blue: Rigid Method

Peak exist
Red/green: Geometric method
Peak not exist
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Observations: Backscattering peak exist

—— PSTD rough hexagons

PSTD irregular hexagons

e PN (Jourdan et al. 2010)

e PN (Barkey and Liou 2002)

(O Ground Lidar (Chen et al. 2002)

) CALIPSO (Josset et al. 2012)

Why is there a
peak?
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The backscattering peak width is
Inversely proportional to the size parameter.
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Coherent backscatter enhancement

Interference between conjugate terms representing reversible
sequences of elementary scatterers is constructive at the backscattering
direction, resulting in a coherent backscatter enhancement.
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By adjusting the IGOM simulated phase function with
the coherent backscatter theory, we are now able to
simulate the observed backscatter for randomly oriented

particles well.
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Conclusions

* 1. The lidar signals of ice cloud particles can be well
simulated with a Monte Carlo radiative transfer model.

* 2. Horizontally oriented ice cloud particles exist in over
60% of thick ice/mixed-phase clouds. The equivalent
fraction of reqular horizontally oriented plates is only
0.2%, but the actual percentage can be much more.

* 3. There is a backscattering
phase function of randomly
packscattering peak is large

neak associated with the
oriented ice particles. The

y induced by coherent

packscatter enhancement in single scattering.



Discussion: Fast RTM for lidar simulations

Monte Carlo radiative transfer model is expensive:

® CPU time: 5 min for 1 case with pure randomly
oriented particles. 50 min for 1 case with
oriented particles.

* Storage: the phase matrix for a specific oriented
particle is 10 GB. P=P(6,, ¢, 6., ¢.)

\ We may want a fast RTM for lidar




Discussion: How to build a fast RTM for lidar?

* 1. Plane parallel models (i. e., adding-doubling) could
not be used. None-uniform incident beam.

® 2. Monte Carlo is too slow.

* 3. Simple lidar equations requires predetermined
parameters to account for multiple scattering.

Proposed solution:

®* Combine the Monte Carlo results, and simple lidar
equations.



Discussion: Proposed fast RTM for lidar

* 1. Simulate the lidar signals of various clouds and
aerosols with the Monte Carlo radiative transfer model,
and build a database.

* 2. Retrieve statistical relationships between multiple
scattering coefficient, depolarization, FOV, extinction
coefficient, and particle type (including orientation)
with the database.

* 3. For a specific volume, calculate the multiple
scattering coefficient and depolarization from the
above statistical relationship, and insert to the
traditional lidar equation.




