

Aerospace Information Research Institute(AIR) Chinese Academy of Sciences(CAS)

Aerosol polarization radiative transfer simulation and retrieval for DPC/GF-5

Zhengqiang Li*, Yisong Xie, Weizhen Hou

*E-mail: lizq@radi.ac.cn

May 1, 2019

Outline

- 1. Polarimetric satellite remote sensing
- 2. Inversion framework for DPC/GF-5
- 3. Aerosol retrieval & preliminary validation

Dubovik, O. & Li, Z., et al. (2019), Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives, *JQSRT*, 224, 474-511

Airborne instruments for polarimetric RS

AirHARP, UMBC/USA

Airborne DPC, China

SMAC, China

Dubovik, O. & Li, Z., et al. (2019), Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives, *JQSRT*, 224, 474-511

GF-5 satellite

	Sensor Full Name					
	AHSI	Advanced Hyperspectral Imager				
	VIMS	Visual and Infrared Multispectral Sensor				
	AIUS	Atmospheric Infrared Ultra- spectral Sensor				
	EMI	Environment Monitoring Instrument				
	GMI	Greenhouse-gases Monitoring Instrument				
	DPC	Directional Polarization Camera				

Li, Z., et al. (2018), Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation, *JQSRT*, 218, 21437v.aircas.ac.cn

GF-5 satellite

May 9, 2018, 02:28, Taiyuan

Directional Polarimetric Camera (DPC)

Optical head of DPC/GF-5

Band & polarization configuration

Li, Z., et al. (2018), Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation, *JQSRT*, 218, 21-37v.aircas.ac.cn

Directional Polarimetric Camera (DPC)

Parameter	Value	Parameter	Value	
Instrument FOV	$\pm 50^{\circ}$	Polarized angle	0°, 60°, 120°	
Spatial res. (km)	3.3	Stokes	I, Q, U	
Swath width (km)	1850	Rad. Cal. Error	≤ 5%	
Multi-angle	≥ 9	Pol. Cal. Error	≤ 0.02	
Image pixels	512×512	Band width	20, 20, 20, 20, 10, 40, 40, 20 nm	
Spectral band	443, 490(P), 565, 670(P), 763,765, 865(P), 910 nm (P for polarization)			

✓ The DPC is the first Chinese multi-angle polarized earth observation satellite sensor, which is the type of POLDER polarimetric imager www.aircas.ac.cn

Intensity and polarization measurements

MODIS_2018-06-12-05:30 (Intensity) DPC_2018-06-12-04:40 (Intensity)

DPC_2018-06-12-04:40 (Polarization)

MODIS

DPC/GF-5

Outline

- 1. Polarimetric satellite remote sensing
- 2. Inversion framework for DPC/GF-5
- 3. Aerosol retrieval & preliminary validation

 By taking the measurements with 9 viewing angles as an example, the multi-angle observation principle and the description of measurement dataset of DPC are described.

y: Observation vector

x: State vector (unknowns, aerosol & surface parameters to be retrieved)

 $\mathbf{x} \in \left[V_0^{\mathrm{f}}, V_0^{\mathrm{c}}, f(\lambda), k_1, k_2, C, r_{\mathrm{eff}}^{\mathrm{f}}, v_{\mathrm{eff}}^{\mathrm{f}}, r_{\mathrm{eff}}^{\mathrm{c}}, v_{\mathrm{eff}}^{\mathrm{c}}, m_{\mathrm{r}}^{\mathrm{f}}(\lambda), m_{\mathrm{i}}^{\mathrm{f}}(\lambda), m_{\mathrm{r}}^{\mathrm{c}}(\lambda), m_{\mathrm{i}}^{\mathrm{c}}(\lambda)\right]^T$

Case of DPC/GF-5: No. of bands (λ) is 5 \longrightarrow No. of *x* elements is 34!

 $\mathbf{y} = \mathbf{F}(\mathbf{x}) + \boldsymbol{\epsilon}$

So many unknowns to be retrieved!

If number of y elements < that of x: ill-conditioning problem

Radiative transfer simulation

www.unl-vrtm.org

UNL-VRTM Features Unified Linearized Vector Radiative Transfer Model

 $\mathbf{S} = \begin{bmatrix} I \\ Q \\ U \\ V \end{bmatrix}$

Vector RTM for simulation of light intensity and polarization

Accurate UV-to-IR (0.2 -40 micron) hyperspectral RTM

Online analytical Jacobian of Stokes to particle, gas, and surface properties

Information content analysis for future satellite sensors

Flexible and easy-to-read modular Fortran programing

Complementary Python utility package, pyunlvrtm

(Wang et al., JQSRT, 2015; Xu & Wang, JGR, 2015)

Inversion framework

Forward model (Rodgers, 2000):

State vector(retrieval parameters):

$$y = F(x) + \varepsilon$$

Aerosol volume Improve BRDF BPDF parameter concentration parameter \downarrow $\mathbf{x} = \begin{bmatrix} V_0^{\text{f}}, V_0^{\text{c}}, f(\lambda_1), \cdots, f(\lambda_5), k_1, k_2, C \end{bmatrix}^T$

★ Aerosol model (a priori): $\mathbf{b} = \begin{bmatrix} r_{eff}^{f}, v_{eff}^{f}, r_{eff}^{c}, v_{eff}^{c}, m_{r}^{f}(\lambda), m_{i}^{f}(\lambda), m_{r}^{c}(\lambda), m_{i}^{c}(\lambda) \end{bmatrix}^{T}$ Size distribution for fine & coarse
Fine & coarse

Cost function (optimized):

$$J(\mathbf{x}) = \frac{1}{2} [\mathbf{y} - \mathbf{F}(\mathbf{x})]^T \mathbf{S}_{\epsilon}^{-1} [\mathbf{y} - \mathbf{F}(\mathbf{x})] + \frac{1}{2} (\mathbf{x} - \mathbf{x}_a)^T \mathbf{S}_a^{-1} (\mathbf{x} - \mathbf{x}_a)$$

♦ Gradient vector (iteration): Jacobians by UNL-VRTM $\nabla_{\mathbf{x}} J(\mathbf{x}) = -\mathbf{K}^T \mathbf{S}_{\epsilon}^{-1} [\mathbf{y} - \mathbf{F}(\mathbf{x})] + \mathbf{S}_{a}^{-1} (\mathbf{x} - \mathbf{x}_{a}), \ \mathbf{K}_{j,i} = \frac{\partial y_j}{\partial x_i}, \ (i = 1, \dots, i; j = 1, \cdot^{15}, m)$ www.aircas.ac.cn

 \mathbf{D}

Surface reflectance matrix (Dubovik et al., 2011):

Improved BRDF model (Litvinov et al., 2011):

$$r_{\lambda}(\mu_{0}, \mu_{\nu}, \phi) = f(\lambda) [1 + k_{1} f_{\text{geom}}(\mu_{0}, \mu_{\nu}, \phi) + k_{2} f_{\text{vol}}(\mu_{0}, \mu_{\nu}, \phi)]$$

✤ BPDF model (Maignan et al., 2009):

$$R_p^{s}(\theta_0, \theta_v, \varphi) = \rho_{\text{Maignan}} F_p(\gamma, n_i) = \frac{C \exp[\tan(\gamma)] \exp(NDVI)}{\cos(\theta_0) + \cos(\theta_v)} F_p(\gamma, n_i)$$

Spectral aerosol optical depth (AOD):

$$\tau_{\rm a}(\lambda) = \tau_{\rm a}^{\rm f}(\lambda) + \tau_{\rm a}^{\rm c}(\lambda) = \frac{3V_0^{\rm f}}{4r_{\rm eff}^{\rm f}}Q_{\rm ext}^{\rm f}(\lambda) + \frac{3V_0^{\rm c}}{4r_{\rm eff}^{\rm c}}Q_{\rm ext}^{\rm c}(\lambda)$$

***** Angstrom exponent (α)

$$\alpha = \ln \frac{\tau_{a}(\lambda_{p})}{\tau_{a}(\lambda_{q})} / \ln \frac{\lambda_{q}}{\lambda_{p}}$$

***** Fine-mode fraction (FMF):

$$FMF(\lambda) = \tau_a^f(\lambda) / \tau_a(\lambda)$$

Multi-viewing observation geometries for forward simulations

✓ 4 multi-viewing observation geometries are considered with the combinations of different solar zenith angles (θ_0), viewing zenith angles (θ_v) and relative azimuth angles (ϕ) to represent the typical observations in different location.

✓ Based on climatology analyses of Sun-sky radiometer observation network (SONET) measurements, for the polluted and dust aerosols, we assume that these 2 aerosol cases are mixed with different relative percentage between the fine and coarse modes (Li et al., BAMS, 2018).

Kernel-driven Ross-Li BRDF model:

$$r_{\lambda}(\mu_0, \mu_{\nu}, \phi) = f_{\rm iso}(\lambda) + k_1(\lambda)f_{\rm geom}(\mu_0, \mu_{\nu}, \phi) + k_2(\lambda)f_{\rm vol}(\mu_0, \mu_{\nu}, \phi)$$

Improved BRDF model:

$$r_{\lambda}(\mu_{0}, \mu_{\nu}, \phi) = f(\lambda) [1 + k_{1} f_{\text{geom}}(\mu_{0}, \mu_{\nu}, \phi) + k_{2} f_{\text{vol}}(\mu_{0}, \mu_{\nu}, \phi)]$$

www.aircas.ac.cn

Surface BPDF for simulations

$$R_p^s(\mu_0, \mu_v, \varphi) = \rho_{\text{Maignan}} \mathbf{F}_{1,2}(\gamma, n_i)$$

$$\rho_{\text{Maignan}} = \frac{C \exp(\tan \gamma) \exp(\text{NDVI})}{4(\mu_0 + \mu_v)}$$

 ✓ The surface-polarized reflectance is regarded as independent on the wavelength. Simulated TOA reflectance of DPC

The simulations are for polluted case with AOD = 0.6 at 550nm.

Li, Z., et al. (2018), Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation, *JQSRT*, 218, 21-37w.aircas.ac²²cn

Simulated TOA polarized reflectance of DPC

The simulations are for polluted case with AOD = 0.6 at 550nm.

Li, Z., et al. (2018), Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation, *JQSRT*, 218, 21-37w.aircas.ac²³cn

To test the retrieval capability from DPC, we introduce the averaging kernel matrix:

$$\mathbf{A} = (\mathbf{K}^T \mathbf{S}_{\epsilon}^{-1} \mathbf{K} + \mathbf{S}_{a}^{-1})^{-1} \mathbf{K}^T \mathbf{S}_{\epsilon}^{-1} \mathbf{K}$$

- The trace of A is equivalent to the number of independent pieces of information from the TOA measurements, also called the degree of freedom for signal (DFS).
- ✓ As long as the DFS result $A_{i,i} > 0.5$, we assume that the retrieval of parameter x_i could be carried out.

 $+ \frac{k_2 f_{\text{vol}}(\mu_0, \mu_v, \phi)}{k_2 f_{\text{vol}}(\mu_0, \mu_v, \phi)} \text{ www.aircas.ac.cn}$

Retrieval capability for typical cases

✓ For the 2 realistic aerosol types (polluted and dust), the retrieval performances are all quite good in most cases.

Retrieval capability for aerosol spectral optical properties

Equivalent DFS of $\tau_a(\lambda)$	Vegetation	Bare Soil
Fine case	0.99	0.98
Coarse case	0.91	0.88
Polluted case	0.87	0.84
Dust case	0.91	0.89

- ✓ Over various surface types, the spectral aerosol parameters $\tau_a(\lambda)$ can be well determined (Li et al., JQSRT, 2018).
- ✓ The pure fine particles cases can be perfectly determined, while DFS of the pure coarse particle cases are relatively lower.
 28 www.aircas.a²⁸

Outline

- 1. Polarimetric satellite remote sensing
- 2. Inversion framework for DPC/GF-5
- 3. Aerosol retrieval & preliminary validation

Intensity data at 490, 565, 670 nm

Polarimetric data at 490, 670, 865 nm

First global map of fine-mode AOD (AODf) retrieved from DPC/GF-5

Comparison of AODf from DPC and POLDER in Beijing

3.3km of DPC in Nov. 2018

18.5km of POLDER in Nov. 2011

 Comparison of AODf from DPC and POLDER in China, India and Africa

The polarized Sun-sky radiometer network (SONET)

SONET instrument parameters and sites

TABLE I. Wavelengths, bandwidths, and polarization of the sun-sky radiometer CE318-DP. FWHM = full width at half maximum.

Bands (nm)	340	380	440	500	675	870	936	1,020	I,640
FWHM (nm)	2	4	10	10	10	10	10	10	25
Polarization (yes/no)	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes

Climate	Site	Location	Alt (m)	Start time	Aerosol characteristics
Tranical	Sanya	18.3°N, 109.4°E	29	Aug 2014	Maritime + urban
iropical	Haikou	20.0°N, 110.3°E	22	Mar 2014	Maritime + urban
	Guangzhou	23.1°N, 113.4°E	28 Nov 2011		Maritime + urban/PRD region
	Zhoushan	29.9°N, 122.1°E	29	Jan 2012	Maritime + urban
	Shanghai	31.3°N, 121.5°E	84	Mar 2013	Maritime + urban/YRD region
T	Hefei	31.9°N, 117.2°E	36	Jan 2013	Urban/YRD region
lemperate	Nanjing	32.1°N, 119.0°E	52	Jan 2013	Urban/YRD region
	Chengdu	40.6°N, 104.0°E	510	May 2013	Urban (basin)
	Songshan	34.5°N, 113.1°E	475	Nov 2013	Urban + dust
	Xi'an	34.2°N, 108.9°E	389	May 2012	Urban + dust
Continental	Beijing	40.0°N, 116.3°E	59	Mar 2010	Urban/Beijing–Tianjin–Hebei region
Continental	Harbin	45.7°N, 126.6°E	223	May 2013Urban (basNov 2013Urban + duMay 2012Urban + duMar 2010Urban/Beijing–Tianjin–Dec 2013UrbanFeb 2012DustJul 2012Dust	Urban
	Minqin	38.8°N, 100.3°E	1 <mark>,</mark> 589	Feb 2012	Dust
David	Zhangye	38.6°N, 103.0°E	1,364	Jul 2012	Dust
Dry	Kashi	39.5°N, 75.9°E	1,320	Jun 2013	Dust
	Lhasa	29.6°N, 91.2°E	3,678	Sep 2013	Background

SONET data products

Products	Description	Unit
ΑΟD (λ)	Aerosol optical depth (340, 380, 440, 500, 675, 870, 1,020, and 1,640 nm)	_
AE	Ångström exponent (440–870 nm)	
FMF	Fine-mode fraction of aerosol optical depth (500 nm)	_
SSA (λ)	Single-scattering albedo (440, 675, 870, and 1,020 nm)	_
$F_{\mu}(\lambda)$	Scattering phase function (440, 675, 870, and 1,020 nm)	_
$-F_{12}(\lambda)$	Polarization phase function (440, 675, 870, and 1,020 nm)	
g (λ)	Asymmetry factor (440, 675, 870, and 1,020 nm)	_
S (λ)	Lidar ratio (440, 675, 870, and 1,020 nm)	
dV/dlnr	VPSD with 22 bins for radius from 0.05 to 15.0 μm	µm³ µm⁻²
n (λ)	Refractive index (real part) (440, 675, 870, and 1,020 nm)	_
k (λ)	Refractive index (imaginary part) (440, 675, 870, and 1,020 nm)	_
r _{eff}	Effective radius (total, fine, and coarse modes)	μm
V	Volume concentration (total, fine, and coarse modes)	µm³ µm⁻²
NS (%)	Percentage of nonspherical particles	_
RF	Shortwave aerosol radiative forcing (0.3–2.8 μ m) at TOA or BOA	W m ⁻²
RFE	Shortwave aerosol radiative forcing efficiency [i.e., RF normalized by AOD (550 nm)]	W m ⁻²
AW (%)	Percentage of mass concentration of water uptake of aerosols	—
FS (%)	Percentage of mass concentration of fine-mode scattering components (e.g., sulfate, nitrate and light non-absorbing organic matters)	—
CM (%)	Percentage of mass concentration of coarse-mode components (dust or sea salt)	_
BrC (%)	Percentage of mass concentration of brown carbon components	_
BC (%)	Percentage of mass concentration of black carbon components	_

Li, Z., et al. (2018), Comprehensive study of optical, physical, chemical and radiative properties of total columnar atmospheric aerosols over China: An overview of Sun-sky radiometer Observation NETwork (SONET) measurements, *BAMS*, *99*(4), *739–755* c.cn

Li, Z., et al. (2018), Comprehensive study of optical, physical, chemical and radiative properties of total columnar atmospheric aerosols over China: An overview of Sun-sky radiometer Observation NETwork (SONET) measurements, *BAMS*, *99*(4), 739–755 c.cn

$$\begin{split} N &= 215 \\ y &= 0.772 * x + 0.05 \\ R &= 0.908, RSE = 0.028, MAE = 0.009 \ \ \text{www.aircas.ac.cn} \end{split}$$

Thank you!

Aerospace Information Research Institute(AIR) Chinese Academy of Sciences(CAS)

