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MODIS 11μm thermal (window) channel, 1km resolution

images from NASA WorldView
180K 340K

MODIS 0.6μm / 0.8μm / 1.6μm solar channels, 250m / 250m / 500m resolution
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Compute reflectance look-up table (LUT) with discrete
ordinate method (DISORT) for all parameter combinations

  → effort for looking up reflectances: CPU-minutes
 

Problem: Table is huge! O(10GB)  not suitable for→
online operator, slow interpolation  → compress table to
20MB using truncated Fourier series  → CPU-seconds

Simplifications
- Simplified Equation:
  3D RT  1D RT (tilted independent columns)→
  Computational effort for a SEVIRI image of Germany:
  CPU-days (3D Monte Carlo)  → CPU-hours (1D DISORT)
 

- Simplified vertical structure:
  Cloud water and ice can be separated to form two  
  two homogeneous clouds at fixed heights without
  changing reflectance significantly
   → only 4 parameters (optical depth, particle size)
  + 3 angles, albedo  → 8 parameters per column

Reduction of computational effort

~

Strategy for fast radiative transfer method MFASIS
Method for Fast
Satellite Image

Synthesis
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Fit residuum
for Nk=Nl=3

O(10-3)

Look-up table compression in MFASIS
• Problem: R(θ,θ0,Φ-Φ0) contains a lot of rainbow-related small-scale features
• Solution: Consider R(θ,θ0,α) instead : smooth function for constant scattering angle α
   → approximate by 2D Fourier series, obtain Fourier coefficients by  fit to DISORT results

Fit function: where

reflectance

 R(θ,θ0,α)

We need to store only 18 coefficients Ckl, Skl instead of O(1000) reflectance values (for each
combination of the remaining 6 parameters)  → compression by a factor of ~O(100)



52019 International Workshop on Radiative Transfer Models for Satellite Data Assimilation

RMS absolute error

mean relative error

VIS006
VIS008

Accuracy and computational effort
Error of MFASIS (8 parameters/pixel) with
respect to DISORT (full profiles available)
(model data: COSMO-DE fcsts for 10-28 June 2012)

Relative error < SEVIRI calibration error
(~4%) for almost all pixels

Computational effort per column:
DISORT (16 streams): 2.3 x 10-2 CPUsec
MFASIS (21MB table): 2.5 x 10-6 CPUsec
(on Xeon E5-2650, for 51 level COSMO data)
  

          R(θ,θ0,φ')
    uncompressed

R(θ,θ0,α), compressedCPU cache

20MB

7.5GB

21MB

Impact of
compression on
performance?
 

Without compr.:
LUT >> cache
  → slow…
 

compression
 → cache used

     efficiently

NWP-SAF  MFASIS has been included→
in RTTOV 12.2 by DWD + MetOffice
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Backscatter glory (1D RT)

Scattering angles larger than 175° in October / March   affected by glory→
From a geostationary point of view the glory is not a rare event...
Not included in the LUT  errors several times larger→
Glory depends on width of droplet radius distribution  no input data available→
Assimilation with higher assumed observation error should still be useful.

Model state from June 15, 2012, 12UTC. Sun angles from other months.

MFASIS error wrt. DISORT

scattering angle

satellite zenith angle

solar zenith angle
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1D RT Improvements
Not all MFASIS assumptions are
always fulfilled perfectly

 → corrections:
 

Non-standard water vapor profile
(relevant e.g. for SEVIRI 0.8µm):
Linear correction depending on
WV mass above/below cloud top
included in RTTOV 12.3 
 

Non-standard air mass (affecting Rayleigh scattering): Should be taken into 
account for wavelengths < 0.5µm, for 0.6µm only important for high altitude 
regions with high albedo (Antarctica, Greenland).
Could be corrected similar to WV correction (to be implemented)
 

Mixed-phase clouds: Ice in water cloud: Single scattering signal similar to water
cloud, ice contributes to multiple scattering signal.
First simple correction: Interpret non-dominant mixed-phase cloud ice content as 
water (included in RTTOV 12.3). More general solution under investigation...

> 40mm occurs only in tropics?

> 60mm occurs
   almost never?

TCWV increased
- above ice cloud top
- between w. & i. cloud
- below water cloud top

solid = DISORT
dashed = linear approx.

0.8μm, SZA=80°, VZA=60°, τw=10
(i.e. not a harmless case...)

total column water vapor [mm]
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Replace compressed LUT by a neural network?
• Motivation: There are many reasons to increase the number of LUT dimensions

(various corrections, aerosols)  LUT size could increase strongly…→
 

• Machine learning methods could handle more dimensions more efficiently
Main advantage: Only a small fraction of the LUT data is required for training
 

• Popular choice
(libraries and hardware
support available):
Multilayer Perceptron
= (deep) feed forward
   neural network

• Additional benefits: NN much smaller than compressed LUT, hardware support,
adjoint should not be a problem (I think...) and will never have to be changed
 

• Is a sufficiently accurate NN as fast as the LUT-based MFASIS approach?

• Every node applies a nonlinear activation function f on a linear combinations of its
weighted input signals + a bias variable to generate an output signal.
 

• If the activation function is differentiable, the full network is differentiable
 

• Tensorflow and Keras packages were used to train the network (adjust weights),
a fast Fortran routine was developed for forward computation
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First results from a feed-forward network
• Reflectance for varying

scattering angle and
water cloud optical depth
computed with DISORT,
MFASIS and NN
 

• Neural Network:
5 x 26 nodes (30KB)
trained using 1% of the
uncompressed LUT data
 

• Errors are in the desired
range, except for rainbow.
RMSE = 0.006
 

• NN ~3x slower than LUT
 

• Looks promising,
optimizations are possible
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Which fraction of the full LUT data
(3x108 samples) is required?
10-3 ist still ok, overfitting for 10-4

Regularization methods could
allow for even lower fractions…

Still unclear:    How reliable is the
                          learning process? 

Training data set requirements
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3D effects not accounted for in 1D radiative transfer

SEVIRI 13:30 UTC

cloud shadows

R=0.6μm, G=0.8μm, B=0.5*(R+G)

Important for structure: cloud top inclination
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3D effects not accounted for in 1D radiative transfer

SEVIRI 16:30 UTC  (two hours before sunset) R=0.6μm, G=0.8μm, B=0.5*(R+G)
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Accounting for 3D RT effects: Cloud top inclination 

Rotated frame of reference with ground-parallel cloud   nearly a 1D problem→
(inclined ground is taken into account by using a modified surface albedo)

 → Solve modified 1D problem, transform back to non-rotated frame.

plane-
parallel
cloud
(1D)

inclined
cloud
(3D)
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Cloud top inclination

SEVIRI 0.6mu+0.8mu, 3 June 2016, 6UTC 3h COSMO fcst without 3D correction

Cloud top definition : optical depth 1 surface
(detect tau=1 in all columns, fit plane to column and 8 neighbour columns)
 

Cloud top inclination correction   Increased information content→
Much more cloud structure is visible, in particular for larger SZAs
For instance, one can distinguish convective from stratiform clouds
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Cloud top inclination

SEVIRI 0.6mu+0.8mu, 3 June 2016, 6UTC 3h COSMO fcst with 3D correction

Cloud top definition : optical depth 1 surface
(detect tau=1 in all columns, fit plane to column and 8 neighbour columns)
 

Cloud top inclination correction   Increased information content→
Much more cloud structure is visible, in particular for larger SZAs
For instance, one can distinguish convective from stratiform clouds
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Comparison with 3D Monte Carlo RT calculations
Clean comparison
(only RT errors,
no model errors)
based on high-res.
ICON runs from the
HD(CP)² project:

- RMSE is reduced
 

- Histogram shape
  is improved
 

- Derived empirical
  function to scale
  down 3D correction
  for thinner clouds

MYSTIC 3D         CTI                       1D

reflectance
histogram

reflectance
RMSE

reflectance case

Other 3D effects are still missing (e.g. shadows, flux through cloud sides)...
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What else can be done to reduce systematic errors?
Potential error sources
in the operator:
● Parameterization of effective

droplet / ice particle sizes,
● ice optical properties
● subgrid cloud overlap
    assumption + implementation
● subgrid cloud inhomogeneity
● further 3D RT effects (e.g.
    cloud shadows)…

Systematic errors are already
small enough for assimilation
experiments
Cloud cover, precipitation
and moisture are improved,
impact for several hours.

SEVIRI

ICON-EU
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Summary

● Simulating visible channels is challenging: Scattering dominates, 3D important
 

● MFASIS: fast 1D RT method for simulating solar channels based on a
compressed look-up table (now included in RTTOV)
 

● 1D RT corrections (WV, airmass, mixed-phase clouds) have been / will be added
 

● Replacing compressed LUT by neural network could allow for additional
dimensions / input variables and thus higher accuracy (work in progress)
 

● Cloud top inclination (3D effect) parameterization reduces the systematic error
 

● First data assimilation results: cloud cover, precipitation, moisture are improved
 

Publications:
Scheck, Frerebeau, Buras-Schnell, Mayer (2016): A fast radiative transfer method for the simulation of visible
  satellite imagery, Journal of Quantitative Spectroscopy and Radiative Transfer, 175, p. 54-67.
Scheck, Hocking, Saunders (2016): A comparison of MFASIS and RTTOV-DOM, NWP-SAF visiting scientist report,
  http://www.nwpsaf.eu/vs_reports/nwpsaf-mo-vs-054.pdf
Heinze et al. (2017): Large-eddy simulations over Germany using ICON: a comprehensive evaluation,
  QJRMS, Vol. 143, Issue 702, p. 69-100
Scheck, Weissmann, Mayer (2018): Efficient methods to account for cloud top inclination and cloud overlap in
  synthetic visible satellite images, JTECH, Vol. 35, Issue: 3, p. 665-685 

http://www.nwpsaf.eu/vs_reports/nwpsaf-mo-vs-054.pdf
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Subgrid cloud overlap
● Unresolved ‘subgrid’ clouds: Models usually provide

parameterized cloud fractions and use assumptions
on subgrid cloud overlap in their internal RT code.
 

Most widely used assumption:  Clouds in adjacent
layers overlap maximally, clouds separated by empty
layers overlap randomly (“maximum-random overlap”).
 

Newer assumptions often use correlation lengths
(see e.g. Shonk et al. 2010).
 

● How to use this information in the forward operator?
 Overlap schemes:  Distribute clouds over subcolumns, call RT for each→

                              subcolumn and compute average reflectance
 

We investigated these questions:
 

● Is uncertainty of visible reflectances due to the unknown subgrid distribution
relevant for DA? Should it be quantified by spread of stochastic scheme?

● Overlap assumptions hold for vertical direction, RT is performed along columns
tilted towards the satellite – is this an important error source?

deterministic, Matricardi 2005
(RTTOV)
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Stochastic cloud overlap schemes

Test for COSMO-DE (Δx=2.8km) model runs for June 2016:
(a) no “physical” spread: for Nsubcol→∞  spread  0 (and cloud size  0)→ →
(b) one cloud/layer: finite spread for Nsubcol→∞, upper limit for real spread
      spread is probably too low to be useful for DA – at most a few 0.01
(c) clouds with vertical max.-rand. overlap are placed in tilted subcolumns
      3d max.-rand. results are more similar to 2d random than to 2d max.-rand.

independent subcolumns (Räisänen
2004, Marquart & Mayer 2001)

continuous clouds
(Scheck et al. 2018)

continuous clouds in tilted subcolumns
(Scheck et al. 2018)

(a) (b) (c)
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Stochastic overlap schemes: Convergence for smallest / largest cloud approach

(a) Maximum deviation, 99% percentile of the deviation and root mean square deviation in 
ensemble mean reflectance for the stochastic maximum-random overlap method STO-N with 
different numbers of streams relative to the 512 stream case computed for the June 2012 test 
period. Ensembles with 100 members were used. (b) Like (a), but for the STO-C 
implementation.
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Subgrid cloud inhomogeneity
Observations: Liquid and frozen cloud water content follows log-normal or gamma
distributions, variability can be characterized by fractional standard deviation
f = std(LWC) / mean(LWC), which increases with box size and is higher for partially
cloudy grid cells. Parameterizations (e.g. Ahlgrimm & Forbes 2016) for f exist.
 

How relevant is this for visible images?

 

At least for global model resolutions it should be taken into account…
Could be integrated into cloud overlap scheme (work in progress).

“regional model”
f=0.5

“global model”
f=0.9

errors > 0.1
possible...<R(τ)>R(<τ>)
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Model state   reflectance→

Hu & Stamnes 1992
Fu 1996

Martin et al. 1994
Wyser et al. 1998
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3d grid scale
variables

3d grid scale
+ subgrid scale parameterizations

3d RT input
variables

1d RT input
profiles

0d MFASIS input for
each of the n subcolumnsangles,

albedo

or from 2-mom. scheme

WV, 3D corrections  run→
several times with
different LUTs / angles
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