Development of Particle Scattering Models for Supporting Radiative Transfer Simulations

Lei Bi, Wushao Lin, Xiaoyun Tang, Zheng Wang, Ruirui Zong, Hejun Xie

Acknowledgement: Ping Yang, George Kattawar, Michael Mishchenko, Fuzhong Weng

Department of Atmospheric Sciences, Zhejiang University, Hangzhou, China

2019.05.01

Critical Issues

- Tools: Accurate and efficient computational methods to compute the optical properties of arbitrary shaped and inhomogeneous particles
- Physics: Physical mechanism on how particle microphysics affects electromagnetic wave scattering and possible influence on radiative transfer
- Models: Develop "suitable" models for ice crystals and aerosols for atmospheric radiative transfer simulations

Maxwell's Equations

$$\nabla \times \vec{H}(\vec{r}, t) = \frac{\varepsilon}{c} \frac{\partial \vec{E}}{\partial t},$$
$$\nabla \times \vec{E}(\vec{r}, t) = -\frac{\mu}{c} \frac{\partial \vec{H}}{\partial t}$$

Classical theory of light.

James Clerk Maxwell

Far-field Scattering

$$\begin{pmatrix} \mathbf{E}_{||}^{\mathbf{S}} \\ \mathbf{E}_{\perp}^{\mathbf{S}} \end{pmatrix} = \frac{\mathbf{e}^{i\mathbf{k}\mathbf{r}}}{-i\mathbf{k}\mathbf{r}} \begin{pmatrix} \mathbf{S}_{2} & \mathbf{S}_{3} \\ \mathbf{S}_{4} & \mathbf{S}_{1} \end{pmatrix} \begin{pmatrix} \mathbf{E}_{||}^{i} \\ \mathbf{E}_{\perp}^{i} \end{pmatrix}$$

Computational Progress

Invariant Imbedding T-matrix(Bi et al. 2013; Bi and Yang, 2014)

Physical-geometric optics hybrid (Bi et al., 2011, Bi et al., 2012)

Debye' s series, complex angular momentum (Bi et al., 2013; Bi et al., 2017; Bi et al., 2019)

Invariant Imbedding T-matrix

Distribution of refractive indices

Nonspherical particle = inhomogeneous sphere

 $T_{mnmn'}(r+dr) = Q_{11}^{m}(r+dr) + \left[\mathbf{I} + Q_{12}^{m}(r+dr)\right] \left[\mathbf{I} - T_{mnmn'}(r)Q_{22}^{m}(r+dr)\right]^{-1}T_{mnmn'}(r)\left[\mathbf{I} + \tilde{Q}_{12}^{m}(r+dr)\right]$ Johnson (1988), Bi et al. (2013, 2014)

Arbitrarily Shaped Particles

Bi, L., and P. Yang, **2014**: Accurate simulation of the optical properties of atmospheric ice crystals with invariant imbedding T-matrix method. *J. Quant. Spectrosc. Radiat. Transfer, 138,17-35.*

Features

- Arbitrary shaped and inhomogeneous particles
- Analytical random orientation average
- Particle size parameter upto geometricoptics domains

Physical geometric-optics Hybrid

Bi, L., P. Yang, G. W. Kattawar, Y. Hu and B. A. Baum, **2012**: Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method. *Journal of Quantitative Spectroscopy and Radiative Transfer*, 112, 1492-1508.

(Debye,1908; Van der Pol and H. Bremmer ,1937;Feng et al,2010)

Nonspherical Particles

Lei Bi, Feng Xu, Gérard Gouesbet, 2018; Phys. Rev. A 98,053809; to be submitted, 15 2019

Ice Crystal Optical Property Database

Yang, P., **L. Bi**, B. A. Baum, K. N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, **2013**: *Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 µm*. *Journal of the Atmospheric Sciences,* 70, 330-347.

Bi, L., P. Yang, **2017**: Improved ice particle optical property simulations in the ultraviolet to far-infrared regime. *Journal of Quantitative Spectroscopy and Radiative Transfer*, 189, 228-237.

Ding, J., L. Bi, P. Yang, G. W. Kattawar, F. Weng, Q. Liu, T. Greenwald, 2017: Single-scattering properties of ice particles in the microwave regime: Temperature effect on the ice refractive index with implications in remote sensing. *Journal of Quantitative Spectroscopy and Radiative Transfer*, 190, 26-37.

Major Aerosol Types

LiDAR Observations

- LiDAR observations are sensitive to the buckscattering optical properties of a volume element.
- Interpretation: understanding LiDAR signals
- Model constraints: "suitable" models for general radiative transfer simulations

Phase Matrix and Depolarization Ratio

$$\begin{pmatrix} I_{s} \\ Q_{s} \\ U_{s} \\ V_{s} \end{pmatrix} = \frac{1}{k^{2}r^{2}} \begin{pmatrix} P_{11} & P_{12} & 0 & 0 \\ P_{12} & P_{22} & 0 & 0 \\ 0 & 0 & P_{33} & P_{34} \\ 0 & 0 & -P_{43} & P_{44} \end{pmatrix} \begin{pmatrix} I_{i} \\ Q_{i} \\ U_{i} \\ V_{i} \end{pmatrix}$$

Assumption: incident light is 100% polarized **parallel** to the scattering plane

$$\begin{pmatrix} I_{i} \\ I_{i} \\ 0 \\ 0 \end{pmatrix} \mathcal{I}_{s} = (P_{12} + P_{22})I_{i}, i \ \overline{\mathcal{Q}}_{s} \stackrel{I}{=} s(P_{12}^{+} \stackrel{I}{+} P_{12})I_{i} \xrightarrow{I}_{s} \stackrel{I}{=} s(P_{12}^{+} \stackrel{I}{+} P_{12})I_{i} \xrightarrow{I}_{s} \stackrel{I}{=} s(P_{12}^{+} \stackrel{I}{+} P_{12})I_{i} \xrightarrow{I}_{s} \xrightarrow{I}_{s} \stackrel{I}{=} s(P_{12}^{+} \stackrel{I}{+} P_{22})I_{i} \xrightarrow{I}_{s} \xrightarrow{I}_{s} \xrightarrow{I}_{s} \stackrel{I}{=} s(P_{11}^{+} \stackrel{I}{+} P_{22})I_{i} \xrightarrow{I}_{s} \xrightarrow{I}_{s} \xrightarrow{I}_{s} \stackrel{I}{=} s(P_{12}^{+} \stackrel{I}{+} P_{22})I_{i} \xrightarrow{I}_{s} \xrightarrow{I}$$

Result: scattered light is in general **partially polarized**, i.e. the incident light is **depolarized**

Linear Depolarization Ratio (Random Orientation)

 $\delta_{Sin} = \frac{1 - \frac{7}{22} \rho_{11}} \frac{\rho_{epolarization ratio cases:}}{\frac{1 - \frac{7}{22} \rho_{11}} \rho_{22}} \frac{\rho_{11}}{\rho_{11}} \frac{\rho_{22}}{\rho_{12}} \frac{\rho_{11}}{\rho_{11}} \frac{\rho_{22}}{\rho_{12}} \frac{\rho_{11}}{\rho_{11}} \frac{\rho_{22}}{\rho_{11}} \frac{$

δ(**δ(B(B))**°**) = 100**%

Size Distribution

$$\delta = \frac{1 - \int_{r_{\min}}^{r_{\max}} P_{22,180^{\circ}}(r) C_{sca}(r) \frac{dN}{dr} dr \left/ \int_{r_{\min}}^{r_{\max}} P_{11,180^{\circ}}(r) C_{sca}(r) \frac{dN}{dr} dr}{1 + \int_{r_{\min}}^{r_{\max}} P_{22,180^{\circ}}(r) C_{sca}(r) \frac{dN}{dr} dr \left/ \int_{r_{\min}}^{r_{\max}} P_{11,180^{\circ}} C_{sca}(r) \frac{dN}{dr} dr} \right|^{\frac{1}{2}}$$

$$\frac{dN}{dr} = \frac{N_0}{\sqrt{2\pi r \log(\sigma) \ln(10)}} \exp\left\{-\frac{1}{2} \left[\frac{\log(r) - \log(r_m)}{\log(\sigma)}\right]^2\right\}$$

23

Backscatter Lidar Ratio

How to model particle shapes?

Super-spheroidal Space

Li J, et al. J Geophys Res, 2003 108, 4189

Nearly spherical Particles show quite different depolarization features in aerosol refractive index regime

Spheroids, Refractive Index: 1.55+i0.003

Depolarization Ratio (%)

First reported by Mishchenko, M. I., and J. W. Hovenier(1995) at this refractive index

Different Physical Origins obtained from Debye's series

Lei Bi, Feng Xu, Gérard Gouesbet, 2018; Phys. Rev. A 98,053809;

CALIPSO DATA (2012)

Dust optical modeling

Why more freedom is useful?

Advantage of SI

• If two nonspherical particles have the same shape index (SI), they have identical volume and projected area.

a,

Volume equivalent, surface area? Surface area equivalent, volume?

Stereogrammetry

volume, projected area, aspect ratio

(Image from Lindqvist, et al., 2014)

Comparison with Laboratory Measuements

Sample	r _{eff} /μm	$\mathbf{V}_{\mathbf{eff}}$	Re(m)	Im(m)	Tabla 1
Allende	0.8	3.3	1.65	0.001	Table 1
Feldspar*	1.0	1.0	1.50-1.60	0.001-0.00001	Summary of
Red clay*	1.5	1.6	1.50-1.70	0.001-0.00001	Summary Oj
Green clay*	1.55	1.4	1.50-1.70	0.001-0.00001	the Samples
Quartz	2.3	2.3	1.54	0	Investigated
Martian analog palagonite	4.5	7.3	1.50	0.001-0.0001	Investigatea
Loess*	3.9	2.6	1.50-1.70	0.001-0.00001	in this Study
Sahara*	8.2	4.0	1.50-1.70	0.001-0.00001	
Forsterite (initia) 25 Aero	SO	Sam	nles fr	om th	e)
Forsterite (smal)	1.3	3.1	1.63	0	Č
Forsterite (wasl ed)	d ³ am	4. Gr a		ight	
Olivine (S)	yanı		Ilejua L		
Olivine (M)	2.6	5.0	1.62	0.00001	a b
Olivine (L) SCATTERI	ng L	Jatal	Dase (voten	et
Olivine (XL)	6.3	6.8	1.62	0.00001	
Volcanic ash (E Chicar) 200	6 ² . V	uño	7ºet a	0.001	2
Volcanic ash (Pinatubo)	3.0	12.3	1.50-1.60	0.001-0.00001	- / /
Volcanic ash (Lokon)	7.1	2.6	1.50-1.60	0.001-0.00001	<i>Note.</i> The r _{eff} is the
Volcanic ash (Mnt. St. Helens)	4.1	9.5	1.48–1.56	0.0018	effective radius; v_{eff} is the
Volcanic ash (Redoubt A)	4.1	9.7	1.48–1.56	0.0018	are the real part and the
Volcanic ash (Redoubt B)	6.4	7.6	1.48–1.56	0.0018	imaginary part of the
Volcanic ash (Spurr Ashton)	2.7	4.9	1.48–1.56	0.0018-0.02	estimated refractive index, respectively.
Volcanic ash (Spurr Gunsight)	3.5	8.2	1.48–1.56	0.0018-0.02	*These samples have been
Volcanic ash (Spurr Ahchorage)	4.8	8.8	1.48–1.56	0.0018-0.02	investigated in Merikallio
Volcanic ash (Spurr Stop 33)	14.4	6.6	1.48–1.56	0.0018-0.02	ci al., (2011).

Lin, et al. JGR (2018)

Three key scattering matrix elements $(P_{11}, -P_{12/}P_{11})$, and P_{22}/P_{11}) of simulations and measurements at 632.8nm wavelength for five volcanic ash samples. The refractive index was selected to be 1.60+i0.001 for all the samples.

LiDAR DUST Observations

Filed campaign		time	location	
SAMUM (Saharan Mineral Dust Experiment)	SAMUM I	May–June 2006	southern Morocco	
	SAMUM-2a	January– February 2008	Cape Verde	
	SAMUM-2b	May–June 2008		
SALTRACE-3 (Saharan Aerosol Longrange Transport and Aerosol-Cloud-Interaction Experiment)		June–July 2014	Caribbean island of Barbados	
SHADOW campaign (Study of Saharan Dust Over West Africa)		March–April 2015	Senegal	
CADEX (Central Asian Dust EXperiment)		March 2015 to August 2016	Dushanbe, Tajikistan	

Depolarization ratio observations at different locations

Location	0.355 µm	0.532 µm	1.064 µm	Reference
Midwest	0.246 ± 0.018	0.304 ± 0.005	0.270 ± 0.005	Burton et al. (2015)
Chihuahuan	0.243 ± 0.046	0.373 ± 0.014	0.383 ± 0.006	Burton et al. (2015)
Caribbean	-	0.327 ± 0.018	$0.278 \!\pm 0.012$	Burton et al. (2015)
Pico de Orizaba	-	0.334 ± 0.018	0.400 ± 0.009	Burton et al. (2015)
Barbados	0.252 ± 0.03	$0.28 \!\pm 0.02$	0.225 ± 0.02	Haarig et al. (2017)
Ouarzazate	0.28 ± 0.05	0.31 ± 0.03	$0.26 {\pm}~0.04$	Freudenthaler et al. (2009)
Ouarzazate	0.24 ± 0.07	0.30 ± 0.03	$0.27\!\pm0.04$	Freudenthaler et al. (2009)
Tajikistan	0.18-0.29	0.31-0.35	-	Hofer et al. (2017)
Cape Verde	0.24-0.27	0.29-0.31	-	Groß et al. (2011)
Munich	0.30 ± 0.07	$0.34 {\pm}~0.03$	-	Wiegner et al. (2011)

LiDAR ratio measurements at Different Locations

Location	0.3 <i>55 µm</i>	0.532 µm	1.064 µm	Reference
Tajikistan	46.9 ± 2.1	42.9±3.2	-	Hofer et al. (2017)
Cape Verde	58 ± 7	62 ± 5	-	Groß et al. (2011)
Munich	58 ± 13	56 ± 10	-	Wiegner et al. (2011)
Ouarzazate	52.9 ± 7	54.8 ± 6.7	54.9 ± 12.7	Tesche et al. (2009)
Gwangju	56 ± 10	51 ± 6	-	Nohet al. (2008)
Mbour	54 ± 8	53 ± 8	-	Veselovskii et al. (2016)
Gwangju	52 ± 7	53 ± 8	-	Shin et al. (2016)
Portugal	45 ± 8	53 ± 7	-	Preißler et al. (2011)
Barbados	53 ± 5	53 ± 7	-	Groß et al. (2015)
Tokyo	48.6 ± 8.5	43.1 ± 7.0	-	Murayama et al. (2004)
Guangzhou	48.5 ± 7.5	51.7±8.3	-	Heese et al. (2017)

Laboratory Measurements

Scatterring Angle	0.355 µm	0.532 µm	1.064 µm	Reference
178°	0.21 ± 0.02	0.16 ± 0.02	0.09 ± 0.02	Mamouri and Ansmann (2015)
180 ± 0.2 °	0.375 ± 0.015	0.350 ± 0.015	-	Miffre et al. (2016)
180 ± 0.2 °	0.355 ± 0.015	0.305 ± 0.015	-	Miffre et al. (2016)

Impact of Real Part of the Refractive Index

Impact of the Imaginary Part of the Refractive Index

Small sizes

Large sizes

Fine mode + Coarse mode

Dust-soot Mixtures

Noncontact mixing is closer to observations.

Sea-salt optical modeling

(After Salter, Matthew E., et al Geophysical Research Letters 2016)

Dry sodium choride

Aspect Ratio and Roundness Effect

Wet Sea Salt Aerosols

X-Ray phasing technique(Zeng et al. 2012)

Effect of Particle Inhomogeneity (RH=50~80% inhomogeneous)

Wang, et al. GRL (2019)

Summary

- Significant progress has been made on computing the optical properties of nonspherical particles. Extensive computations are now allowable with reasonable computational resources and computational time.
- Comparison with measurement and observations show that super-ellipsoidal space is quite promising with applications in remote sensing and radiative transfer modeling.

Tang et al., Optics Express, (2019)

Polarization Simulations

Dry sea salt

Wet sea salt

