Line-by-line modeling at AER: Perspectives and recent spectroscopy studies

Eli Mlawer
Atmospheric and Environmental Research (AER)
Contributions from:

AER: Karen Cady-Pereira, Matt Alvarado, Rick Pernak
JPL: Vivienne Payne
NOAA: Dave Turner
Alpenglow Scientific: Jen Delamere
SAO: Scott Paine
CNR: Luca Palchetti
NASA: Marty Mlynczak
Texas A&M: Jeff Mast
DoE ANL: Maria Cadeddu
AER's radiative transfer models and databases

available from AER, see rtweb.aer.com

Spectroscopic input

- HITRAN
 - AER line file
 - MT_CKD Continuum

Line-by-line models

- LBLRTM
 - MonoRTM

Fast models

- RRTMG
- OSS
- RTTOV

Applications

Scientific studies, reference calcs
Weather and climate simulations
e.g. GRAPES, ECMWF, NOAA

Retrievals
e.g. IASI, EUMETSAT, UKMO

Data assimilation.
e.g. CRTM, EUMETSAT
Perspectives on validation and model improvement

- Validation of absorption/RT models not straightforward
 - Radiometric measurements and atmospheric profiles may not be accurate

- What is “truth”?
 - ‘Truth’ at the level required is not readily available
 - Laboratory measurements
 - Theoretical calculations
 - Radiosonde accuracies, spatial and temporal sampling

- **Consistency is key (Tony Clough perspective)**
 - Consistency between instruments
 - Validation using both upwelling and downwelling measurements
 - Consistency between spectral bands, regions (e.g. IR & MW)

Our main approach is to use detailed radiative closure studies with field measurements to evaluate and improve spectroscopic parameters.
Radiative closure study examples

1) Water vapor line widths and continuum in microwave

2) Water vapor line widths and continuum in far-infrared

3) Other examples of issues with water vapor line widths
Improving water vapor spectroscopy in the microwave

- Ground-based microwave radiometers (MWRs) have been and continue to be used to derive key spectroscopic parameters of water vapor in the microwave.

- Previous studies
 - Widths of 22 GHz and 183 GHz lines – Payne et al. 2008
 - 22 GHz width has an impact on continuum analysis
 - Microwave water vapor continuum – Payne et al. 2011

- Ongoing studies
 - Widths of 22 GHz and 183 GHz lines
 - Re-evaluate in light of new line parameters in HITRAN
 - Microwave water vapor continuum
 - Comprehensive new analysis using more recent measurements from MWRs, including more moist cases
Instruments used for line width determination

- Compare MonoRTM with radiometer measurements
 - Model the instrument bandpass characteristics
 - Use radiosonde temperature and humidity profiles as input
 - Radiosonde humidity measurements show variability and biases
 » Use radiometer to scale the total precipitable water vapor

Payne et al., 2008
Ground-based radiometer measurements

22 GHz line: Not saturated

For 183 GHz, used driest cases to avoid saturation of the line

Not used in width analysis
Determination of line widths from ground-based data

- **“Pivot point”**
 - Frequency where T_b insensitive to line width
 - GVR: 183+/−3 channel least sensitive
 - MWRP: 23.835 channel least sensitive

- **Channels on both side of “pivot point”**
 - Different response to width, PWV
 - **Crucial for information on width**

- **Width determination**
 - Run model using radiosondes as input
 - Retrieve PWV scaling from channel least sensitive to width uncertainty
 - Retrieve width value from remaining channels

Payne et al., 2008
Determination of line widths from ground-based data

Payne et al., 2008
Water vapor line widths

22 GHz:
MonoRTM 5% lower than Rosenkranz (at that time)

183 GHz:
MonoRTM ~ same as Rosenkranz

Payne et al., 2008
Determining the water vapor continuum in the microwave

MicroWave Radiometer

Built by Radiometrics
Two channels: 23.8 and 31.4 GHz
Measurement accuracy: 0.3 K
Long and successful use in ARM program
- Providing PWV and LWP retrievals at ARM sites for over 15 years
- An MWR is deployed at all ARM sites
- Payne et al. (2011): 3 years of data from the Southern Great Plains
- Wide range of atmospheric conditions encountered

Not too many cases with PWV > 4 cm
Extending the SGP MWR analysis

Continuum uncertainty

\[\Delta T_B = a \Delta X_{frg}(PWV) + b \Delta X_{sf}(PWV)^2 \]

Measurements at higher PWV (>3.0 cm) needed to constrain the self continuum
Fitting the water vapor self and foreign continuum

Retrieve PWV scaling factor using 23.8 GHz MWR channel.
Assess the quality of the fit in the “window” channel.

Payne et al., 2011
Cost function includes terms for residuals, plus the slope and curvature of fit to residuals.

Payne et al., 2011
<table>
<thead>
<tr>
<th>Site</th>
<th>Date ranges</th>
<th>Number of clear sondes</th>
<th>PWV range [cm]</th>
<th>Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMF_GoAmazon</td>
<td>06/2015-12/2015</td>
<td>637</td>
<td>2.85-6.25</td>
<td>MWR</td>
</tr>
<tr>
<td>SGP</td>
<td>01/2014-12/2014</td>
<td>1475</td>
<td>0.11-6.25</td>
<td>MWR</td>
</tr>
<tr>
<td></td>
<td>10/2016 - 9/2017</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New analysis includes cases with even higher PWV values.
SGP MWR datasets: current study vs. Payne et al. (2011)

Measurement – calculation differences with MonoRTM v4.2, MT_CKD v2.4

Current analysis

Payne et al. (2011)

31.4 GHz
Including GoAmazon measurements in current analysis

31.4 GHz measurement – calculation (existing model)

GoAmazon + new SGP

New SGP

Older SGP

MonoRTM v4.2, MT_CKD v2.4

MonoRTM v4.2, MT_CKD v2.4

SGP cases

MonoRTM v4.2, MT_CKD v2.4

31.4 GHz residuals: xfrg=0.88 xslf=1.25 cost=0.85

(c)

mean = -0.02
s.d. = 0.17
r.m.s. = 0.17

PWV (cm)
Preliminary results

Large changes to MW H$_2$O continuum appear to be needed
Brightness temperature comparison

Changes in upwelling brightness temperatures from anticipated continuum change will be large.

Midlatitude summer
US standard
Sub-arctic winter
Main points

- Radiative closure experiments continue to play an important role in improving and validating spectroscopic input to radiative transfer calculations.

- Accurate water vapor continuum values derived from these closure studies can lead to improved retrieval products and, most likely, improved results from data assimilation.
The importance of the far-IR

Spectral Cooling Rates (troposphere)

“Clough Plot”

As of ~10 years ago, had spectroscopic parameters been evaluated by field observations?

Mlawer, Radiation workshop, Tianjin, 2019
Dry locations needed to evaluate far-IR spectroscopy
Radiative Heating in Underexplored Bands Campaigns

Goal: Improve far-IR spectroscopy

RHUBC-I

- ARM North Slope of Alaska Site, Barrow, AK
- February - March 2007, 70 radiosondes launched
- **Minimum PWV: 0.95 mm**
- 2 far-IR / IR interferometers
 - extended range AERI: > 400 cm\(^{-1}\)
- 3 sub-millimeter radiometers \(\rightarrow\) determine PWV

Mlawer, Radiation workshop, Tianjin, 2019
RHUBC-I: Results

Spectroscopic modifications from RHUBC-I (Delamere et al., 2010)
• adjustments to water vapor foreign continuum
• foreign-broadened line widths for 42 H₂O lines were adjusted
RHUBC- I: Results

Revised continuum and widths lead to significant changes in net flux

- RRTMG updated with revised continuum (MT_CKD_2.4)
- 20-yr simulation performed with CESM v1 (Turner et al., 2012)
 - statistically significant changes in temperature, humidity, and cloud fraction

Mlawer, Radiation workshop, Tianjin, 2019
Radiative Heating in Underexplored Bands Campaigns

Goal: Improve far-IR spectroscopy

RHUBC-I
- ARM North Slope of Alaska Site, Barrow, AK
- February - March 2007, 70 radiosondes launched
- **Minimum PWV:** 0.95 mm
- 2 far-IR / IR interferometers
 - extended range AERI: > 400 cm\(^{-1}\)
- 3 sub-millimeter radiometers → determine PWV

RHUBC-II
- Cerro Toco, Chile (23°S, 68°E, altitude - 5380 m)
- August - October 2009, 144 radiosondes were launched
- **Minimum PWV:** ~0.2 mm (5x drier than RHUBC-I)
- Far-IR / IR interferometers
 - REFIR-PAD – 100-1400 cm\(^{-1}\)
 - NASA FIRST – 100-1000 cm\(^{-1}\)
- 183 GHz radiometer for determining H\(_2\)O
Impact of RHUBC-1 Results on Line Databases

- Nothing

AERI – LBLRTM residuals before RHUBC-I

Residuals after RHUBC-I

HITRAN_2012 did not utilize the H$_2$O line widths from Delamere et al. (2010).

Ratios exceed HITRAN uncertainty codes.
RHUBC-II spectroscopic improvements

Foreign continuum changes from RHUBC-II analysis

Line width changes from RHUBC-II analysis

Mlawer, Radiation workshop, Tianjin, 2019
Evaluation with an independent instrument

Measurements by NASA FIRST instrument during RHUBC-II

Old spectroscopy

New spectroscopy

Significant improvement is seen.
Rizzi et al. (2018) used REFIR-PAD measurements from Antarctica to evaluate the improved LBLRTM (v12.7 with MT_CKD_v3.0).

"The new simulations show that residuals between 200 and 400 cm$^{-1}$ are much reduced with respect to (previous results) and are now within the combined error estimates ... average residuals for austral winter days are remarkably close to zero"
Effect of line widths on the observed CIA

- **B1057.4b spectrum**
 - \(\text{H}_2\text{O} \) broadened by \(\text{N}_2 \) at 289 K
 - 296.2 K, \(P = (2.7, 701.7) \) Torr

- **CIA comparison**
 - **MT_CKD(v3.0) [water+air]**
 - **JPL(Obs) [water+N_2]**
 - (1) used AER air-widths
 - (2) used HIT16 air-widths

 For the resonance absorption simulation, the air-broadened widths were adjusted to be \(\gamma_{\text{N}_2} = \gamma_{\text{air}} \times 1.12 \) and \(\gamma_{\text{O}_2} = \gamma_{\text{N}_2} \times 0.50 \).

- **New results at 296 K**
 - (1) A better agreement bet. MT_CKD and JPL(Obs.)
 - (2) Still, JPL(obs) is lower in the region > \(\sim 120 \text{ cm}^{-1} \)
Another example – near-IR water vapor widths

Plot: Average residuals between direct beam measurements from solar FTS in Lamont, OK (TCCON), and LBLRTM calculations with different line parameters

Based on this analysis, NIR and visible H$_2$O widths in the AER_v_3.6 H2O line file are:

- < 6000 cm$^{-1}$: HITRAN 2012; 6000-7925 cm$^{-1}$: HITRAN 2012 with Mikhailenko; 7925-9395 cm$^{-1}$: HITRAN 2012 with Regalia; 9395-12000 cm$^{-1}$: HITRAN 2012;
- > 12000 cm$^{-1}$: HITRAN 2008

plus numerous widths manually changed to improve residuals
Infrared water vapor widths

Average brightness temperature for 120 IASI cases (courtesy M. Matricardi)

Average residuals between IASI and LBLRTM calculations

Dotted lines point out clear width errors

Note: Ongoing project at AER to improve infrared H$_2$O widths using both IASI and ground-based AERI measurements.
Main points

- Radiative closure experiments continue to play an important role in improving and validating spectroscopic input to radiative transfer calculations.

- Accurate water vapor continuum values derived from these closure studies can lead to improved retrieval products and, most likely, data assimilation.

- Line widths can also be improved from radiative closure studies and can impact the information obtained in microwindows between lines.
 - Line parameter databases should not be assumed to be improvements on previous versions or reflect atmospheric validation.
Back-up slides
Impact of HITRAN widths on residuals

RHUBC-I
- AERI – LBLRTM residuals with Delamere et al. widths
- Residuals with HITRAN_2012 widths

RHUBC-II
- REFIR-PAD – LBLRTM residuals with Delamere et al. widths
- Residuals with HITRAN_2012 widths

Mlawer, Radiation workshop, Tianjin, 2019
Effect of foreign continuum derived from RHUBC-II observations
(compared to previous version)

Net Flux

Heating Rates

Mlawer, Radiation workshop, Tianjin, 2019