

Line-by-line modeling at AER: Perspectives and recent spectroscopy studies

Eli Mlawer

Atmospheric and Environmental Research (AER)

Contributions from:

Oer

AER: Karen Cady-Pereira, Matt Alvarado, Rick Pernak JPL: Vivienne Payne NOAA: Dave Turner Alpenglow Scientific: Jen Delamere SAO: Scott Paine CNR: Luca Palchetti NASA: Marty Mlynczak Texas A&M: Jeff Mast DoE ANL: Maria Cadeddu

Perspectives on validation and model improvement

- Validation of absorption/RT models not straightforward
 - Radiometric measurements and atmospheric profiles may not be accurate
- What is "truth"?
 - 'Truth' at the level required is not readily available
 - Laboratory measurements
 - Theoretical calculations
 - Radiosonde accuracies, spatial and temporal sampling
- Consistency is key (Tony Clough perspective)
 - Consistency between instruments
 - Validation using both upwelling and downwelling measurements
 - Consistency between spectral bands, regions (e.g. IR & MW)

Our main approach is to use detailed radiative closure studies with field measurements to evaluate and improve spectroscopic parameters.

Oer Topics

Radiative closure study examples

- 1) Water vapor line widths and continuum in microwave
- 2) Water vapor line widths and continuum in far-infrared
- 3) Other examples of issues with water vapor line widths

Solution Content of the sector spectroscopy in the microwave

- Ground-based microwave radiometers (MWRs) have been and continue to be used to derive key spectroscopic parameters of water vapor in the microwave
- Previous studies
 - Widths of 22 GHz and 183 GHz lines Payne et al. 2008
 - 22 GHz width has an impact on continuum analysis
 - Microwave water vapor continuum Payne et al. 2011

Ongoing studies

- Widths of 22 GHz and 183 GHz lines
 - Re-evaluate in light of new line parameters in HITRAN
- Microwave water vapor continuum
 - Comprehensive new analysis using more recent measurements from MWRs, including more moist cases

Ger Instruments used for line width determination

Compare MonoRTM with radiometer measurements

- Model the instrument bandpass characteristics
- Use radiosonde temperature and humidity profiles as input
- Radiosonde humidity measurements show variability and biases
 - » Use radiometer to scale the total precipitable water vapor

Payne et al., 2008

Ger Ground-based radiometer measurements

Oer Determination of line widths from ground-based data

- "Pivot point"
 - Frequency where T_b insensitive to line width
 - GVR: 183+/-3 channel least sensitive
 - MWRP: 23.835 channel least sensitive
- Channels on both side of "pivot point" ()
 - Different response to width, PWV
 - Crucial for information on width

Width determination

- Run model using radiosondes as input
- Retrieve PWV scaling from channel least sensitive to width uncertainty
- Retrieve width value from remaining channels

Payne et al., 2008

Oer Determination of line widths from ground-based data

Original radiosondes, original width

Scaled Radiosondes, original width

Scaled radiosondes, derived width Payne et al., 2008

Water vapor line widths

Oer

Payne et al., 2008

Ger Determining the water vapor continuum in the microwave

MicroWave Radiometer

Built by Radiometrics Two channels: 23.8 and 31.4 GHz Measurement accuracy: 0.3 K Long and successful use in ARM program

- Providing PWV and LWP retrievals at ARM sites for over 15 years
- An MWR is deployed at all ARM sites
- Payne et al. (2011): 3 years of data from the Southern Great Plains
- Wide range of atmospheric conditions encountered

Scaling of PWV using MWR 23.8 GHz, no scaling 31.4 GHz, no scaling MWR-model (K) MWR-model (K) 2 -6 2 0 6 2 0 PWV (cm) PWV (cm) 23.8 GHz, scaled PWV 31.4 GHz, scaled PWV 6 WWR-model (K) WWR-model (K) 2 2 -2 -4 -6 -6 2 6 6 0 0 PWV (cm) PWV (cm)

Not too many cases with PWV > 4 cm

Ger Continuum uncertainty

Extending the SGP MWR analysis

Measurements at higher PWV (>3.0 cm) needed to constrain the self continuum

Ger Fitting the water vapor self and foreign continuum

Payne et al., 2011

Ger Cost function values of water vapor continuum fits

Cost function includes terms for residuals, plus the slope and curvature of fit to residuals.

Site	Date ranges	Number of clear sondes	PWV range [cm]	Instruments
AMF_GoAmazon	06/2015-12/2015	637	2.85-6.25	MWR
SGP	01/2014-12/2014 10/2016 - 9/2017	1475	0.11-6.25	MWR

Ger SGP MWR datasets: current study vs. Payne et al. (2011)

Measurement – calculation differences with MonoRTM v4.2, MT_CKD v2.4

Ger Including GoAmazon measurements in current analysis

@ der Preliminary results

Large changes to MW H₂O continuum appear to be needed

Ger Brightness temperature comparison

Changes in upwelling brightness temperatures from anticipated continuum change will be large

- Oer Main points
 - Radiative closure experiments continue to play an important role in improving and validating spectroscopic input to radiative transfer calculations
 - Accurate water vapor continuum values derived from these closure studies can lead to improved retrieval products and, most likely, improved results from data assimilation.

⊘Oer The importance of the far-IR

100

100 50 33 25

40% of OLR

Spectral Cooling Rates (troposphere)

"Clough Plot"

from far-IR 7 6 4 200 2 O_3 CO_2 Pressure [mbar] 1 0.5 0.1 0.0 -0.1 500 -0.5 -1 H_2O -2 MLS -4 H_2O 1000 -6 500 1000 1500 2000 0 Wavenumber [cm⁻¹] Clough and Iacono, 1995 NO YES

Wavelength [µm] 15 13

7

x10⁻³ K/day cm⁻¹

10

As of ~10 years ago, had spectroscopic parameters been evaluated by field observations?

Our Dry locations needed to evaluate far-IR spectroscopy

Ger Radiative Heating in Underexplored Bands Campaigns

Goal: Improve far-IR spectroscopy

RHUBC-I

- ARM North Slope of Alaska Site, Barrow, AK
- February March 2007, 70 radiosondes launched
- Minimum PWV: 0.95 mm
- 2 far-IR / IR interferometers
 - extended range AERI: > 400 cm⁻¹
- 3 sub-millimeter radiometers \rightarrow determine PWV

Spectroscopic modifications from RHUBC-I (Delamere et al., 2010)

- adjustments to water vapor foreign continuum
- foreign-broadened line widths for 42 H₂O lines were adjusted

RHUBC-I: Results

Revised continuum and widths lead to significant changes in net flux

Oer

- RRTMG updated with revised continuum (MT_CKD_2.4)
- 20-yr simulation performed with CESM v1 (Turner et al., 2012)
 - statistically significant changes in temperature, humidity, and cloud fraction

Radiative Heating in Underexplored Bands Campaigns

Goal: Improve far-IR spectroscopy

RHUBC-I

- ARM North Slope of Alaska Site, Barrow, AK
- February March 2007, 70 radiosondes launched
- Minimum PWV: 0.95 mm
- 2 far-IR / IR interferometers - extended range AERI: > 400 cm⁻¹
- 3 sub-millimeter radiometers → determine PWV

RHUBC-II

- Cerro Toco, Chile (23°S, 68°E, altitude 5380 m)
- August October 2009, 144 radiosondes were launched

Minimum PWV: ~0.2 mm (5x drier than RHUBC-I)

- Far-IR / IR interferometers
 - REFIR-PAD 100-1400 cm⁻¹
 - NASA FIRST 100-1000 cm⁻¹
- 183 GHz radiometer for determining H₂O

Ger Impact of RHUBC- I Results on Line Databases - Nothing

Ger RHUBC-II spectroscopic improvements

Solution with an independent instrument

Measurements by NASA FIRST instrument during RHUBC-II

Significant improvement is seen.

aluation with an independent REFIR-PAD dataset

Oer

"The new simulations show that residuals between 200 and 400 cm⁻¹ are much reduced with respect to (previous results) and are now within the combined error estimates ... average residuals for austral winter days are remarkably close to zero"

Ger Slide from Sung et al. on lab study of far-IR H₂O continuum

Another example – near-IR water vapor widths

Plot: Average residuals between direct beam measurements from solar FTS in Lamont, OK (TCCON), and LBLRTM calculations with different line parameters

Based on this analysis, NIR and visible H₂O widths in the AER_v_3.6 H2O line file are: < 6000 cm⁻¹ - HITRAN 2012; 6000-7925 cm⁻¹ - HITRAN 2012 with Mikhailenko; 7925-9395 cm⁻¹ - HITRAN 2012 with Regalia; 9395-12000 cm⁻¹ - HITRAN 2012; > 12000 cm⁻¹: HITRAN 2008

plus numerous widths manually changed to improve residuals

Ger Infrared water vapor widths

Average brightness temperature for 120 IASI cases (courtesy M. Matricardi)

Average residuals between IASI and LBLRTM calculations

Dotted lines point out clear width errors

Note: Ongoing project at AER to improve infrared H₂O widths using both IASI and ground-based AERI measurements.

- Oer Main points
 - Radiative closure experiments continue to play an important role in improving and validating spectroscopic input to radiative transfer calculations
 - Accurate water vapor continuum values derived from these closure studies can lead to improved retrieval products and, most likely, data assimilation.
 - Line widths can also be improved from radiative closure studies and can impact the information obtained in microwindows between lines
 - line parameter databases should not be assumed to be improvements on previous versions or reflect atmospheric validation

Back-up slides

Ger Impact of HITRAN widths on residuals

AERI – LBLRTM residuals with Delamere et al. widths

Residuals with HITRAN_2012 widths

REFIR-PAD – LBLRTM residuals with Delamere et al. widths

Residuals with HITRAN_2012 widths

Effect of foreign continuum derived from RHUBC-II observations

(compared to previous version)

Net Flux

Heating Rates

