A Unified-Principle-Component Radiative Transfer Model for High-Spectral Simulations

Chao Liu, Bin Yao

Nanjing University of Information Science & Technology, China

Vijay Natraj, Yuk L. Yung

Division of Planetary Sciences, California Institute of Technology, USA

April 30th, 2019

A Combination of Fast RTMs

PCRTMs and a Unified-PCRTM

Conclusion

Some of the high-spectral instruments

Instrument	Spectral Range (µm)	Number of Channels	Application	
AIRS/Aqua	3.7 - 15.40	2,378	Temperature/water vapor/trace gases	
Cris/Suomi-NPP	3.92 - 15.38	1,305	Temperature/water vapor/trace gases	
IASI/METOP-A	3.62 - 15.50	8,461	Temperature/water vapor/trace gases	
GIIRS/FY-4A	4.40 - 14.29	1,671	Temperature/water vapor/trace gases	
HIRAS/FY-3D	3.92 - 15.38	2,287	Temperature/water vapor/trace gases	
OMI/Aura	0.27 - 0.50	740	Trace Gases/Aerosol	
TROPOMI/S5P	0.27 - 2.38	750	Trace Gases/Aerosol	
OCO-2	0.76 - 2.08	3,048	CO ₂ /Aerosol	
Carbon-Spec/TanSat	0.76 - 2.08	2,242	CO ₂ /Aerosol	
CLARS (Ground)	0.63 - 3.30	21,000	Trace Gases/Aerosol	

-100

-90

Longitude (deg.)

-80

HNO₃ Total Column (10¹⁶ mol/cm²)

150 200 250 300 350 400 450 500 Ozone Total Column (DU) ⁶⁵ 1 1.5 2 2.5 3 NH₃ (mg.m⁻²) Hilton et al., 2012 \$02 (DU)

Liu et al., 2009

-100

-90

Longitude (deg.)

-80

- Forward simulations have to be *efficient* enough for applications of high-spectral observations.
- > Satellite applications need *accurate* radiance simulations.
- High-spectral simulation is a fundamental and benchmark method for wide/narrow-band simulations.
- > We always need more accurate and more efficient models.

A Combination of Fast RTMs

PCRTMs and a Unified-PCRTM

Conclusion

Some examples of fast RT models

Some examples of fast RT models

Some examples of fast RT models

A Fast RT Model: CKD

(Edwards and Francis, 2000)

A Fast RT Model: LUT-based Model

Instead of performing 128-stream DISORT for cloud multi-scattering, the BRDF/BTDF of cloud layers can be saved and used directly.

(Wang et al. 2013)

A Combination of Fast Models

(Liu et al. 2015)

(Edwards and Francis, 2000)

A Combination of Fast Models

13

The LUT based fast model takes similar computational time to those of the 16-stream DISROT, but gives much more accurate results.

The fast model has been extended for radiometers onboard the FY-2E and FY-4A satellites

RT Simulation

WRF & Fast RTM

A Combination of Fast Models

14

Comparison of the model with the AHI/H-8 observations for different channels.

Works for the broad band instruments and channels

A Combination of Fast RTMs

> PCRTMs and a Unified-PCRTM

Conclusion

Fast Models for High-Spectral RT

- Double-*k* distribution Method (Duan et al., 2005)
 28 RT calculations for entire oxygen A-band (over 20,000 wavelengths)
- Principle Component RTM (Natraj et al., 2005; Liu et al., 2006) *A PAC of optical properties of the system (Natraj et al., 2005); A PCA of monochromatic radiance over the spectrum (Liu et al., 2006)*
- Optimal Spectral Sampling (Moncet et al., 2008)
 A few RT calculations to model channel radiances with a BTD < 0.05K
- Look-up-table-based RTM (Wang et al., 2015)
 Approximately four orders of magnitudes faster than the 32-stream DISORT

Radiance-Based PCRTM: R-PCRTM

17

(X. Liu, et al., 2006)

Radiance-Based PCRTM: R-PCRTM

2800

18

(X. Liu, et al., 2006)

Optical-Based PCRTM: O-PCRTM

Optical-Based PCRTM: O-PCRTM

Optical-Based PCRTM: O-PCRTM

O-PCRTM & R-PCRTM

O-PCA

R-PCA

> Both PCRTMs are powerful (accurate and efficient)

> The two PCRTMs are different

A Unified-PCRTM

O-PCA

- Accurate RT Model: LIDORT
- Approximated method: Two-Stream
 + First-Order Scattering
- Components in the model:
 - Aerosol Scattering
 - Rayleigh Scattering
 - Gas Absorption (HITRAN)

27

Aerosol profiles from WRF-Chem

Start from equal-spaced grid points

A Unified-PCRTM: Solar Band

- 50,000 monochromatic radiances with a spectral resolution of 0.05 cm⁻¹.
- The O-PCRTM, RPCRTM, and U-PCRTM
 show similar accuracy
 with relative differences
 less than 0.3%, and mean
 relative differences less
 than 0.01%.

A Unified-PCRTM: IR Band

- 20,000 monochromatic radiances with a spectral resolution of 0.05 cm⁻¹.
- Due to the "low" spectral resolution, the correlations among different wavelengths are relatively weak, so the U-PCRTM gives "relatively" poor results.

A Unified-PCRTM: IR Band

37

- 50,000 monochromatic radiances with a spectral resolution of 0.005 cm⁻¹.
- The accuracy of the current PCA is still questionable.
- It should be better.

A Unified-PCRTM: Efficiency

Simulations needed for the three PCRTMs

Method	Accurate Model	O-PCRTM	R-PCRTM	U-PCRTM
Basic Simulations	50,000	~100	~ 400	~50
Additional simulations	None	50,000 Approximations	PCA	~ 400 Approximations & PCA
Simulations per wavenumber	1	~0.002	~0.008	~0.001

• For solar band, a few tens accurate monochromatic simulations are performed to give monochromatic radiances over 50,000 wavelengths.

Take home messages

- We developed the Unified-PCRTM (U-PCRTM) to further enhance the computational efficiency for high-spectral RT simulations by combining the O-PCRTM and R-PCRTM;
- The U-PCRTM shows relative differences less than 0.5% for solar reflectance, and brightness temperature differences less than 0.5K;
- The U-PCRTM is approximately three orders of magnitudes faster the the corresponding "accurate model", and we can further work on the accurate model!
- Cloud scattering parameterization, irradiance simulations will be included in the U-PCRMT.

Take home messages

- We developed the Unified-PCRTM (U-PCRTM) to further enhance the computational efficiency for high-spectral RT simulations by combining the O-PCRTM and R-PCRTM;
- The U-PCRTM shows relative differences less than 0.5% for solar reflectance, and brightness temperature differences less than 0.5K;
- The U-PCRTM is approximately three orders of magnitudes faster the the corresponding "accurate model", and we can further work on the accurate model!
- Cloud scattering parameterization, irradiance simulations will be included in the U-PCRMT.