Fast Vector Radiative Transfer Method
Based on the Small-angle Approximation

Bingqiang Sun (孙丙强)
Department of Atmospheric and Oceanic Sciences / Institute of Atmospheric Sciences,
Fudan University, China

(复旦大学 大气与海洋科学系/大气科学研究院)

2019 International Workshop on Radiative Transfer Models for Satellite Data Assimilation
04/30/19, Tianjin, China
Background

- Stokes vector (I,Q,U,V)
- Vector Radiative Transfer Equation:

$$\mu \frac{dI(\mu, \phi)}{d \tau} = I(\mu, \phi) - \frac{\omega}{4\pi} \int \int P(\mu, \mu', \phi - \phi') I(\mu', \phi') d\mu' d\phi'.$$
Outline

• Introduction

• Method

• Validation

• Application

• Summary
Outline

• Introduction

• Method

• Validation

• Application

• Summary
Introduction

- Radiative transfer equation (RTE) is extensively discussed by many textbooks (Chandrasekhar 1960; Preisendorfer 1965; van de Hulst 1980; Liou 2002; …)

- Methods:
 - Discrete-ordinate radiative transfer method, Adding-doubling method, Monte Carlo method, Successive order of scattering method, Matrix operator method, invariant imbedding method, …

- Computational time:
 - Numerically accurate simulation of RTE in a strongly forward-scattering medium requires high computational effort.

- Approximations:
 - Van de Hulst and Grossman (1968) scale the optical thickness by a factor (1-\(\omega_g\)) and replace the original phase function with an isotropic counterpart.
 - Coakley and Chylek (1975), Liou (1974), Meador and Weaver (1980) and Liou et al. (1988) use the two-stream or four-stream approximations.
 - Potter (1970) uses the delta-function to replace the forward peak.
 - Joseph et al. (1976) and Wiscombe (1977a) uses the delta-Eddington approximation.
 - Wiscombe (1977b) introduces the \(\delta\)-M approximation and Hu et al. (2000) introduces the \(\delta\)-Fit approximation.
Introduction

• The invariance of scaling of optical thickness and phase function is introduced by McKellar and Box (1981):

\[P \approx 2f \delta (1 - \cos \Theta) + (1 - f) P_s, \]

\[\tau_s = \tau (1 - \omega f), \quad \omega_s = \frac{1 - f}{1 - \omega f} \omega. \]
Introduction

• Small-angle approximation has been extensively used in multiple scattering of charged particles and radiative transfer (e.g. Scott 1963; Ishimaru 1978; Sobolev 1975...).

• Nakajima et al. (1983), Nakajima and Tanaka (1988), and Weinman et al. (1975) uses the summation of Gaussian functions to replace the forward peak and the small-angle approximation is realized by the successive order of scattering method and the Hankel transform technique.

• Semi-analytical small-angle approximation is introduced by Sobolev (1975), Dolin (1973), Remizovich et al. (1982), Zege et al. (1987)...
Outline

• Introduction

• Method

• Validation

• Application

• Summary
Method

Vector Radiative Transfer Equation (VRTM):

\[
\mu \frac{dI(\mu, \varphi)}{d\tau} = I(\mu, \varphi) - \frac{\omega}{4\pi} \int \int P(\mu, \mu', \varphi - \varphi') I(\mu, \varphi') d\mu' d\varphi'.
\]

\[I(\tau = 0, \mu, \mu_0, \varphi - \varphi_0) = \delta(\mu - \mu_0)\delta(\varphi - \varphi_0)(F_0 0 0)^T.
\]

Decomposition:

\[P(\mu, \mu', \varphi - \varphi) = fP_f(\mu, \mu', \varphi - \varphi) + (1-f)P_r(\mu, \mu', \varphi - \varphi),\]

\[I(\mu, \varphi) = I_f(\mu, \varphi) + I_r(\mu, \varphi) + I_e(\mu, \varphi).
\]

Three-Component VRTM:

Forward Equation:

\[
\mu \frac{dI_f(\mu, \varphi)}{d\tau} = I_f(\mu, \varphi) - \frac{\omega_f}{4\pi} \int \int P_f(\mu, \mu', \varphi - \varphi') I_f(\mu', \varphi') d\mu' d\varphi', \omega_f = \omega f;
\]

Regular Equation:

\[
\mu \frac{dI_r(\mu, \varphi)}{d\tau} = I_r(\mu, \varphi) - \frac{\omega_r}{4\pi} \int \int P_r(\mu, \mu', \varphi - \varphi') I_r(\mu', \varphi') d\mu' d\varphi' - \frac{\omega_r}{4\pi} \exp(-\frac{\tau_r}{\mu_0}) P_r(\mu, \mu_0, \varphi - \varphi_0) I_r(\mu_0, \varphi_0).
\]

\[\omega_r = \omega \frac{1-f}{1-\omega f}, \tau_r = (1-\omega f)\tau;
\]
Method

Error component:

\[
\mu \frac{dI_c(\mu, \varphi)}{d\tau} = I_e(\mu, \varphi)
\]

\[
-\frac{\omega}{4\pi} \int P(\mu, \mu', \varphi - \varphi') I_e(\mu', \varphi') d\mu' d\varphi' - J_1(\mu, \varphi) - J_2(\mu, \varphi),
\]

Forward Component:

\[
\mu \frac{dI_f(\mu, \varphi)}{d\tau} = I_f(\mu, \varphi) - \frac{\omega}{4\pi} \int \int P_f(\mu, \mu', \varphi - \varphi') I_f(\mu', \varphi') d\mu' d\varphi',
\]

\[
I_f \approx I_0^f + I_1^f + I_2^f
\]

\[
I_f \approx \frac{F}{2\pi V} e^{-\frac{\varphi^2}{2V}}
\]
Outline

• Introduction

• Method

• Validation

• Application

• Summary
Validation

*Figure 1. Phase matrix elements of predefined aerosol and cloud layers

\[\mu_0 = 0.5, \ \omega = 1, \]
\[\tau_{\text{aerosol}} = 0.3262, \]
\[\tau_{\text{cloud}} = 5. \]

Validation

Figure 2. Stokes vector elements related to the reflected radiation and the differences in the case of aerosol.
Validation

Figure 3. Stokes vector elements related to the transmitted radiation and the differences in the case of aerosol.
Validation

Figure 4. Stokes vector elements related to the reflected radiation and the differences in the case of cloud.
Validation

Figure 5. Stokes vector elements related to the transmitted radiation and the differences in the case of cloud.
Outline

• Introduction

• Method

• Validation

• Application

• Summary
Application

Figure 6. Phase matrix elements of ice cloud

\[\mu_0 = 0.5, \]
\[\omega = 0.523801, \]
\[\tau = 5. \]
Figure 7. Stokes vector elements related to the reflected radiation
Application

Figure 8. Stokes vector elements related to the transmitted radiation
Application

<table>
<thead>
<tr>
<th></th>
<th>SAA+SOS</th>
<th></th>
<th></th>
<th>δ-M+ADM</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>GSFs</td>
<td>Time (s)</td>
<td>M</td>
<td>GSFs</td>
<td>Time (s)</td>
</tr>
<tr>
<td>Reflection</td>
<td>30</td>
<td>40</td>
<td>3.9</td>
<td>30</td>
<td>40</td>
<td>15.2</td>
</tr>
<tr>
<td>Transmission</td>
<td>30</td>
<td>40</td>
<td>7.2</td>
<td>30</td>
<td>40</td>
<td>14.8</td>
</tr>
</tbody>
</table>
Outline

• Introduction
• Method
• Validation
• Application

• Summary
Summary

• The methods combining the small-angle approximation and the successive order of scattering are validated using the benchmark results.

• The improvement and a forward model about radiative transfer are in progress.

<table>
<thead>
<tr>
<th></th>
<th>n_r</th>
<th>Δτ</th>
<th>Θ_s (°)</th>
<th>N_sat</th>
<th>N_rec</th>
<th>M</th>
<th>GSFs</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerosol Ref.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>1.0</td>
<td>0.1631</td>
<td>6</td>
<td>30</td>
<td>N/A</td>
<td>100</td>
<td>100</td>
<td>26.9</td>
</tr>
<tr>
<td>90°</td>
<td>1.0</td>
<td>0.1631</td>
<td>6</td>
<td>30</td>
<td>N/A</td>
<td>100</td>
<td>100</td>
<td>26.8</td>
</tr>
<tr>
<td>180°</td>
<td>1.0</td>
<td>0.1631</td>
<td>6</td>
<td>20</td>
<td>N/A</td>
<td>120</td>
<td>120</td>
<td>27.8</td>
</tr>
<tr>
<td>Aerosol Trans.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>1.0</td>
<td>0.1631</td>
<td>6</td>
<td>30</td>
<td>N/A</td>
<td>120</td>
<td>120</td>
<td>27.8</td>
</tr>
<tr>
<td>90°</td>
<td>1.0</td>
<td>0.1631</td>
<td>6</td>
<td>30</td>
<td>N/A</td>
<td>120</td>
<td>120</td>
<td>28.9</td>
</tr>
<tr>
<td>180°</td>
<td>1.0</td>
<td>0.1631</td>
<td>6</td>
<td>30</td>
<td>N/A</td>
<td>120</td>
<td>120</td>
<td>28.9</td>
</tr>
<tr>
<td>Cloud Ref.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>1.4</td>
<td>0.05</td>
<td>6</td>
<td>20</td>
<td>N/A</td>
<td>60</td>
<td>132</td>
<td>31.5</td>
</tr>
<tr>
<td>90°</td>
<td>1.4</td>
<td>0.05</td>
<td>6</td>
<td>N/A</td>
<td>N/A</td>
<td>100</td>
<td>132</td>
<td>40.1</td>
</tr>
<tr>
<td>180°</td>
<td>1.4</td>
<td>0.05</td>
<td>6</td>
<td>130</td>
<td>N/A</td>
<td>100</td>
<td>132</td>
<td>53.8</td>
</tr>
<tr>
<td>Cloud Trans.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>0.72</td>
<td>0.05</td>
<td>3</td>
<td>35</td>
<td>10</td>
<td>60</td>
<td>100</td>
<td>29.7</td>
</tr>
<tr>
<td>90°</td>
<td>5</td>
<td>0.05</td>
<td>10</td>
<td>20</td>
<td>N/A</td>
<td>50</td>
<td>100</td>
<td>22.2</td>
</tr>
<tr>
<td>180°</td>
<td>5</td>
<td>0.05</td>
<td>10</td>
<td>20</td>
<td>N/A</td>
<td>30</td>
<td>100</td>
<td>16.8</td>
</tr>
</tbody>
</table>