

CMA Applications of Radiative Transfer Model in Product Generation and Sensor Monitoring

Qifeng Lu, Fuzhong Weng NSMC, CMA, <u>luqf@cma.gov.cn</u>

Chunqiang Wu, Juyang Hu, Min Min, Wengguang Bai, Ling Sun, Fangli Dou, Yong Zhang, Yang Guo, Dawei An, Chengli Qi, Shengli Wu, Miao Zhang, Hui Liu, Xiaoqing Li Lin Chen, Yuan Li, Liqing Hu

Outline

Background

Model Development

Calibration and validation

Sensor Monitoring

Product generation and validation

Outline

Background

Model Development

Calibration and validation

Sensor Monitoring

Product generation and validation

Satellite Measurement and Calibration

4

Problem of Space Sensors:

(1) The calibration system is not good enough;
 (2) No absolute calibration system, no reference;
 (3) Not good enough with the stability;

Attenuation of FY-1 reflect Channels in 5 years

Attenuation of NOAA reflect Channels in 3 years

Calibration: to Improve Satellite Data quality

The RTMs are widely used at NSMC

Outline

Background Model Development Calibration and validation Sensor Monitoring Product generation and validation

Model Development

- Models used at NSMC
 RTTOV, CRTM, ARMS, LBLRTM, MonoRTM,
 6S, ModTran, FYRTM...
- Models in developing at NSMC

Fast Model for High Spectral Radiance For lunar spectral irradiances For Cloud scattering

Near Infrared Spectral Calculation with Polarization

Case1 Rayleigh (Rayleigh only, NNUM=4, SZA=60, VZA=0.0, SAZ=0, VAZ=180, PS=950, PLOC=0.9, SIGMA=0.05, ALBEDO=0.1, AOD=0.0, US STANDARD)

Simulation of TOA lunar spectral irradiances

Figure 1. Simulated TOA lunar spectral irradiances at lunar phase angles =0°, 45°, 90°, and 135° and NPP/VIIRS-DNB SRF (black solid line) (a), and its corresponding normalized weighting values of DNB (b).

Min, et al, 2017. JGR

Modified 2.25µm Channel in Cloud remote sensing

Fig. 1. Bulk SSA for (a) water and (b) ice clouds as a function of effecti particle radius. (c) Imaginary part of refractive indices (Im) for water and ic and the SRF of VIIRS 1.6- and 2.25- μ m channels and the MODIS 2.13- μ channel. (d) Asymmetry factor (g) of water and ice clouds at the 0.87- μ channel.

Fig. 4. Reflectances for ice and water clouds at a pair of NIR channels. (a) 1.6- and 2.25- μ m channels. (b) 1.6- and 2.13- μ m channels. The results are simulated at six sets of solar-satellite geometries, and cloud layers with large ranges of COT and CER are considered. Red and blue dots are for ice and water cloud layers, respectively.

Wang, et al., 2018. *IEEE Transactions on Geoscience and Remote Sensing*

Why are the Adjoint Model Important?

For physical retrievals Air Temp Humidity **Physical Brightness** Sensor Surface Temperature retrieval Temp Radiance Adjoint Flux Model Instrume $\nabla_{\mathbf{x}} J = \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}^b) + \mathbf{H}^{\mathrm{T}}(\mathbf{E} + \mathbf{F})^{-1}[\mathbf{I}(\mathbf{x}) - \mathbf{I}^0],$ nt paras

The potentials of Adjoint Model

Temperature Jacobians for VASS

FY3C VASS

NA18 ATOVS

US Standard, IR EMIS=0.98, MW EMIS=0.68

Jacobians for FY-4 GIIRS

FYRTM/FY4 GIIRS

RTTOV/IASI

US Standard, IR EMIS=0.98

Outline

Background Model Development Calibration and validation Sensor Monitoring Product generation and validation

Cal/Val: FY-3D GAS Spectrum in TVAC Test

Cal/Val: To estimate FY-3D HIRAS Spectral Calibration Coefs

MERSI-II CloudMask

HIRAS唱空像元中心经结度和MERSI band20叠加图20180305-1940

Clear pixels determined from MERSI cloudmask

经度

HIRAS OBS compared with LBLRTM simulation (LW)

-20

15

20

Sample

25

10

5

FOV-1 FOV-2

— FOV-3 — FOV-4

40

35

30

may be adjusted

Cal/Val: Correction of Polarization effect for MERSI

Polarization effect estimation

412 nm Magnitude of Polarization correction

The polarization effect of FY-3 MERSI could be estimated using the simulation of FY-3 MERSI under the clear sky open sea pixels

RTM + Campaign OBS for Cal/Val

		Old	New
	Surface	Lambert	BRDF
	Scatter	Scalar	Vector
	Trans	Band model	Mid-Res
2	Uncertaint y	6%	3~5%

Sea Color

aerosol

30°N 30°S 60° 90°S ^{60°W}Before 120°W

60°E

120°E

FY-3A MERSI

Cal/Val: campaign for FY-3c/d MWHS

过境普洱中心时刻 北京时	卫星编号	仪器天顶角 (度)
2018/3/3 14:08:40.6	FENGYUN 3D	46.88
2018/3/3 23:06:56.5	FENGYUN 3C	15.1
2018/3/4 11:35:13.3	FENGYUN 3C	13.58
2018/3/5 11:16:20.6	FENGYUN 3C	22.65
2018/3/5 15:10:09.4	FENGYUN 3D	50.87
2018/3/6 14:51:58.5	FENGYUN 3D	25.58
2018/3/7 14:33:04.3	FENGYUN 3D	9.3
2018/3/8 3:01:21.0	FENGYUN 3D	10.49
2018/3/10 11:22:00.3	FENGYUN 3C	11.36
2018/3/12 14:38:37.1	FENGYUN 3D	1.81
2018/3/13 3:06:54.0	FENGYUN 3D	1.01
2018/3/14 22:59:22.4	FENGYUN 3C	1.44
2018/3/15 11:27:39.7	FENGYUN 3C	0.67

Outline

Background Model Development Calibration and validation Sensor Monitoring Product generation and validation

Flow Chart of RTM SAT-Simulator

CRTM, RTTOV, 6S etc

FNL、ERA 5、 CRA-40 etc

Clear Sky only

Monitoring instrumental performance using simulations Web: : <u>http://satellite.nsmc.org.cn</u>

FY3D_MWTSY_GLBA_SM_OMB_106_AVG_20190423_LIFE_BSMTX_MS

More details for the abnormal diagnosis

Statistics of MWRI O-B

original Ascending
original Descending
adjust the emissivity of hot reflector Ascending
adjust the emissivity of hot reflector Descending
adjust the emissivity of hot reflector and cold reflector Ascending
adjust the emissivity of hot reflector and cold reflector Descending

The improved OMB for channels from UKMO

Surface Info in MWTS Sounding Channels

O-B of MWTS Sounding Channel, the Surface Information exists.

T=Tj+k(T1-Tj);j=5,6,7,8

Monitoring of Reflected Channels of Imager

The attenuation effect could be detected and corrected

Outline

Background

Model Development

Calibration and validation

Sensor Monitoring

Product generation and validation

RTMs in Product Generation

Simulation – Look Up Tables

FWD and AD/Jacobian Matrix in physical Retrievals

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}_b)^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) + \frac{1}{2} (H(\mathbf{x}) - \mathbf{y}^{obs})^T (\mathbf{O} + \mathbf{F})^{-1} (H(\mathbf{x}) - \mathbf{F$$

- **x** analysis variable
- \mathbf{x}_{a} final analysis
- \mathbf{x}_{h} background
- **B** background error covariance **F** forward model error covariance

- **y**^{*obs*} observations
- observation error covariance 0
- Η - observation operator

Slide courtesy of Fuzhong³⁴Weng

Thermal Structure from ATMS and CMWS

Typhoon Maria(玛利亚) and Mangkhut(山竹) Precipitation from FY-3 MWTS and MWHS

Precipitation from CMWS-28

Precipitation from CMORPH

FY3-CMWS-28 is combined from MWTS and MWHS CMORPH stands for NOAA Climate Prediction Center Morphing Technique

Slide courtesy of Fuzhong³ Weng

Product Development: Infrared Total Precipitable Water Inversion

FY-3C VIRR TPW

FY-2F TPW

Product Development : Sea surface wind speed and cloud water retrieval algorithm

- Algorithm: Semi-Statistical-Physical Model
- D-Matrix coefficient training, based on atmospheric profile sample library and rapid radiation transfer model

Product Development : Wind Profile Radar(simulator and products)

Way forward

■With the improved instrumental performance (NE∆T), and traceable radiometric measurements, FY series are becoming one of the important components of global observation to support the wide application.

Any progress of RTMS for satellite instruments are expected and welcomed

Thank You! 谢谢!