

Developing capacity of Southeast Asian countries to apply subseasonal-to-seasonal forecasts in impact forecasting tools

Thea Turkington¹, Raizan Rahmat^{1,2}, Govindarajalu Srinivasan³, Kareff Rafisura⁴

¹Centre for Climate Research Singapore

²ASEAN Specialised Meteorological Centre (ASMC)

³Regional Integrated Multi-Hazard Early Warning System for Africa and Asia (RIMES)

⁴United Nations Economic and Social Commission for Asia and the Pacific (UNESCAP)

Background - S2S-SEA Capability Building Programme (2017 ~ 2020)

- Involve all ASEAN NMHSs, S2S international experts, and regional end-users
 - Aim: national products by NMHS, and regional products useful to the region.
- Series of four workshops:
 Workshop 1 Feb 2017
 Workshop 2 Aug 2018

NHMSs: National Hydrological and Meteorological Services

0.4

0.1 0.2 0.3

0.5 0.6

0.7 0.8 0.9

Current project – ASMC, RIMES, UNESCAP

The mid-term review meeting of the ASEAN-UN Joint Strategic Plan of Action on Disaster Management 2016-2020 (JSPADM) (September 2018, Jakarta) recommended to continue supporting capacity building for S2S.

Five cases studies (as part of deliverables):

- Various **types** of hazardous events (heavy rainfall, drought, *heat waves*) from 2016 onwards
- Explore how S2S could have improved disaster preparedness (three models from S2S database: ECMWF, NCEP, UKMO)

Case Study 1: Feb 2016

Overview

Event dates: end Jan – start Feb Main rainfall week: **04-10 Feb 2016**

Reported impacts:

1. Indonesia (North Sumatra, Bangka Belitung, Riau, West Sumatra)

2. Malaysia (Negeri Sembilan State, Malacca State, Johor State, Kota Bharu, Kelentan State**)**

CHIRPS

CMORPH

Rainfall anomaly 04-10 Feb 2016 (mm/day)

Overview

Disaster Impacts: Floods, flash floods, and landslides caused deaths, displacement, damage to houses, bridges, and agricultural damage

Institutional actors: National and local disaster management agencies

Institutional response: Little preparation time (likely only short range forecasts available), mainly evacuation and rescue

Indonesian Red Cross volunteers and evacuation in Riau province. (Photo credit: PMI, Riau Chapter)

Background

Seasonal:

- Occurred during El Niño (Indonesia normally considered 'dry')
- ASEANCOF seasonal consensus forecast near normal/below normal

DJF 2015/2016

Background

Seasonal:

- Occurred during El Niño (Indonesia normally considered 'dry')
- ASEANCOF seasonal consensus forecast near normal/below normal

DJF 2015/2016

Subseasonal: MJO

Analysis(NCEP) +0-4days +4-8days +8-12days +12-16days +16-20days +20-24days +24-28days +28- days

Forecasts from 14 Jan 2016 (S2S museum)

Model forecasts

Model forecasts

Table: Probability above threshold for area average

	95%ile							
BOX A WEST	LT 1	LT 2	LT 3	LT 4				
28 Jan - 3 Feb	0%	10%	0%	0%				
4 Feb - 10 Feb	94%	73%	14%	2%				
11 Feb - 17 Feb	0%	0%	0%	2%				
	95%ile							
BOX A EAST	LT 1	LT 2	LT 3	LT 4				
28 Jan - 3 Feb	0%	0%	0%	4%				
4 Feb - 10 Feb	90%	37%	22%	4%				
11 Feb - 17 Feb	0%	0%	0%	0%				
	95%ile							
BOX B WEST	LT 1	LT 2	LT 3	LT 4				
28 Jan - 3 Feb	0%	4%	20%	10%				
4 Feb - 10 Feb	96%	75%	41%	10%				
11 Feb - 17 Feb	0%	10%	2%	8%				
	95%ile							
BOX B EAST	LT 1	LT 2	LT 3	LT 4				
28 Jan - 3 Feb	0%	0%	4%	6%				
4 Feb - 10 Feb	96%	84%	33%	20%				
11 Feb - 17 Feb	0%	29%	20%	22%				

S2S potential for this case?

- Clear signals of heavy rainfall over target areas (Western Indonesia and Malaysia) were available at least fortnight in advance;
- National and local disaster management agencies could have prepared for response and evacuation with a much longer lead time
 - E.g. emergency response, housing, agriculture
- Sub-seasonal scale could make valuable contribution to disaster and climate risk management by enabling early action, if products become available in real-time and on an operational basis

Case Study 2: May 2016

Overview

Event dates: 10- 13 May (Indonesia), end May (Philippines) Main rainfall week: **09-15 May 2016** (Indonesia), **16-22 May** (Philippines)

Reported flooding: Indonesia (South, West and Central Kalimantan, Bengkulu, Gorontolo)

Reported drought: Philippines recovering from widespread drought

Rainfall anomaly 09-15 May 2016 (mm/day)

-2 -1 0 1 2 3 4 5 6 7 8 9 10

Overview

Event dates: 10- 13 May (Indonesia), end May (Philippines) Main rainfall week: **09-15 May 2016** (Indonesia), **16-22 May** (Philippines)

Reported flooding: Indonesia (South, West and Central Kalimantan, Bengkulu, Gorontolo)

Reported drought: Philippines recovering from widespread drought

Rainfall anomaly 09-15 May 2016 (mm/day)

-2 -1 0 1 2 3 4 5 6 7 8 9 10

Overview

Disaster Impacts:

- 1. Indonesia: Floods and flash floods caused deaths, injuries, displacement, damage to housing and agriculture
- 2. Philippines: Widespread agriculture drought since 2015 (40% of country), crop and livestock losses, low food production (high price, low farm income)

Institutional Responses:

- 1. Indonesia: Evacuation, search and rescue
- 2. Philippines: 13 May advisory issued by National DRRM Council

as of April 30, 2016 LEGEND DROUGHT DRY SPELL DRY CONDITION NOT AFFECTED Drought is defined as 3-consecutive months of way below normal rainfal condition (>60% reduction from average rainfall) Dry spell is defined as 3-consecutive months of below normal rainfall condition (21-60% reduction from average rainfall). PHILIPPINE SEA Dry condition is defined as 2-consecutive months of below normal rainfall condition (21-60% reduction from average rainfall). Drought condition was assessed using observed rainfall (mm) of Jan 2015 - April 2016 Issued: 5 May 2016 Climate Monitoring and Prediction Section (CLIMPS) Climatology and Agrometeorology Division Website: www.pagasa.dost.gov.ph For further information, please contact the Climatology and Agrometeorology Division (CAD at telephone numbers 434-0955 or 435-1875 WEST PHILIPPINE SEA 35% of the country experienced Drought (28 provinces)

DROUGHT/DRY SPELL ASSESSMENT

Background

Seasonal:

- Decaying phase of El Niño
- Normally end of the rainy season for Indonesia (so 'unexpected' time of year)

Background

Seasonal:

- Decaying phase of El Niño
- Normally end of the rainy season for Indonesia (so 'unexpected' time of year)

Subseasonal: MJO

Model forecasts

Figure: Probability above 99% 9-15 May 2016 (LT 1)

Model forecasts

Table: Probability above/below threshold for area average

	Indonesia				Philippines			
	75%ile				25%ile			
BOX A	LT 1	LT 2	LT 3	LT 4	LT 1	LT 2	LT 3	LT 4
2-8 May	65%	80%	35%		57%	73%	73%	63%
9-15 May	82%	61%	41%	45%	69%	84%	69%	76%
16-22 May	4%	39%	86%	67%	4%	8%	31%	73%
	75%ile				25%ile			
BOX B	LT 1	LT 2	LT 3	LT 4	LT 1	LT 2	LT 3	LT 4
2-8 May	10%	22%	31%	45%	20%	63%	75%	92%
9-15 May	4%	12%	16%	33%	100%	94%	59%	75%
16-22 May	49%	20%	61%	51%	0%	27%	24%	37%
	75%ile				25%ile			
BOX C	LT 1	LT 2	LT 3	LT 4	LT 1	LT 2	LT 3	LT 4
2-8 May	39%	31%	37%	47%	88%	51%	47%	32%
9-15 May	45%	25%	29%	41%	78%	18%	37%	43%
16-22 May	69%	49%	80%	67%	0%	35%	12%	12%

Figure: Probability above 99% 9-15 May 2016 (LT 1)

S2S potential for this case?

- Signals of rainfall events over Indonesia not clear, but dry spell over Philippines and its break (in the southern parts of the country) seem to be indicated well
- National DRRMC Council of Philippines was acting on El Niño advisories available on seasonal time-scale from PAGASA (NMHS). Could have adjusted sectoral strategies much better.
- Indications of potential usability in continuation of dryspells and their break.

Summary

Case Studies

In terms of impacts, the two case studies were not 'mega-disasters'but they still can have a large effect on near-poor people.

- Case study 1 demonstrates potential useful information at the S2S timescale
- Case study 2 highlights that S2S can struggle to pick up some events (e.g. flash floods)

Summary

Case Studies

In terms of impacts, the two case studies were not 'mega-disasters'but they still can have a large effect on near-poor people.

- Case study 1 demonstrates potential useful information at the S2S timescale
- Case study 2 highlights that S2S can struggle to pick up some events (e.g. flash floods)
- \rightarrow Still work required for identifying specific areas for preparedness
- \rightarrow More case studies underway, including plans for pilot locations
- \rightarrow Plans to engage national level actors during next S2S-SEA workshop

Rainfall anomalies

CHIRPS

CMORPH

Rainfall anomaly 04-10 Feb 2016 (mm/day) Raintall Anomaly

30 F 5 5 7 2 8 7 2

B

Rainfall anomaly 09-15 May 2016 (mm/day)