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ECMWF Ensemble mean 2m temperature anomaly forecast (shading) and ensemble spread 
(contours) averaged over Scandinavia



Objectives

Is there extended prediction skill for extreme surface temperature 
events (compared to climatologically average ones)?

What is the role of persistence?

Subseasonal prediction of extreme temperatures in Europe 3



Verification of S2S ensemble hindcasts

Surface temperature variability can be 
determined by components with 
predictability potential on S2S time 
scales:
• low-frequency atmospheric 

variability (possibly influenced by 
ocean variability, Cassou et al., 2005; 
Wulff et al., 2017)

• land-atmosphere interactions (soil 
moisture memory, Seneviratne et al., 
2010)
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from Cassou et al., 2005

from Seneviratne et al., 2010



Data & Methods

Data:
Hindcasts: S2S ensembles (Vitart et al., 2016)
• mostly ECMWF: 11 members, initialized twice weekly, only model versions 2016+
Verification: ERA-Interim reanalysis (Dee et al., 2011)

Methods:
Consider pentad mean anomalies of 𝑇𝑇2𝑚𝑚 in JJA with respect to the 1999-2010 lead 
time-dependent climatology
Extreme temperature event: exceedance of the 95th percentile of the 𝑇𝑇2𝑚𝑚5𝑑𝑑 distribution 
(again lead time-dependent)
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Surface temperature prediction skill
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05 days lead time

Anomaly correlation coefficient (ACC)

At each grid point & for each lead time:
 correlation over dimension of 

initialization time



Surface temperature prediction skill
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10 days lead time

ACC < 0.5 over whole domain



Surface temperature prediction skill
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15 days lead time

ACC < 0.4 over whole domain



Surface temperature prediction skill
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20 days lead time

ACC < 0.3 over whole domain



Surface temperature prediction skill
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25 days lead time

ACC < 0.2 over whole domain



Surface temperature prediction skill
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30 days lead time

Small but significant predictable 
signal remains



Surface temperature prediction skill
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35 days lead time



Surface temperature prediction skill
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40 days lead time



Are extremes more predictable than climatology?
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• Need a base rate independent measure for the prediction skill 
 the Odds Ratio (OR, Stephenson, 2000)

• Ratio of odds of making a hit to the odds of making a false alarm

• Transform to Skill Score: OR Improvement over random forecast 
 the ORSS
Compare forecasts of 50th vs. 95th percentile events

• Skill Score relative to persistence
 OR Benefit Skill Score (ORBSS, Mittermaier, 2008)
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H: hit rate;             F: false alarm rate



Extended predictability of extremes in CEU & RU regions
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ORSS indicates extended predictability of extreme temperatures in western Europe (CEU) and 
western Russia and the Ukraine (RU)



Extreme temperature skill through persistence?

Large part of the skill at sub-
seasonal lead time in RU region 
comes from persistence
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Persistence cannot explain the 
skill in the CEU region

O
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SS



Extreme temperature persistence in ECMWF model
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ERA-Interim - ECMWF hindcasts lead time 18-22 days

Difference in persistence probability for 
95th percentile events between ERA-
Interim and ECMWF model

In RU region rather underpersistence for 
subseasonal lead times
 The model does not just predict 

persistence all the time



Conclusions

• There are predictable signals in weekly surface 
temperature at subseasonal lead times in some 
European regions

• In north-western Europe (CEU) and western Russia 
and the Ukraine (RU), prediction skill for surface 
temperature extremes is larger than for average 
temperatures

• In RU, large part of the skill can be attributed to 
persistence of extreme temperatures (especially 
during the 2010 event)
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Outlook

• How strongly is persistence determined by land-
atmosphere interactions?

• What is the role of atmospheric circulation regimes in 
extreme temperature forecast skill at S2S lead times?

• What is the influence of a drift of the main modes of 
circulation?

• How do different S2S hindcast products compare?
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Thank you for your attention!

from Quesada et al. (2012)
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Odds Ratio

OR is the ratio of the odds of a “yes” forecast being correct to the odds 
of a “yes” forecast being wrong
(see http://www.cawcr.gov.au/projects/verification/)
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Persistence probability dependence on threshold
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Strong dependence on 
chosen percentile 
threshold remains after 
correcting

Persistence probability for 
high temperatures 
exceeds what is expected 
for a random time series 
more strongly than for 
average temperatures



How are SNAO and SEA predicted?
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How are SNAO and SEA predicted?
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How are SNAO and SEA predicted?
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How are SNAO and SEA predicted?
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How are SNAO and SEA predicted?
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How are SNAO and SEA predicted?
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How are SNAO and SEA predicted?
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How are SNAO and SEA predicted?
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Similar for all models but some (CMA, 
NCEP) do not separate EOF2 and 3 
anymore at longer leads
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ERA-Interim persistence of inner 
quartile temperatures



50th vs 95th percentile forecast skill other models
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Extreme temperature events
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Extreme temperature event
Defined as a period of at least 3 days in which 2m temperature exceeds the 95th

percentile of the monthly climatology. Each event must be separated from the 
previous by at least 3 days.

Here limited to JJA and land areas in the region indicated to the right

 11 events in the period of 1999-2010 obtained from daily ERA-Interim reanalysis

Ensemble hindcasts
From 4 forecasting systems (ECMWF, BoM, CMA, NCEP) in the S2S data base (Vitart et al., 2016) with:
• Different ensemble sizes
• Different initialization strategies (frequency, ensemble generation)
• Common period covered: 1999-2010
• Ocean and sea ice coupled
• …
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