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Introduction

Goal:
Provide calibrated probabilistic predictions for a real-valued
quantity Y (e.g. cumulated precipitation amount) based on an
ensemble of predictions X = (X (1), . . . ,X (d)).

Requirement:
Sufficient training data available: (X1,Y1), . . . , (Xn,Yn)

Characteristics of IDR:

I Generic (non-parametric) method providing a competitive
benchmark for prediction (with respect to CRPS)

I Leads to calibrated probabilistic predictions (flat PIT
histogram)

I (Almost) No tuning parameters

I May be outperformed by carefully tuned parametric
postprocessing methods
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Fundamental assumption of IDR

“If the predictions increase we expect an increase of
the outcomes.”
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Making this intuition precise

“If the predictions increase. . . ”

Partial order on the covariates:
x = (x1, . . . , xd), x ′ = (x ′1, . . . , x

′
d) ∈ Rd

x ≤p x ′ if x1 ≤ x ′1, . . . , xd ≤ x ′d .

“. . . we expect an increase of the outcomes.”

Stochastic order on predictive distributions: F ,G cdfs

F � G if F (z) ≥ G (z) for all z ∈ R.

Equivalent:

F � G if F−1(α) ≤ G−1(α) for all α ∈ (0, 1).
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Isotonic distributional regression (IDR)

Estimate the cdf-valued function X 7→ FX with

FX = L(Y |X )

under the assumption that FX is isotone, that is,

X ≤p X ′ =⇒ FX � FX ′ .

Minimization problem: Define F̂X to be the isotone cdf-valued
GX minimizing

1

n

n∑
i=1

CRPS(GXi
,Yi ).

Result: There exists a unique minimizer F̂X which we call the IDR.
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Constructing the IDR
Let z ∈ R. Minimizing

n∑
`=1

(gz(X`)− 1{Y` > z})2

over all increasing functions gz : Rd → R has a unique optimal
solution that can be computed by solving a quadratic programming
problem.

I F̂X : z 7→ 1− ĝz(X ) is a valid cdf

I X 7→ F̂X is the IDR

Sidenote:
Closed form of the optimal solution for a total order (d = 1)

ĝz(X`) = min
j≥`

max
i≤j

1

(j − i + 1)

j∑
t=i

1{Yt > z}.
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Optimality properties of the IDR

I Let W-CRPS be a quantile- or threshold-weighted CRPS.
The IDR F̂X satisfies

1

n

n∑
`=1

W-CRPS(F̂X`
,Y`) = min

GX

1

n

n∑
`=1

W-CRPS(GX`
,Y`)

where GX runs over all isotone cdf-valued functions.

I The IDR is calibrated “if the partial order is strong
enough/the training sample is large enough”.
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Using IDR for prediction

I Compute IDR for training dataset.

I For a new covariate value X , find nearest neighbors, choose
suitable ones.

I Interpolate solution amongst nearest neighbors.
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Application: Precipitation forecasts

Dataset

I Precipitation forecasts and observations from 2007 to 2017

Airport Available days (years)

London Heathrow 2256 (6.2)
Brussels 3406 (9.4)
Zurich Kloten 3241 (8.9)
Frankfurt 3617 (9.9)

I Observations: 24-hour accumulated precipitation amounts

I Forecasts: ECMWF ensemble
52 members: high-resolution forecast (HRES), control
forecast (CTRL), 50 perturbed members (PM)

I IDR using (HRES, CTRL, mean of PM)
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Results: CRPSS
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Discussion and outlook

I IDR is a new generic technique to generate calibrated
probabilistic predictions.

I IDR can accomodate predictions from multiple models.

I IDR is in-sample optimal with respect to all weighted CRPS.

I IDR provides guarantees for calibration in-sample.

I IDR yields competitive predictions for precipitation using less
information.

I R Package for IDR in preparation

I Paper in preparation, available upon request: Master Thesis of
A. Henzi (2018).

Extensions/related methods:

I Semi-parametric IDR for outcomes with heavy tails.

I Isotonic regression for point predictions/specific parameters of
the predictive distribution.

I Work in progress: Variable selection method for partial orders.
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